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Time-frequency representations based
detector of chaos in oscillatory circuits

Vesna Rubezié, Igor Djurovié, Milos Dakovicé

Abstract— Detection of chaotic states in the
nonlinear chaotic Chua’s oscillatory circuit has
been considered. A new approach, based on the
concentration measure of the time-frequency
(TF) representation, is proposed for determi-
nation of the current circuit state. Parameters
of the proposed algorithm are studied in de-
tails. The algorithm is applied in the case of
moderate noisy signal, as well as for breaking a
chaotic communication scheme.

I. INTRODUCTION

Under the specific conditions, various non-
linear systems exhibit chaotic dynamic behav-
ior (chaotic nonlinear circuits [1],[2], chaotic
secure communication schemes [3],[4], chaotic
watermarking systems [5], and various kinds
of biomedical, mechanical, economical systems
[6]-[8]). By varying their parameters, these
systems could pass through the various types
of bifurcations and steady states (equilibrium
point, periodic, quasi-periodic, chaotic states).
Chaotic systems are the nonlinear ones that
are characterized by sensitive dependence on
initial conditions. Common theoretical in-
dication of chaos are Lyapunov coefficients.
Namely, positive Lyapunov coefficients indi-
cate exponential divergence of nearby system
states. However, Lyapunov coefficients are not
practically applicable since their evaluation re-
quires very long signal sequence (theoretical of
infinite length). In addition, Lyapunov coeffi-
cients are very sensitive to noise influence [9]-
[13] and there are systems whose Lyapunov
exponents are either not defined or difficult or
impossible to calculate [14]-[16]. These draw-
backs force the recent advance in development
of reliable chaos detection measures, some of
them analyzed in [9]. Detection of nonlinear
behavior in the system is employed in group
of chaos detection systems [9]-[11]. However,
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nonlinear dynamic is required but not suffi-
cient condition for chaotic behavior. Some
other techniques are based on pattern recog-
nition of chaotic attractors [17], [18]. The
main drawback of these techniques is calcu-
lation complexity. Details of currently used
chaos detection algorithms and measures can
be found in [9] and references therein.

In this paper we study chaotic oscillatory
circuits as an important group of chaotic sys-
tems. Note that there are specially designed
chaotic oscillators like, for example, Chua’s
circuit [19]. Also, the chaotic dynamics can
be observed in other oscillatory circuits due
to nonlinearities introduced by imperfection
of fabrication. In periodic regime these cir-
cuits produce signals that can be represented
as a sum of several sinusoidal components,
i.e., as a sum of Dirac pulses in spectral do-
main. However, in chaotic regime numerous
additional components in spectral domain can
be observed. Then, information on the circuit
state can be extracted from the signal spectra
by using a properly designed measure that pro-
duces different results for periodic and chaotic
regimes. Details related to the spectral analy-
sis of signals produced by the chaotic nonlinear
oscillators can be found in [19]. In order to be
able to track time-varying circuit state, we em-
ploy the time-frequency (TF) representations
as a generalization of the Fourier transform
(FT) concept. An excellent overview of the
TF methods and application including study
of concentration measures can be found in [20].
Note that the TF signal analysis has already
been used for study of the chaotic signals and
systems in [21].

An algorithm for chaos detection in nonlin-
ear oscillators proposed in this paper is based
on the short-time Fourier transform (STFT),
as the simplest TF representation (running
window FT realization), and its energetic ver-
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sion called spectrogram. A specific concen-
tration measure has been proposed in order
to be able to distinguish between chaotic and
periodic regimes. State of the system is esti-
mated without apriory knowledge on the struc-
ture and parameters of the oscillator. How-
ever, simulation examples in this paper are
performed for the Chua’s oscillatory circuit.
Theoretical knowledge of its behavior is wide,
since this circuit is the first one considered in
science. Then, it was the simplest way to com-
pare obtained results with the related theory.
The proposed algorithm has three important
favorable properties: evaluation of the mea-
sure requires short interval (window width);
reasonable calculation complexity; robustness
to moderate noise amount. The proposed tech-
nique is applied for breaking “secure” chaotic
communications between transmitter and re-
ceiver.

The paper is organized as follows. In Sec-
tion II, theoretical overview of the Chua’s os-
cillatory circuit and spectral analysis of related
signals is given. TF representations used for
design of the chaotic state detector are also
reviewed in this section. The proposed de-
tector based on concentration measure of TF
representation is introduced in Section III as a
chaotic circuit state detector. Detailed numer-
ical analysis is given in Section IV for three
routes to chaos, as well as for noisy chaotic
sequences. In order to generalize application
of our detector, chaos detection in the Rossler
and logistic map chaotic systems is considered.
Also, it has been shown that “secure” chaotic
communications could be broken by proper
threshold selection in the proposed detector,
Section V. Concluding comments are given in
Section VI.

II. THEORETICAL REVIEW
A. Chua’s circuit

Consider the Chua’s circuit shown in Fig.1a,
with its state equations given as:

d
% = C’il [G (v2 —v1) — f (v1)]
duvsg 1

E :E[G(Ulfvz)Jng]

di 1 .

d_; =7 (—v2 — Roi3) (1)
where G = 1/R and f (v;) is the piece-wise
linear v — ¢ characteristic of the Chua’s diode
(Fig.1b), given by

f(vr) = Gyor + % (Go — Gy)

X (lvr + E| — |vr — E) (2)

where F is the breakpoint voltage of Chua’s
diode. Note that all state variables are func-
tions of time v1 = v (1), va = va(t), i3 = i3(t).
Hereafter, we drop this dependence from nota-
tion for the sake of brevity. In order to perform
approximative spectral analysis, constant cir-
cuit parameters are assumed [19]. However, in
various routes to chaos they can vary in time.

Circuit behavior in the linear regions of
function f(v1) can be described by the eigen-
values of

a; G/Cl 0
G/Cy —G/Cy  1/Cy (3)
0  —1/L —RyjL

Ji =

where ¢ = 1, 2, 3, specifies the linear parts of
the function f(v1), a1 = a3 = — (G + Gy) /Cy
and ap = —(G+G,)/Cy.  Characteris-
tic polynomial of J; has three roots: ~;
that corresponds to the direct current (DC)
component of the form c¢;;exp(y,;t), and a
complex-conjugate pair o; + jw; that corre-
sponds to the damped sinusoidal components
ciz exp(o;t) exp(jw;t). This is in accordance
with [19] where approximative spectral analy-
sis of chaotic oscillatory circuits has been
considered. It has been shown that in pe-
riodic regime, signals produced by this cir-
cuit have several periodic components while
in chaotic regimes they have broadband power
spectrum with numerous additional compo-
nents and noise-like structures. Then, we can
conclude that detection of chaos in these cir-
cuits can be performed in spectral domain by
designing a measure that can distinguish be-
tween periodic (with several sinusoidal compo-
nents) and chaos (with broadband signal with
numerous components) regimes.
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B. Time-frequency representations

Situation where some of circuit parameters
vary in time and its values (current and past)
determine circuit state is of our particular in-
terest. Spectral content of signals produced
with varying parameters in the circuit is time-
varying (frequency of sinusoidal components
vary, some components and noise like struc-
tures could appear or disappear in a signal).
In the case of signals with time-varying con-
tents it is required to design a representation
that will give information on both temporal
and spectral (frequency) signal behavior. The
TF representations are used for this purpose.

The Fourier transform (FT) is a classical
spectral analysis tool defined as:

oo

X(f) = / (t)e=I2 Tt gy, )

—00

Squared magnitude of the FT, |X(f)|?, is
called periodogram and it is used for approx-
imative spectral analysis of signals produced
by chaotic oscillatory circuits in [19].

The simplest TF representation is the STFT
representing the FT calculated for signal win-
dowed in the neighborhood of a considered in-
stant:

o0
STFT(t, f) = / z(t 4 T)w(r)e 2™ dr,

(5)

where x(t) is the signal of interest (here it

means voltage or current), while w(7) is (run-

ning or sliding) window function. The STFT

has several important favorable properties in-

cluding:
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(a) Chua’s circuit; (b) nonlinear v-i characteristic of Chua’s diode.

1. Linearity. The STFT of weighted sum of
signals z(t) = az(t)+by(t) is equal to weighted
sum of signals’ STFTs: STFT.(t,f) =
aSTFT,(t, f) +bSTFT,(t, ).

2. Time-frequency shift. For time and fre-
quency shifted signal y(t) = z(t — to)e/2™ /ot
the STFT is shifted in the TF plane:

STFT,(t, ) = STFTy(t — to, f — fo)e?*™ /oL,

(6)
However, the STFT is complex valued,
and its energetic version called spectrogram:
SPEC(t, f) = |STFT,(t, f)|? is used in prac-
tice [22]. The spectrogram is the simplest non-
linear TF representation.

Since the spectrogram cannot produce ideal
time and frequency concentration, other more
sophisticated nonlinear representations have
been proposed in the last 20 years. The
Wigner distribution (WD) is the most com-
monly used of them defined as [23]:

oo

WD,(t, f) :/x(t+7/2)x*(t,T/Q)eszﬂdeT'

—00
(7)
However, the WD exhibits significant draw-
backs, since it produces the cross-terms for
multicomponent signals. For example, for sig-
nal with two components z(t) = x(t) + y(¢) it
follows:

WDz(t7f) = WDx(taf) + WDy(tvf)+

o

+2Re /x(t+7'/2)y*(t—T/Q)e_jz’TdeT

o ()
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where the third component is undesired oscil-
latory cross-term between signal components.
In the case of an M-component signal, num-
ber of cross-terms is M (M —1)/2. These cross-
terms can be very emphatic and they can cover
the useful TF components. Design of TF rep-
resentations reducing or removing cross-terms
is a difficult task [20].

Signals produced by nonlinear chaotic oscil-
lators could have numerous components. Then
we use the STFT (i.e., spectrogram) as the TF
representation tool in order to avoid emphatic
influence of cross-terms. Note that there are
efficient hardware and software realizations of
the STFT and spectrogram widely available
in practice. Furthermore, since the STFT and
spectrogram are time-varying forms of signal
spectra, we can assume that all conclusions
related to the FT and periodogram in vari-
ous bifurcation regimes derived in [19] can be
applied here.

III. PROPOSED DETECTOR

In order to present the background moti-
vation for our detector of chaotic behavior,
we consider the Chua’s circuit with the fol-
lowing set of parameters: L = 18mH, C; =
10nF, Cy = 100nF, G, = —757.576uS, G =
—409.091pS, E = 1V, Ry = 12.5Q with G in
the range G > 500uS. Note that the global
behavior of the circuit is analyzed in [19] for
the same set of parameters. The varying con-
ductance G given in Fig.2a is used as the bi-
furcation parameter. It produces so called
period doubling route to chaos. This is the
most widely observed and well-known route
to chaotic behavior. Logarithm of the STFT
magnitude for this route to chaos is visual-
ized in the TF plane in Fig.3a!. The signal
of interest is wy(t). Similar results are ob-
tained for va(t) and i3(¢). The Hanning win-
dow of the width T" = 3ms is used for eval-
uation of the STFT. For ¢ € [0,20ms|, con-
ductance is constant and equal to 530uS. The
circuit exhibits a stable period 1 limit cycle
in this interval. Signal in the TF plane in
this interval (Fig.3a) has component that cor-

ILogarithm of the STFT magnitude is used hereafter
for visualization, in order to present numerous weak
signal components.

responds to main frequency at approximately
3kHz, higher harmonic components and DC
component. For ¢ € [20ms,100ms] the value of
G linearly increases to 565uS. For G = 537uS
a period-doubling or pitchfork bifurcation oc-
curs. Then, a stable limit cycle eventually
loses stability and now closes on itself after en-
circling an equilibrium point twice, which we
shall refer to as a period 2 limit cycle. This
periodic signal has a fundamental frequency
component at approximately 1.5kHz (half of
the main frequency component). Further in-
crease of the conductance produces a cascade
of period-doubling bifurcations to period 4, pe-
riod 8, period 16, and so on, until an orbit
of infinite period is reached, beyond which we
have chaos. In the TF plane one can see nu-
merous new components that appear at fre-
quencies proportional to the main component
frequency and at the multiples of the frequen-
cies introduced by the bifurcation regime. In a
chaotic regime only dominant frequency com-
ponent can be easily seen, while other com-
ponents appear to be covered with noise-like
structures®. It has been shown [19] that the
chaotic regime begins from G = 541uS (in our
case it is for t = 44ms). This type of chaos
is characterized by the spiral-Chua strange
attractor given in Fig.2b. As the conduc-
tance G increases further, a double-scroll Chua
strange attractor appears for G = 552uS. This
kind of attractor is given in Fig.2c. Between
the chaotic regions in the parameter space of
Chua’s circuit, there exist ranges of the bifur-
cation parameter G over which a stable peri-
odic motion occurs. These regions of period-
icity are called periodic windows. In our ex-
periment after ¢ = 100ms, G linearly decreases
and circuit gradually returns from chaotic to
periodic regime.

Logarithm of the STFT magnitude for some
characteristic instants is given in the right
part of Fig.3. For ¢t = 20.8ms (Fig.3e) the
circuit is in a period 1 stable orbit. Domi-
nant spectral components (DC and main sinu-
soidal component) and higher harmonics can

2These structures are in fact sum of infinite num-
ber of sinusoidal components with frequencies equal to
multiple of the fractions of the main frequency compo-
nent in a stable state.
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Fig. 2. (a) The varying conductance G; (b) Spiral Chua strange attractor G = 541uS; (c) Double scroll Chua

strange attractor G = 552uS.

be observed. For ¢ = 39.8ms the circuit is
in a region of cascade period doubling oscil-
lations and numerous peaks can be seen in
the spectral domain (Fig.3d). The subhar-
monic f = 1.5kHz is excited (period 2 motion),
and the spectrum contains peaks at frequen-
cies corresponding to a linear combination of
the subharmonic and main frequency. It can
be noticed that all “new” spectral peaks are
small compared to the DC and main spectral
component. Therefore, components caused by
period doubling bifurcations are sinusoids in
the region above the main spectral component
and between the DC and main spectral compo-
nent. For t = 57.8ms the circuit is in a chaotic
regime. The DC and the main frequency com-
ponent peaks are no longer dominant as in the
previous two cases (see Fig.3c). Especially, it
is important to note that spectral content in
the area between two dominant peaks is in-
creased and of the same order of magnitude as
the dominant components. The TF represen-
tation for the instant within periodic window
is shown in Fig.3b. The spectral content is
similar to the stable orbit case (see Fig.3e).

From this experiment we conclude that the
spectral content of signal between the DC and
the main spectral component could be used
as a detector of chaotic state. The first step
in chaos detection is frequency estimation of
the main spectral component. In the region of
periodic signal, frequency can be estimated in

a simple manner as a position of the maximum
in the STFT, excluding region around the DC
component:

fm(t) = argmax |STFT(t, f)|, (9)
>

where ¢ is the region of DC component that
is only several frequency samples wide (details
are given later in this section). However, it
cannot be done in the same manner if DC and
main spectral components are very close to
each other. Then, a more precise technique
such as ESPRIT (Estimation of Signal Para-
meters via Rotational Invariance Techniques)
should be employed [24]. Since the ESPRIT
and other similar techniques could be sensi-
tive to additive noise, estimation of the domi-
nant component is performed in two stages. In
the first one, dominant frequency component is
estimated by both procedures. The ESPRIT
algorithm output is taken as a more precise
frequency estimate if both procedures produce
similar results. However, if the results signifi-
cantly differ, frequency estimate from the pre-
vious instant is used, assuming that the main
spectral component cannot vary significantly
in a narrow interval. Note that in our exper-
iments, the frequency of the main component
is not calculated in each instant, but only in
the equidistantly spaced intervals.

In the next step, current circuit state is esti-
mated based on the spectral content between
DC and the main spectral component. Chaotic
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Fig. 3. Period doubling route to chaos: (a) STFT; (b) logarithm of the STFT for ¢ = 76.8ms - periodic window;
(c) logarithm of the STFT for ¢ = 57.8ms - chaos; (d) logarithm of the STFT for ¢ = 39.8ms - period
doubling interval; (e) logarithm of the STFT for ¢ = 20.8ms - period 1 orbit.

behavior measure is defined as:
Fm ()

/ woo) (8 1)df.
0

m(t) = (10)

where the function uq)(t; f) is given as

[ 1 |STFT(t, )| = Q1)
uQ(t) (t; f) = { 0 elsewhere.
(11)

Parameter (t) is selected in such a way that
the STFT values with magnitude higher than
Q(t) contain almost all signal energy, i.e., the
energy that remains outside this region is very
small:

(1—2) [ ISTFT( P as =
0

- / STET(t, f)Pua (& fdf.  (12)
0

In our experiments € = 0.0025 is selected, i.e.,
99.75% of the signal energy within the consid-
ered window is contained in the region pro-
ducing values larger than Q(t). Note that our

algorithm works well for relatively wide range
of parameter €. Selection of Q(t) can be per-
formed in a simple manner. The magnitudes
of STFT samples in the considered instant are
sorted into decreasing order and €(t) is se-
lected as a position where the remaining part
of the sorted sequence has energy less or equal

to e [ |STFT(t, f)|?df. For the presented ex-
0

ample in Fig.3b-e, Q(¢) is given as a solid hor-
izontal line.

Proposed chaos detector m(t) measures the
region between DC and the main spectral com-
ponent with relatively high energy. In the pe-
riodic regime m(t) is relatively small, equal to
width of the DC and main spectral compo-
nents, while in the chaotic region it would be
higher due to additional components.

Note that, in order to avoid possible influ-
ence of noise and other errors, the obtained de-
tector response m(t) is averaged within short
interval around the considered instant:

t+p/2

m'(t):1 / m(7)dr.

t—p/2

(13)
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Based on m/(t), we take the following decision:

chaotic regime
periodic regime.

m'(t) > C(t)
m'(£) < C(#) (14)
Detection threshold C(t) can be determined
as follows. In the chaotic regime, it is ex-
pected that the spectrogram in the entire re-
gion [0, f, (t)] is above the detection threshold.
In that case, the expected value of m/(¢) in the
chaotic regime is close to f,,(t). However, in
the periodic regime (or in the part of period
doubling) values of the STFT between the DC
and main spectral component are small. We
can assume that the width of signal compo-
nents is known and determined by the used
window function. In the case of discretized
signal used in numerical calculation, applica-
tion of the Hanning window produces three
nonzero frequency samples. We assumed that
expected value of m’(t) in periodic regimes, for
the Hanning window of the width 7', is equal
to 5 frequency samples (5/7): 3 of the main
component and 2 of the DC component. Note
that one sample of the DC component is in
the negative frequency region. The detection
threshold is selected as the arithmetic mean
between expected values of detector response
in periodic and chaotic regimes:

fm(t)+%

cft) =

(15)

The algorithm is summarized in Table I.
Note that detector response (m(t) or m’(t)) as
well as detector threshold C(t) are measured
in Hz.

Comments on the algorithm. 1. The
most important point in the algorithm is se-
lection of . If ¢ is selected to be too small, de-
tector response function would estimate entire
interval as a chaotic state. However, the TF
representation samples between the DC and
the main signal component are at least an or-
der of magnitude larger in chaotic than in the
periodic regime. It provides a safe margin for
selection of the current state in the circuit.

2. Region of period doubling intervals can
be more challenging for estimation. For pe-
riod 2, period 4 and period 8 orbits the same
procedure can be performed. After detection

TIME-FREQUENCY SIGNAL ANALYSIS

of chaotic regime, €(t) can be decreased for
an order of magnitude, while frequency range,
over which detector is calculated, should be
increased (for example given in Fig.3d, fre-
quency region for evaluation of the second
measure can be enlarged up to 10kHz). In the
case of stable orbit regime (including periodic
windows) expected value of m/(t) is increased
for the width of one or two spectral compo-
nents, comparing to the case when evaluation
is performed over the interval [0, f,(¢)]. How-
ever, in the period doubling region it will be
increased several times, since numerous addi-
tional sinusoidal components will be detected.
This value is depicted with dashed lines in
Figs.3c and 3d. In both cases, the first de-
tection step would detect whether a signal is
in periodic or period doubling interval. The
period doubling behavior would be detected
in the second step. Note that period 16 and
other “higher order” orbits cannot be detected
by this procedure, and they will be detected as
chaotic regime. This is not a serious drawback,
since such periodic orbits have similarities with
chaotic behavior.

3. Decision to adopt this kind of procedure
has been made after several attempts to es-
timate behavior of the circuit based on some
classical TF concentration measures [25],[26]
failed to produce accurate results. There are
several reasons for this, but the main point
is in a very complicated structure of signal
with numerous sinusoidal components differ-
ent in magnitude and with noise like struc-
tures. Common concentration measures ex-
hibit similar concentration for noise interval
and for interval with numerous harmonic com-
ponents that may appear in the period dou-
bling bifurcations. Therefore, they cannot be
used to distinguish between these regions.

In the next section, application of the pro-
posed estimator is considered in the case of
several common routes to chaos. Also, analy-
sis of the proposed algorithm in the case of
signals corrupted by noise is given.

IV. SIMULATION STUDY

In this section, we consider detector re-
sponse in the case of various routes to chaos.
Firstly, we present the results obtained in the
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TABLE 1
SUMMARY OF THE ALGORITHM FOR CHAOTIC BEHAVIOR DETECTION.

Step 1.  Calculation of the STFT by using (5).

Step 2. Dominant spectral component frequency estimation.
2a. Position of the TF representation maximum is adopted as a dominan
frequency in initial instant ¢t = ¢q .
2b. For the next instants, frequency of the main spectral component f, (%)
is estimated by using the ESPRIT, f/ (t), and position of the maximum (9),
" (t), respectively.
2c. Result from the ESPRIT algorithm is used as a frequency of dom-
inant spectral component if |f},(¢t) — fIl ()] < p, where p = 2/T
(two frequency samples). Otherwise, we selected value the that is
closer to the frequency estimated for the previous instant: f,(¢) =
{ 'r/n(t) for | 'r/n(t) - fm(t - 1)| < | ’I/Y/L(t) - fm(t - 1)|

I (t) otherwise.

Step 3. Determination of ().
3a. Sort the STFT samples in order to obtain the sequence decreasing in
magnitude.
3b. Parameter §2(¢) is selected as a value of the STFT such that the remaining
(smaller) samples of the STFT in the considered instant produce energy less
than e [ |STFT(t, f)|*df.

0

Step 4. Calculation of detector response function.
4a. Calculation of m(t) using (10).
4b. Averaging in the local neighborhood, (13). In our experiments local neigh-
borhood is 5% of the used window.

Step 5. Determination of current state by (14).

case of the period doubling route to chaos (al-
ready used in previous simulation) in Section
IV.A. Then two other routes, torus breakdown
and intermittency routes, are analyzed in Sec-
tions IV.B and IV.C. In order to show that
application of the proposed detector is not lim-
ited to the chaotic oscillatory circuits, well-
known Rossler and logistic map chaotic sys-
tems are analyzed in Sections IV.D and IV.E.
Detector accuracy in the noise environment is
studied for a signal produced by the Chua’s
circuit transmitted through the communica-
tion lines, Section IV.F.

A. Period doubling route to chaos

In this example we applied the previously
used setup (see Section III) to illustrate de-
tector accuracy for period doubling route to
chaos. Illustration of the TF representation is
repeated in Fig.4a, while the detector response

function is given in Fig.4b. Dotted box repre-
sents the region with chaotic behavior accord-
ing to [19]. It can be seen that region where
the proposed detector response is above the
threshold well corresponds to the theoretical
expectations. Also, two periodic windows are
properly detected.

B. Torus breakdown route to chaos

The second considered route to chaos is qua-
siperiodic or torus breakdown route. It is the
oldest introduced route to chaos, but it still
remains to be thoroughly studied. This type
of bifurcations could be detected in numerous
types of real physical systems [27]. In this
route to chaos, a torus attractor bifurcates into
periodic orbits of consecutively decreasing pe-
riods, i.e., windows of quasiperiodic and peri-
odic behavior alternate by varying a parame-
ter. In the torus breakdown route to chaos
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Fig. 4.
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4 TkHz]

Period doubling route to chaos: (a) time-frequency representation; (b) thick line - detector response;

dotted box - region of chaos according to theoretical assumptions; dash line - threshold.

system undergoes several Andronov-Hopf bi-
furcations and after that a periodic orbit fi-
nally bifurcates into chaotic attractor through
a period-doubling sequence. In order to con-
sider a torus breakdown route to chaos in the
Chua’s circuit, the parameters: L = 7.682mH,
Cs = 0.3606uF, G, = 0.599mS, G, = 0.77mS,
E = 1V, Ry = 13409, G = —0.7TmS are
fixed [28]. The varying parameter was Cj.
It linearly decreases from C; = 0.0297uF to
C1 = 0.008uF, and after that increases toward
the initial value. This route to chaos is visu-
alized in Fig.5 with the TF representation on
the left hand side and the corresponding detec-
tor response given on the right hand side. The
steady-state trajectory for C; = 0.0297uF is
a torus, and two incommensurate frequencies
can be observed in the spectrum. During the
decrease of Cy from C; = 0.02uF (¢ = 0.035s)
to C1 = 0.0157uF (t = 0.05s), sequence of
periodic windows of decreasing periods is pro-
duced. The torus attractors can be observed
between the periodic windows. If parameter
C1 is further decreased to C; = 0.0127uF

(t = 0.062s), a period-doubling sequence end-
ing in a chaotic attractor is obtained. Numer-
ous new frequency components can be seen in
the TF plane. Dotted line in Fig.5b depicts
approximative region of the chaotic behavior
based on theoretical consideration [28]. It can
be seen that this region corresponds well with
the obtained region where detector response is
above the threshold.

C. Intermittency route to chaos

The third route to chaos is the Manneville-
Pomeau intermittency route [29]. Intermit-
tency is the phenomenon where the signal is
virtually periodic, except for some irregular
(unpredictable) bursts. In other words, there
are intermittently periodic and irregular ape-
riodic behavior. The dynamic system has a
periodic orbit over a certain range of a vary-
ing parameter. When the parameter is tuned
beyond a critical value, some irregular short
bursts appear among the long regular inter-
vals. With further changes of the parame-
ter, the bursts appear more frequently and the
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line; detection threshold - dashed line; chaotic region defined by theory - dotted line.

average time between two consecutive bursts
shortens. Eventually, the system moves into
a chaotic regime. The phenomenon associ-
ated with this route is a saddle-node bifurca-
tion, which qualitatively differs from other two
routes.

In our experiment parameters G, =
—0.756mS, G, = —0.409mS, £ = 1V, L =
37.56mH, Cy = 215nF, Ry = 30, G =
0.648mS are constant [30]. Parameter C; lin-
early varies from C; = 19.28nF to C; =
19.246nF. With decreasing of (1, periodical
windows become narrower.

The STFT of the signal obtained for this
route to chaos is given in Fig.6, left column,
while the corresponding detector response is
given in the right column. Detection thresh-
old is depicted with dashed vertical line. In
this case, frequency of the main spectral com-
ponent is calculated every 200ms. The main
frequency is 0.32kHz in the interval 0 < ¢t < 1s
and 0.25kHz in the interval 1 < ¢ < 1.6s. Con-
sequently, in these two regions, the threshold
is different (dashed line in Fig.6b). In the pe-

riodic regime the detector response function
is small, below the threshold, since detector
counts only samples belonging to sinusoidal
components. However, in the chaotic regime,
due to the additional components, detector re-
sponse function is higher than the detection
threshold. Note that all visible periodic win-
dows are detected.

D. Rossler attractor

In order to show that this detector can be
applied to other chaotic systems, we consider
the well known Rossler [31] and logistic map
[14] chaotic systems. The Rossler system can
be described with three differential equations:

dz _

a— V7

%:az—i—ay
%:b-l-z(x—c). (16)

dt

In our simulations we set a = b = 0.2 while
parameter ¢ increases from 2 to 5.7 within
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Fig. 6. Intermittency route to chaos:
detection threshold - dashed line.

0 <t < 1500s [31]. After period 1 limit cycle
(0 < t < 600s) the system undergoes a period-
doubling bifurcation (¢ = 600s, ¢ = 3.26). Fur-
ther increase of ¢ produces a period-doubling
sequence while chaotic attractor appears for
¢ = 4.31. In our experiment after ¢ = 1500s,
parameter c linearly decreases and system re-
turns to periodic regime. This route to chaos is
visualized for signal z(t) in Fig.7 with the TF
representation on the left hand side and the
corresponding detector response given on the
right hand side. Region in the dotted box is
chaotic according to theoretical consideration
from [31]. The proposed detector produces ac-
curate results close to the theoretical ones.

E. Logistic map

The logistic map is one of the simplest
known chaotic systems given by difference
equation:

Tny1 = Axy (1 —xy). (17)

Even this very simple form, with single vari-
able and control parameter A, could produce

TIME-FREQUENCY SIGNAL ANALYSIS
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chaotic behavior like more complicated chaotic
systems. This system is used to model numer-
ous phenomena in practice [14].

In our experiment, parameter A is linearly
varied in the range from 3.5 to 4. Initial
condition is g = 0.1. For A = 3.57(n =
2200) the accumulating point has been reached
and after that instant we have the chaotic
regime. However, in chaotic regime there are
infinitely many periodic windows [14]. The
proposed method accurately detected chaotic
regime and three relatively long periodic win-
dows (see TF representation in Fig.8a). De-
tector response is given in Fig.8b.

F. Noise influence

It order to analyze robustness of the pro-
posed detector to noise influence, it was as-
sumed that the signal produced by the Chua’s
circuit is transmitted through a noise chan-
nel. Noise environment was Gaussian. We var-
ied signal to noise ratio (SNR) within SNR €
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[8,20]dB. The SNR is evaluated as:

J1f@) = Ft)2dt
SNR =10log;, T OPE

(18)

where f(t) is the signal mean value in the short
interval around considered instant:

t4+T/2

fo=7 [ 5o

t—T/2

(19)

Parameter T is equal to the used window
width in the STFT (T = 3ms)?. Detec-
tor response for two various SNRs in the pe-
riod doubling route to chaos is depicted in
Fig.9. Experiment setup is changed with re-
spect to Section IV.A, in order to have more
periodic windows within interval of interest.
For SNR = 20dB the detector finds 4 win-
dows denoted by w;, ¢ = 1,...,4 in Fig.9a.
However, the detector for SNR = 10dB de-
tects all of them, but with windows ws and w3
eroded comparing to the previous case, Fig.9b.
These two windows will not be detected for
lower SNR values. Accuracy of the proposed
detector is tested in the Monte-Carlo simula-
tion in 100 trials. As an accuracy measure,
percentage of periodic regime samples recog-
nized as chaotic samples (A) and of percent-
age periodic window samples detected as chaos
(B) are selected. Results are summarized in
Table II. Percentage of misidentified samples
of the periodic regime is small even for rela-
tively high noise of SNR = 10dB. It cannot
be said for narrow periodic windows. Namely,
the STFT evaluated for an instant within nar-
row periodic window is calculated by using
samples from both periodic window and neigh-
bor chaotic region. For noisy environment it
causes that samples close to the borders of the
periodic window are misidentified as a chaotic
signal. Since the chaotic regime is detected
as a region with noise-like structures, detected
chaotic region is enlarged for signals corrupted
by significant amount of Gaussian noise.

3The SNR definition is in accordance with Donoho’s
paper [32].

TIME-FREQUENCY SIGNAL ANALYSIS

TABLE II
PERCENTAGE OF DETECTION ERRORS FOR SIGNAL
CORRUPTED BY GAUSSIAN NOISE FOR PERIOD
DOUBLING ROUTE TO CHAOS. A - ERRORS IN PERIODIC
REGIME; B - ERRORS WITHIN PERIODIC WINDOWS.

SNR A B

20dB | 0.4% 4.70%
17dB | 0.95% | 6.31%
14dB | 2.04% | 9.51%
12dB | 3.37% | 17.74%
10dB | 5.98% | 38.09%
8dB | 23.68% | 61.51%

V. BREAKING CHAOTIC COMMUNICATIONS

Chaotic shift keying or chaotic switching is
a method of chaos-based secure communica-
tions. In this method, a binary information
signal is encoded into two sets of parameters
of the chaotic transmitter, i.e., two different
chaotic attractors. These two chaotic attrac-
tors have almost the same shapes and statis-
tical properties in the phase space. Standard
approach to recover binary signal from trans-
mitted signal v1(t) at the receiver is by using
the synchronization error.

However, this kind of secure communication
scheme has its drawbacks [21], [33]-[35]. An
alternative method for breaking secure com-
munication scheme is considered here. It uses
the detector response function for breaking se-
cure communications based on the Chua’s cir-
cuit signal. In our simulations, we use the
same parameter sets as in [21]: G = 1mS,
G, = —1.139mS, G, = —0.711mS, F = 1V,
Ry = 209 are fixed, while binary digit 1 is
encoded with L = 12mH, ¢y = 17nF and
Co = 178nF (first parameter set), binary digit
0 is encoded with L = 12.4mH, Cy = 17.5nF,
Cy = 195nF (second parameter set). In both
cases, the system produces different, but qual-
itatively similar, Rossler-like attractors. In-
formation bearing signal, bin(¢), is given in
Fig.10a, while transmitted signal v1(t) is given
in Fig.10b.

Instead of using the Chua’s circuit at the
receiver side, we applied the proposed TF rep-
resentation based detector. Fig.1la depicts
STFT of the signal vi(t). It is hard to ob-
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Fig. 9. Detector response for: (a) SNR = 20dB; (b) SNR = 10dB.

serve any difference between STF'T of different
signals. However, there is a difference in con-
centration of the TF distribution for signals
of different attractors. This difference can be
detected and used as a base for reconstruct-
ing binary message. Detector response is de-
termined according to the proposed algorithm
(Table I, Step 1 to Step 4). The difference
in STFT’s concentration for different chaotic
attractors is obvious (Fig.11b). For compari-
son, the message signal is plotted in the same
figure. The response of the proposed detector
could be mapped to binary form by using a
suitable threshold.

The proposed breaking scheme has been
tested for additive Gaussian noise environment
with SNR € [8,40]dB. Detector threshold is
C(t) = 4.67kHz. The percentage of misiden-
tified samples has been considered as accu-
racy measure and it is given in Fig.12. Note
that one bit of information has width of ap-
proximately 160 samples. In our experiments

we reconstructed accurately all bits of infor-
mation for percentage of misidentified samples
less than 10%, i.e., for SNR > 12dB.

The proposed detector can also be used for
breaking chaotic communications produced by
hyperchaotic systems [21] but with reviewed
detector setup (higher parameter ¢ in (12)).
This research will be reported elsewhere.

VI. CONCLUSION

A simple detector of chaotic behavior is
presented. The time-varying behavior of the
chaotic nonlinear oscillators is investigated by
using the concentration measure of the STFT
samples. The proposed method has been
shown to be very accurate for different routes
to chaos and various chaotic systems. Further-
more, it can be used in moderate noise envi-
ronments to distinguish between the chaos and
noise influenced samples. This is an important
feature, since there are numerous similarities
between the chaotic and noise signals. The
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Fig. 10. (a) The binary message bin(¢); (b) The transmitted signal vi(t).

proposed method can track very small differ-
ences in the chaotic attractors and it can be
applied for breaking chaotic communications.
Numerical analysis is presented in the case of
the Chua’s circuit, and some other well known
chaotic systems. The proposed approach is
tested on other kinds of chaotic oscillators, and
obtained results are accurate. In future re-
search, we will try to improve the proposed
estimator in order to be able to track more
complicated features of the chaos, i.e., to dis-
tinguish between various attractors.
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