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Multiple STFTs-based approach for
chaos detection in oscillatory circuits

Igor Djurovié and Vesna Rubezié

Abstract— This paper deals with the recently
proposed detector of chaotic states in nonlinear
oscillatory circuits [1]. Detector is based on
time-frequency representations of signals gen-
erated by oscillators. It can be realized by
using cross-terms free (or reduced) representa-
tions such as the short-time Fourier transform
(STFT). It has been noticed that its accuracy
substantially depends on the applied window
width used in the time-frequency representa-
tion. The subject of this paper is the accuracy
analysis of such detector in the noisy environ-
ment with respect to the window width in the
time-frequency representation. Based on this
analysis a multiple STFTs-based approach has
been proposed producing better results than its
single window counterpart.

I. INTRODUCTION

Nonlinear systems may exhibit chaotic be-
havior under specific conditions. Chaos has
been noticed in electric circuits and systems,
mechanical, optical and other systems, as well
as in nature [2]-[5]. Detection and possible
prediction of chaotic behavior have attracted
significant attention of researchers for a long
time. There are several techniques for chaos
detection. The most frequently used technique
is calculation of the Lyapunov’s exponents [6]-
[8]. Existence of at least one positive Lya-
punov’s exponent confirms chaos. Calculation
of these exponents requires a signal of long du-
ration. In addition, these exponents are very
sensitive to noise influence. This makes them
unsuitable for classification of signals with fast
variations in time. Chaos detection based on
topological and information measures of at-
tractors reconstructed from available data is
analyzed in [9]. Alternative techniques, based
on detection of nonlinearity and short-term
predictability, are proposed in [10]-[12]. The
main disadvantage of these techniques is cal-
culation complexity.
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Nonlinear oscillatory circuits are an impor-
tant group of nonlinear systems that could
have chaotic behavior. In periodic regime
these circuits produce signals that can be rep-
resented as a sum of several sinusoidal com-
ponents, i.e., as a sum of Dirac pulses in
spectral domain. In a chaotic regime, nu-
merous additional components in spectral do-
main can be observed and signal spectrum is
broadband and noise-like. This difference be-
tween spectral content of signals from non-
linear chaotic oscillators is used in [1], where
an efficient algorithm for detection of chaotic
states in nonlinear oscillatory circuits has been
recently proposed. The proposed detector is
based on the specific measure of concentration
of time-frequency (TF) signal representation.
The short-time Fourier transform (STFT) has
been used in [1] for design of the detector but
other TF or time-scale distributions can be
used with the same or slightly different al-
gorithm setup. Here, results obtained using
the S-method [13], [14], are demonstrated. An
interesting favorable property of this detector
is a fact that its application is not limited to
nonlinear oscillators, since similar behavior of
signals in spectral domain can be observed in
some other common chaotic systems such as
Lorenz, Rossler, Duffing and logistic map.

Influence of the window width, applied in
the calculation of the TF representations, to
the detector accuracy for noisy environment
is analyzed in this paper. It has been shown
that a wider window in the TF representa-
tions produces results robust to noise influ-
ence. However, a wide window can produce
wrong classification of instants close to the pe-
riodic regime border. Narrower window pro-
duces an opposite behavior. The influence of
noise is more emphatic for narrow windows,
while samples close to the periodic state bor-
ders are classified with higher accuracy. This
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suggests existence of an optimal window width
for a given circuit and noisy environment. Op-
timal window could accurately classify samples
from the periodic regime close the border un-
der influence of moderate amount of additive
noise. However, determination of the optimal
window width is not a trivial task. Instead
of an elaborate procedure for determination of
the optimal window width, we propose here
a multiple STFTs-based approach for detec-
tion of chaotic states. In this algorithm the
STFT-based detector of the chaotic state is ap-
plied with different window widths used in the
STFEFT. Results obtained with different STFTs
are combined in order to classify samples of
the signals from chaotic oscillators. This is dif-
ferent from the traditional multiwindow tech-
niques [15]-[18], where feature of signals are
extracted from a TF representation obtained
as a weighted sum of the STFT calculated with
different window functions. The proposed ap-
proach outperforms the constant window size
detectors in our experiments.

The paper is organized as follows. A
brief overview of the STFT-based detector of
chaotic state is presented in Section II. Influ-
ence of the applied window width is studied in
Section ITI. Multiple STFTs-based approach is
proposed in Section IV. Numerical examples
and accuracy of detector study is presented in
Section V. Concluding remarks are given in
Section VI.

II. DETECTOR BASED ON THE STFT - AN
OVERVIEW

Here we briefly review the chaos detector
based on the STFT proposed in [1]. By vary-
ing some of the circuit parameters chaotic os-
cillators can pass through different periodic
and chaotic states. In periodic regime, chaotic
oscillator produces signal that can be repre-
sented as a sum of several sinusoidal com-
ponents. In chaotic regime, signal is broad-
band and noise like with numerous additional
components. Details on spectral behavior of
chaotic signals can be found in [19].

Detector proposed in [1] estimates oscillator
state based on specific concentration measure
of the part of the TF representation between
the direct component and the main harmonic.
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The STFT, as a cross-term free TF represen-
tation, is used in [1] as a main tool in this
detector. The STFT is defined as [20]:
STFT(t, f) = / z(t 4+ T)w(r)e 2T dr,
—00
(1)
where x(t) is signal of interest (in this paper,
it is a voltage or a current from the electric cir-
cuit), and w(7) is the window function, where
w(r) = 0for |7| > T/2 and T is window width.
In order to avoid complex-valued STFT, we
use its squared magnitude, i.e., the spectro-
gram SPEC(t,f) = |STFT(t, f)|*>. Within
numerical study we will consider a bilinear rep-
resentation from the Cohen class called the
S-method that can be realized based on the
STFT without signal oversampling [13], [14]:

SM(tv f) =
- / TH(0)STFT(t, f + 6)STFT*(t, f — 6)df.

(2)
A frequency window II(#) determines funda-
mental properties of the S-method. Namely,
for II(A) = wd(#) the spectrogram follows.
This is a cross-terms free (or reduced) repre-
sentation, but signal components in the TF
plane are not highly concentrated. However,
a wide frequency window, II(#) = 1, produces
the Wigner distribution with highly concen-
trated components but with emphatic cross-
terms [13]. Then, window of relatively small
width II(0) =1 for |#] < ©, and II(#) = 0 can
cause for |6| > ©, that we obtain highly con-
centrated signal components as in the Wigner
distribution but without cross-terms.

We assume that a signal in periodic regime
is represented with a sum of finite number of
sinusoids (or signals with slight variations in
frequency). However, the signal in the chaotic
regime is broadband and noise like. It means
that in spectral domain the signal content for
periodic regime would be spread over the en-
tire frequency domain. This consideration mo-
tivates the specific measure of chaotic state
for signals from oscillatory circuits based on
counting samples with high energy between
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DC (direct current - frequency f = 0) and
dominant frequency component (or just the
first harmonic component). Note that the pro-
posed algorithm is efficient and it can separate
chaotic regime from the moderate amount of
noise, as it will be shown in the simulations
section.

The concentration measure of TF represen-
tations defined in [1] is given as:

fm (1)
/umﬁﬁw} 3)

0

m(t) =

where f,,(t) is a frequency of the main spectral
component, determined as the position of the
TF(t, f) maxima:

fm(t) = arg mfaX TF(t, f) (4)
Function uq)(t; f) is given as:

1 TF >Q
wo@h)={ § DI 6
where threshold Q(t) is selected in such a
manner that values of the TF representation
with magnitude greater than (¢) contain the
given percentage of signal energy, typically
99.5 — 99.9%. Decision of the system state is
made by comparing detector response function
m(t) with detector threshold C(t):

dr(t) =

1 for mp(t) > Cp(t) chaotic regime
10 for mp(t) < Cp(t) periodic regime,
(6)
where index T indicates that both detector re-
sponse and threshold depend of the window
width used in the STFT calculation. Note that
both representations, the spectrogram and the
S-method, are calculated using the STFT. De-
tection threshold Crp(t) is calculated as an
arithmetic mean between the expected detec-
tor responses in chaotic and periodic regimes.
In chaotic regime we expect that the TF rep-
resentation in the entire interval [0, f,(¢)] is
above the threshold Q(¢). Then, the expected
detector response for this regime is f,,,(¢). For
the periodic regime we assume that only the
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main spectral and DC components are above
Q(t) in the considered interval, producing the
expected detection response for this regime ap-
proximately 1.5F,,(T)!, where F,,(T) is width
of the main lobe of the window function in
spectral domain that depends on the used win-
dow type w(t) and its width T'. Then, the de-
tector threshold is:

fm(t)+;-5Fw(T)' (7)

The algorithm is summarized in Table I.

Cr(t) =

I1I. INFLUENCE OF WINDOW WIDTH TO
DETECTOR ACCURACY

Influence of window width to the detector
accuracy will be considered within a demon-
strative example. Let us consider the time in-
stant ty that is close to the periodic regime
border in Fig.1. The wide window (73) con-
tains samples from both periodic and chaotic
regimes. This causes that the detector re-
sponse function mqp(t) increases and if it in-
creases above the detector threshold Cr(t) this
sample can be misidentified as chaotic. How-
ever, narrow window (77) contains only sam-
ples from periodic regime. Then, for narrow
window instant tyg would be properly identi-
fied as being within periodic regime. From this
analysis follows that the narrow windows are
optimal for periodic regime detection. How-
ever, this conclusion is valid only for non-
noisy environment. Note that a very impor-
tant property of chaos detection systems is to
distinguish chaos regime from noise. Namely,
it has been shown in [21] that ability of fea-
ture extraction from the STFT for noisy envi-
ronment improves with increasing the window
width. This behavior is caused by increasing
the ratio between the amplitude of signal com-
ponents in the TF representation to the noise
variance by increasing the width of the used
window function [21].

Based on this brief analysis we can conclude
that in noisy environment there is the window
width producing a trade-off between robust-
ness to the noise influence and proper identi-
fication of circuit state. However, determina-
tion of the optimal window width for circuit

IHalf of DC is in negative frequency region.
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TABLE 1
SUMMARY OF THE ALGORITHM FOR CHAOTIC BEHAVIOR DETECTION.

Step 1.

Calculation of the TF representation.

Step 2.

Dominant spectral component frequency estimation.

Position of the TF representation maximum is adopted as a dominant frequency

fm(t) = argmax; TF(t, f).

Step 3.

Determination of the threshold ug).

3a. Sort the samples of the TF representation in order to obtain a sequence
with decreasing magnitudes.

3b. Threshold is selected as a value of the TF representaion such that the
remaining (smaller) samples of the TF in the considered instant produce energy
less than ¢ [ ° TF(t, f)df. In our experiments e = 0.0025 is selected.

Step 4.

Calculation of detector response function.
4a. Calculation of m(t) using (3).

4b. Averaging in the local neighborhood: m/(t) = % ttj;)//; m(7)dr. We se-

lected p = 0.15ms.

Step 5.

Determination of current state by (6).

PERIODIC
WINDOW

CHAOS CHAOS

>iT i

Ts

Ti<Th

Fig. 1. Illustration of the STFT calculation for sin-
gle time instant to within periodic regime and two
different window widths.

state estimation is very difficult. Instead of
a direct search for the optimal window width,
we propose a multiple STFTs-based (or multi-
ple TF representations-based) approach in the
next section, in order to achieve high detec-
tor accuracy for instants close to the limits of
intervals with robustness to influence of mod-
erate additive noise amount.

IV. MurtipLE STFTS-BASED DETECTOR

Both considered effects, noise and taking
chaotic samples within window, increase the
detector response function mr(t) in the pe-
riodic regime. They can cause that periodic
samples be misidentified as chaotic. However,
these effects have opposite behavior for very
narrow and wide windows. We expect that for
window widths close to optimal these effects
will not disturb detector accuracy, and that

circuit state will be correctly identified. Then,
we can assume that a considered instant is in
periodic regime if any window width produces
detector response function indicating periodic
state. For this aim we consider the set of win-
dow widths:

T={T,=d'Tp | i € [0,Q]}, (8)
where ¢ > 1 and T} is assumed to be very
narrow window (producing accurate results for
instants close to regime borders but with em-
phatic noise influence), while the widest win-
dow from the set Ty has suppressed noise
influence. Geometric progression of window
widths is commonly used for estimation pur-
pose in signal processing [22]. The narrow-
est window should be selected in such a man-
ner that the DC and main spectral compo-
nents are separated for more than the width
of signal components in frequency domain, i.e.,
fm(t) > 1.5F,(T). The widest window from
the set is selected in such a manner that mag-
nitude of signal components is at least an or-
der of magnitude larger than variance of noise
influence. For this purpose we use derivations
from [21]. The STFT for each window from the
set is calculated producing the corresponding
detector response function my, (¢), i € [0, Q).
The next step is classification based on func-
tions dr;(t), eq.(6). Finally, decision if the
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current instant belongs to chaotic or periodic
regime is made as:

d(t) =
Q
_) 0 Z(l —dr,(t)) > p periodic regime
i=0
1 elsewhere chaotic regime,

(9)
where p is an integer 1 < p < @. In order
to avoid situation that a single window from
the set indicates periodic regime p > 1 is used
in our experiments. This is very important in
order to keep accurate estimation of chaotic
state, as it will be shown in the next section.

V. NUMERICAL STUDY

We consider the Chua’s circuit given in
Fig.2a with the function of the corresponding
non-linear element given in Fig.2b, within so
called period doubling route to chaos (for de-
tails related to this circuit and route to chaos
see [19]). This route to chaos is produced by
varying parameter G (conductance of a linear
resistor from the circuit). Increase of G causes
that circuit moves from periodic to chaotic
regime. However, numerous periodic regions
could exist within chaotic regime. In our case
we consider the Chua circuit with the follow-
ing set of parameters: L; = 18mH, C; =
10nF, Cy = 100nF, G, = —757.576uS, Gy =
—409.091uS, E = 1V, Ry = 12.5§. Periodic
and chaotic regimes are created by varying the
parameter G. For G = 530.12uS we have the
circuit in the periodic regime while for G =
565.12uS the chaotic regime follows. Within
the signal duration one may observe numer-
ous periodic regions varying lengths from 81
to 1552 samples (sampling rate At = 12.6 us).
Here we consider the periodic region in the
interval ¢ € [12,16]ms. This region has ap-
proximately 311 samples. The spectrogram
obtained with relatively narrow window of 180
samples is depicted in Fig.3a, with the region
of interest zoomed in Fig.3b. The spectrogram
with the wide window of 357 samples is de-
picted in Fig.3d, with zoomed part in Fig.3c.
It can be seen that the proximity to chaotic
regime increases the value of the TF represen-
tation within the periodic regime. This effect
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is more emphatic for the spectrogram with the
wide window.

The set of window widths used in the al-
gorithm is: Ty = Ng At with Ng = 128,
a = 1.121, and @ = 9. Fig.4, left column,
presents results obtained with 4 different win-
dow widths from the considered set for non-
noisy case for considered periodic region. Note
that the detector response in Fig.4b corre-
sponds to the TF representation from Fig.3b,
while the detector response for a wide window
in Fig.4d corresponds to the TF representa-
tion from Fig.3c. Dashed lines in Fig.4 rep-
resent detection threshold Cr,(t). Note that
an ideal detector would have classified the en-
tire considered interval as periodic (detector
response function below the threshold). How-
ever, here we can see that instants close to
the window border are misidentified as chaotic
state. The narrowest window produces the
best results in this case with the smallest num-
ber of misidentified samples. This effect is
the most emphatic for the widest window.
Fig.4, right column, depicts detector response
function for Gaussian noisy environment with
SNR = 10dB. Definition of SNR from the
Donoho’s paper is applied here [1], [23]:

J1f(@) = Ft)|dt
SNR =10log,, * T ORE

(10)

where f(t) is the signal mean value in the short
interval around the considered instant:

. t+n/2
)=+ / f(r)dr.

t—mn/2

(11)

In our simulation parameter 7 is selected to be
3ms.

Here we can see that the narrowest window
(that is the best for non-noisy case) produces
the worst results. We compared accuracy of
the proposed algorithm with p =1, p =2 and
p = 3, with the algorithm with constant win-
dow widths in the STFT. Here, we also use the
S-method in order to show that other TF rep-
resentations can produce some benefits for this
application. The S-method is calculated with
(2) where the frequency window width has
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been set to ©; = 1/T;, i.e., one frequency sam-
ple for each considered window width. Note
that increasing of the frequency window width
causes appearance of the cross-term between
DC and dominant frequency components. Re-
sults are depicted in Fig.5. It can be seen that
for high SN R the narrowest window produces
better results than other (constant width) win-
dows. However, performance of these win-
dows deteriorate rapidly with increasing the
noise influence. The proposed algorithm out-
performs the constant window widths for al-
most entire considered interval of SINR. The
best results are produced for p = 1, and they
are slightly better than with p =2 and p = 3.
In addition, the S-method with p = 3 produces
very stable results with respect to the noise
influence. These results are slightly worse
than the corresponding results for the STFT-
based estimator for high SNR but for small
SNR the S-method significantly outperforms
the STFT.

Finally, percentage of misidentified samples
in chaotic regime for various p and SNR is
considered with results given in Table II. It
may be observed that the proposed detector
produces better results for this regime for large
p. Namely, if we set p = 1 just one mis-
take in detection of the chaotic regime causes
that an instant be recognized as within pe-
riodic regime. Then we expect that increas-
ing of p produces more accurate estimation of
the chaotic regime that is confirmed by simu-
lations. Note that a noise is “helpful” for iden-
tification of chaotic regime, since it increases
the detector response function. It can be seen
from Table II that for p = 3 and SNR < 18dB

TIME-FREQUENCY SIGNAL ANALYSIS
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(a) Chua’s circuit; (b) nonlinear v-i characteristic of Chua’s diode.

TABLE II
PERCENTAGE OF DETECTION ERRORS FOR SIGNAL
CORRUPTED BY GAUSSIAN NOISE WITHIN CHAOTIC

REGION.
SNR | p=1 p=2 p=3 SM p=3
20dB | 5.9%  4.42% 1.89% 5.15%
18dB | 4.7% 41% 1.26% 5.12%
16dB | 4.1%  2.52% 0% 5%
14dB | 3.15% 0.63% 0% 4.67%
12dB | 1.89% 0% 0% 4.63%
10dB | 0% 0% 0% 4.33%
8dB 0% 0% 0% 4.27%

we have not made any mistake in identifica-
tion of chaotic regime. Since p = 3 produces
similar results as p = 1 and p = 2 for pe-
riodic regime, we recommend that p = 3, as
a trade-off between accuracy in periodic and
chaotic regimes, be used in this and similar
experiments. Here it can be seen that the
S-method produces higher error in detection
of the chaotic regime than the corresponding
STFT-based detector.

VI. CONCLUSION

An approach for estimation of circuit state
in nonlinear oscillators based on the multiples
STFTs is proposed. The proposed technique
retains the favorable properties of both narrow
and wide windows used in the STFT. It pro-
duces better accuracy than any STFT-based
detector, with constant window width. It has
been demonstrated that the proposed detec-
tor can be applied to other (cross-term free or
reduced) TF representations. The proposed
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Fig. 3. STFT of the signal from chaotic circuit: (a) STFT obtained with relatively narrow window of 180
samples (zoomed region is given in (b)); (d) STFT obtained with relatively wide window of 357 samples

(zoomed region is given in (c)).
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noisy case
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Fig. 4. Detector response in case of periodic region width N = 311 samples (N A¢ = 0.004s): Left column-non-
noisy environment; Right column-noisy environment (SNR = 10dB); a), e) Ny = 128; b), f) Ny = 180;

¢), g) Nw = 254; and d), h) Ny = 357.

detector based on the S-method produces sig-
nificantly better results for high noise than
the STFTs-based detector but with slightly
worse results for small SNR and for detecting
chaotic regime. This accuracy has been paid
by increased calculation complexity. We will
concentrate our future efforts to find a way
to reduce number of required STFTs in the
algorithm. In addition, optimization of the
threshold level Cr(t) will be considered in or-
der to further decrease detection error in both

chaotic and periodic states. More thorough
study of other TF and time-scale distributions
application in this research is also important
step of further research.

REFERENCES

(1] V. Rubezi¢, I. Djurovi¢ and M. Dakovié¢, “Time-
frequency representations based detector of chaos
in oscillatory circuits,” Signal Processing, Vol. 86,
No.9, Sep. 2006, pp. 2255-2270.

2] M. P.Kennedy, “Chaos in the Colpitts oscillator,”
IEEE Trans. Circ. Syst. I, vol. 41, no. 11, pp. 771-
774, Nov. 1994.



MULTIPLE STFTS-BASED APPROACH FOR CHAOS

Fig.

(3]

(10]

(11]

(12]

13]

DETECTION IN OSCILLATORY CIRCUITS

1759

Error (%)

5.

K. M. Cuomo, A. V. Oppenheim and S. H. Stro-
gatz, “Synchronization of Lorenz-based chaotic
circuits with applications to communications,”
IEEE Trans. Circ. Syst. II, vol. 40, no. 10, pp.
626-632, Oct. 1993.

W. A. Brock, D. A. Hsieh and B. LeBaron, Non-
linear dynamics, chaos, and instability: statis-
tical theory and economic evidence, MIT Press,
Cambridge, MA, 1991.

D. Mackey and L. Glass, “Oscillation and chaos in
physiological control systems,” Science, vol. 197,
pp- 287-289, July 1977.

A. Wolf, J. B. Swift, H. L. Swinney, and J. A.
Vastano, “Determining Lyapunov exponents from
a time series,” Physica D, vol. 16, pp. 285-317,
1985.

M. R. Rosenstein, J. J. Collins, and C. J. De Luca,
“A practical method for calculating largest Lya-
punov exponents for small data sets,” Physica D,
vol. 65, pp. 117-134, 1993.

P. Drazin: Nonlinear systems, Cambridge Univ.
Press, 1992.

P. Grasseberger and I. Procaccia, “Measuring the
strangennes of strange attractors,” Physica D,
vol. 9, pp. 189-208, 1983.

G. Sugihara and R. M. May, ”Nonlinear forecast-
ing as a way of distinguishing chaos from mea-
surement error in time series,” Nature, no. 344,
pp. 734-741, 1990.

J. Theiler, S. Eubank, A. Longtin, B. Galdrikian,
and J. D. Farmer, ”"Testing for nonlinearity in
time series: the method of surrogate data,” Phys-
ica D, vol. 58, pp. 77-94, 1992.

C.-S. Poon and M. Barahona, “Titration of chaos
with added noise,” Proc. of NAS, vol. 98, no. 13,
pp- 7107-7112, 2001.

LJ. Stankovi¢, “A method for time-frequency sig-

SNR[dB]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

21]

22]

(23]

Percentage of detector error with the proposed algorithm (p =1, p = 2, p = 3) and with constant
window widths for the STFT-based detector, and with the S-method (SM p = 3).

nal analysis,” IEEE Trans. on Signal Processing,
Vol. 42, No. 1, Jan. 1994. pp. 225-229.

LJ. Stankovi¢, “Highly concentrated time-
frequency distribution: Pseudo quantum signal
representation,” IFEE Trans. on Signal Process-
ing, Vol. 5, No. 3, Mar. 1997, pp. 543-551.

F. Cakrak and P. Loughlin, “Multiple window
time-varying spectral analysis,” IEEE Trans. Sig.
Process. , vol. 49, no. 2, pp. 448-453, 2001.

D. J. Thomson, “Spectrum estimation and har-
monic analysis,” Prof. of IEEE, Vol. 70, pp. 1055-
1096, 1982.

M. Bayram and R. G. Baraniuk, “Multiple win-
dow time-frequency analysis,” in Proc. IEEE-SP
Int. Symp. Time-Freq. Time-Scale Anal., France,
June 1996.

G. Frazer and B. Boashash, “Multiple window
spectrogram and time-frequency distributions,”
in Proc. of IEEE ICASSP, vol. 4, pp. 293-296,
1994.

M. P. Kennedy, “Three steps to chaos-Part II: A
Chua’s circuit primer,” IEEE Trans. Circ. Syst.,
vol. 40, no. 10, pp. 657-674, Oct. 1993.

B. Boashash, ed: Time-frequency signal analysis
and applications, Elsevier, 2003.

LJ. Stankovié¢, M. Dakovi¢, and V. Ivanovié¢, ” Per-
formance of spectrogram as IF estimator,” Elec-
tronics Letters, vol. 37, no. 12, pp.797-799, June
2001.

V. Katkovnik, LJ. Stankovi¢, “Periodogram with
varying and data-driven window length,” Signal
Processing, Vol.67, No.3, pp.345-358, June 1998.
D. L. Donoho and I. M. Johnstone, “Adapting
to unknown smoothness via wavelet shrinkage,”
JASA, vol. 90, no. 432, pp. 1200-1224. 1995.



