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Chaos detection in chaotic systems with
large number of components in spectral

domain
Igor Djurovíc and Vesna Rubežíc

Abstract–A novel technique for chaos detec-
tion is proposed by using a time-frequency (TF)
representation. The proposed method classifies
signals from chaotic oscillators by using entire
spectral domain, and it is able to produce ac-
curate results for signals with large number of
spectral components in periodic regime. The
detector accuracy has been proven on the Col-
pitts oscillator and logistic map system. The
algorithm is tested in the case of moderately
noisy signal.
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A technique for classification of signals from
chaotic non-linear oscillatory circuits has been
recently proposed [1]. It has been applied to
circuits producing signals having a maximum
in spectral domain that corresponds to the
first harmonic component. This class of cir-
cuits includes some important chaotic systems:
Chua’s, Duffing’s, Rossler, etc. However, it
cannot be used for oscillatory circuits produc-
ing signals with large number of spectral com-
ponents in periodic regime. These signals are
observed in some important chaotic systems
such as the Colpitts oscillator [2] and logis-
tic map system [3]. In this letter we propose
a new technique for estimating chaotic state,
based on counting samples in the entire TF
plane. It can properly distinguish between the
chaotic and periodic regimes for signals with
large number of spectral components within
periodic regime.

This letter is organized as follows. Review of
the STFT based detector is given in Section II.
The proposed detector is described in Section
III. Simulation results are given in Section IV.
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Here we briefly review the chaos detector
based on the STFT proposed in [1].
The STFT is used as a main tool in this

detector, and it is defined as [4]:

STFT (t, f) =

∞∫

−∞

x(t+ τ)w(τ)e−j2πfτdτ,

(1)
where x(t) is signal of interest and w(τ) is
the window function, where w(τ) = 0 for
|τ | > T/2 and T is window width. It can be
assumed that in periodic regime signal is repre-
sented with a sum of finite number of sinusoids
(or signals with slight variations in frequency).
However, the signal in the chaotic regime is
broadband and noise like. It means that in the
spectral domain the signal content for periodic
regime would be spread over the entire fre-
quency domain. This consideration motivates
the specific measure of chaotic state for sig-
nals from oscillatory circuits based on counting
samples with high energy between DC (direct
current - frequency f = 0) and dominant fre-
quency component (or just the first harmonic
component). This technique can be applied for
chaotic systems that have one spectral com-
ponent dominant over all others. Numerous
systems, such as the Chua circuit, have this
property.
The STFT concentration measure is defined

as [1]:

m(t) =

fm(t)∫

0

uΩ(t)(t; f)df, (2)

where fm(t) is the frequency of the main spec-
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tral component, determined as the position of
the TF (t, f) maxima:

fm(t) = argmax
f

TF (t, f). (3)

Function uΩ(t)(t; f) is given as:

uΩ(t)(t; f) =

{
1 TF (t, f) ≥ Ω(t)
0 elsewhere,

(4)

where Ω(t) is the threshold. Decision of the
system state is made by comparing detector
response function m(t) with a detector thresh-
old C(t):

d(t) =

{
1 for m(t) ≥ C(t) chaotic regime
0 for m(t) < C(t) periodic regime.

(5)
Selection of Ω(t) and detection response
threshold C(t) is described in details in our
papers [1] and [5].
This extremely efficient technique has been

applied to chaotic circuits and systems with
single dominant frequency component fm(t),
but it can not be applied in this manner to the
chaotic systems having numerous components
with similar amplitudes.
In next section we develop chaotic detector

that can be applied for these systems.

III. P������� ��	��
���

The basic idea of the detector proposed in [1]
is to count the STFT samples that are above
specific threshold for a given instant. For a
regime that has several sinusoids this measure
will be small, while for a chaotic region this
measure will be large. However, for the pe-
riodic regime in the Colpitts circuit, due to
the large number of spectral components, this
measure will also be large, thus causing diffi-
culties in distinguishing between chaotic and
such periodic regime.
In order to develop chaos detector, consider

the STFT of the sinusoidal signal calculated by
using the Hanning window. If amplitude of the
sinusoid is A, number of samples within the
window is N and frequency of sinusoid is on
the frequency grid, then the STFT would have
amplitude on the frequency of sinusoid equal
to AN/2, while the two adjacent STFT sam-
ples would have amplitudes AN/4. We want to

clearly distinguish this event from the chaotic
regime where in the spectral domain we have
no clear spectral peaks. For this purpose we
introduce the following function:

B(f) =






1/2 for f = 0
1/4 for f = ±1/T
-1/4 for f = ±2/T,±3/T
0 elsewhere.

(6)

Three central non-zero samples of B(f) form
the optimal detector for the STFT of sinusoid
on the frequency grid, while 4 negative samples
are introduced to produce zero output for ap-
proximately flat spectrum in chaotic domain.
The convolution ofB(f) with the magnitude

of the STFT is calculated as:

G(t, f) = |STFT (t, f)| ∗f B(f), (7)

where ∗f denotes convolution in the frequency
domain. The expected value of the G(t, f) for
the position that corresponds to the frequency
of sinusoid is 3AN/8. For parts of the TF
plane without sinusoidal components, where
the magnitude of the STFT is approximately
constant, G(t, f) would approximately be 0.
Then we use the mean of these two values as
a threshold in the process of recognizing the
points in the TF plane that belong to the si-
nusoidal component. This value is equal to
3AN/16, i.e., 3|STFT (t, f)|/8 for sinusoidal
component frequency.
Based on this analysis, chaos detection is

performed by using two measures:

mi(t) =

∫

f

ui(t; f)df, i = 1, 2, (8)

where u1(t, f) = 1 for G(t, f) ≥ 3|STFT (t,f)|
8

and u1(t, f) = 0 elsewhere, u2(t, f) = 1 for
|STFT (t, f)| ≥ Ω(t) and u2(t, f) = 0 else-
where. For non-noisy signals parameter Ω(t)
can be set as Ω(t) = εmaxf |STFT (t, f)|. In
our experiments we select ε = 0.001. Selection
of Ω(t) for noisy signals is discussed within nu-
merical examples, Section IV.C.
Now, the entire time-frequency plane is used

for calculation of the functions mi(t) for i =
1, 2. This is the main difference with respect
to the technique described in Section II. The
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Fig. 1. (a) Colpitts oscillator with bipolar transistor. (b) Equivalent circuit.

first measure counts samples in the TF plane
that belong to the sinusoidal component, while
the second criterion counts STFT samples that
have significant energy. This value is not criti-
cal and any relatively small value can be used.
Both mi(t, f), i = 1, 2, are averaged within a
short interval in order to reduce noise influ-
ence:

m′
i(t) =

1

p

t+p/2∫

t−p/2

mi(τ)dτ, i = 1, 2. (9)

In our experiments we set p to be equal to the
used window width. Finally, the detection of
the chaotic state is performed in the following
manner:





m′
2(t)/m

′
1(t) ≥ C circuit is within

chaotic regime
m′
2(t)/m

′
1(t) < C circuit is within

periodic regime.
(10)

Threshold value C can be selected within a
wide range, and in our experiments it is set to
C = 3.

IV. N����
	�� ��������

In order to show that this detector can be
applied to different chaotic systems, we con-

sider the well-know chaotic systems - Colpitts
oscillator and logistic map system.

A. Colpitts oscillator

The Colpitts oscillator, given in Fig.1a, is a
simple circuit used in communications [2]. The
bipolar transistor, assuming that it operates in
directly active or cutoff regimes, can be mod-
eled as a two-segment piecewise linear voltage
controlled resistor (Fig.1b). Then this circuit
can be modeled with three state equations:

C1
dvCE
dt

= iL − IC

C2
dvBE
dt

= −
VEE + vBE

REE
− iL − IB

L
diL
dt

= VCC − vCE + vBE − iL (11)

with the characteristics of non-linear resistor
given as:

IB =

{
0 vBE ≤ VTH

vBE−VTH
RON

vBE > VTH
IC = βF IB,

(12)
where VTH is threshold voltage, RON is on-
resistance for small signals and βF is direct
current gain. This circuit, with proper selec-
tion of parameters, produces chaotic behav-
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ior. For example, this behavior can be ob-
tained for: C1 = C2 = 54nF, L = 98.5µH,
REE = 400Ω, VEE = −5V , VCC = 5V ,
βF = 255, RON = 100Ω, VTH = 0.75V . By
linearly varying resistance RL (bifurcation pa-
rameter) in the range between 67Ω and 5Ω
the chaotic circuit switches states (chaotic and
periodic) producing different behavior in the
spectral domain. Fig.2a gives the TF repre-
sentation of the voltage vBE(t). It can be
seen that in periodic regime we have numerous
spectral components with constant or slightly
varying frequencies. However, in a chaotic
regime, a signal is wideband and noise-like and
sinusoidal components cannot be clearly recog-
nized.

Results of experiments for the detector
setup described in Section III are given in
Fig.2b-d. The function m′

1(t) is given in
Fig.2b. It can be seen that this function is
large for regions with sinusoidal components
and small for chaotic region. However, re-
gion at the beginning of the signal that has
small number of sinusoids cannot clearly be
recognized, since the function m′

1(t) for this
region is between values achieved for other pe-
riodic and for chaotic regions. The second
function, m′

2(t) (Fig.2c), gives large value for
both chaotic and for periodic regime with large
number of components, but small value for
periodic regime with small number of com-
ponents. Obviously, this measure used in
[1] for chaos detection in the Chua’s circuit
and similar chaotic systems can distinguish
chaos from periodic regime only in the case of
small number of components within periodic
regime. Ratio m′

2(t)/m
′
1(t) is given in Fig.2d

with the used threshold value C = 3 depicted
with dashed lines. Region above the threshold
corresponds to the recognized chaotic regime.
Obviously, the proposed detector gives accu-
rate recognition of the chaotic regime. In ad-
dition, it can be concluded that selection of
the threshold C is not critical since it can be
selected in a wide range.

B. Logistic map

One of the simplest known chaotic systems
is logistic map described by the difference

equation:

xn+1 = Axn (1− xn) . (13)

Even this very simple system can be used to
model numerous chaotic phenomena [3]. In
our experiment, parameter A is linearly varied
in the range from 3.5 to 4. Initial condition is
x0 = 0.1. ForA = 3.57(n = 2200) the accumu-
lating point has been reached and after that in-
stant we have the chaotic regime. However, in
chaotic regime there are infinitely many peri-
odic windows [3]. The proposed method accu-
rately detected chaotic regime and three rela-
tively long periodic windows Fig.3a. Measures
m′
i(t), i = 1, 2 are given in Fig.3b, c while de-

tector response is given in Fig.3d. From this
figures one can notice that the chaotic state is
detected accurately since the detector response
function is above the threshold in the entire in-
terval of chaotic state. In addition, all periodic
windows are detected correctly.

C. Noise influence

In order to analyze robustness of the pro-
posed detector to noise influence, it was as-
sumed that the signal produced by the Colpitts
oscillator is transmitted through a noise chan-
nel. Noise environment was Gaussian with
SNR = 10dB. Here we used definition of the
SNR adopted in [6] as:

SNR = 10 log10

∫
t
|f(t)− f(t)|2dt
∫
t
|ν(t)|2dt

(14)

where:

f(t) =
1

T

t+T/2∫

t−T/2

f(τ)dτ. (15)

Parameter T is equal to the used window
width in the STFT.
Noise increases the mean value of the

spectrogram and all samples would be
above the previously used threshold Ω(t) =
εmaxf |STFT (t, f)|. Then, we have to in-
crease the value of Ω(t) in some systematic
way. The variance of the STFT is approxi-
mately equal to σ2STFT = σ2

∫
t
w2(t)dt, [7],

where σ2 is the variance of the input Gaussian
noise. Note that there are estimators of the
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Fig. 2. Colpitts oscillator - Chaos detection: (a) logarithm of |STFT (t, f)|; (b) measure m′

1
(t); (c) measure

m′

2
(t); (d) detector response function m(t) = m′

2
(t)/m′

1
(t) - solid line; detector threshold C - dashed line.

Fig. 3. Logistic map - Chaos detection: (a) logarithm of |STFT (t, f)|; (b) measure m′

1
(t); (c) measure m′

2
(t);

(d) detector response function m(t) =m′

2
(t)/m′

1
(t) - solid line; detector threshold C - dashed line.
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Fig. 4. Colpitts oscillator in noisy environment (SNR =10dB) - Chaos detection: (a) logarithm of |STFT (t, f)|;
(b) measure m′

1
(t); (c) measure m′

2
(t); (d) detector response function m(t) = m′

2
(t)/m′

1
(t) - solid line;

detector threshold C - dashed line.

Gaussian noise variance with quite acceptable
accuracy and in this research we used the tech-
nique from [8] (see Section III.B). Then, the
threshold Ω(t) that can work for both noisy
and non-noisy signals can be selected asΩ(t) =
max{εmaxf |STFT (t, f)|, κσSTFT }. The ob-
tained results are not sensitive to κ, and we
selected κ = 3.
Detector response is depicted in Fig 4. Pro-

posed detector detects accurately all periodic
regions and chaotic states for this moderate
noise level.

V. C��	���
��

Modification of the chaos detector in the
non-linear circuits has been proposed. It en-
ables application of the considered detector for
systems producing large number of sinusoidal
components within periodic state. The pro-
posed detector has been tested on signals from
the Colpitts oscillator and logistic map system
where it produces accurate results. Also, it
can be successfully used in a moderate noise
environment.
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