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Interference Analysis of Multicarrier
Systems based on Affine Fourier

Transform
Djuro Stojanović, Igor Djurovíc, and Branimir R. Vojičíc

Abstract– Multicarrier techniques based on
affine Fourier transform (AFT) have been re-
cently proposed for transmission in the wire-
less channels. The AFT represents a generaliza-
tion of the Fourier and fractional Fourier trans-
form. We derive the exact and approximated
interference power, upper bound and measure
of applicability for the AFT based multicarrier
(AFT-MC) system. It is demonstrated that the
AFT-MC system effectively minimizes interfer-
ence in time-varying multipath channels with
line-of-sight component and narrow beamwidth
of scattered components that often occurs in
aeronautical and satellite communications.

I. I������	�
��

THE Fourier transform (FT) plays a signif-
icant role in modern wireless communica-

tions. The orthogonal frequency division mul-
tiplexing (OFDM), based on the FT, is one
of the most important classes of multicarrier
modulations with equally spaced subcarriers
and overlapping spectra [1]. It has been imple-
mented in physical layer of many standardized
wireless systems.

Multicarrier techniques based on orthonor-
mal basis formed by chirps, complex expo-
nentials with linearly varying instantaneous
frequencies, have been recently proposed for
transmission in the wireless channels [2], [3].
These multicarrier modulations can be de-
scribed by a family of transforms known as the
affine Fourier (AFT) or linear canonical trans-
forms. The AFT was introduced in the optics
as a generalization of the fractional Fourier
transform (FrFT) [4]. However, mathemati-
cal basis can be found earlier in [5] and [6].
The FrFT has been also used in numerous ap-
plications in quantum mechanics [7], [8], and
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recently, in time-frequency signal analysis [9],
[10].

In the multicarrier communications, the
chirp based modulation has been introduced
in [11] as the chirped-OFDM. A multicarrier
system, with the orthogonal signal basis of the
chirp type that corresponds to the FrFT, has
been proposed in [2]. It has been suggested
that the FrFT type can be implemented with
a complexity that is equivalent to the tradi-
tional fast Fourier transform. The AFT based
multicarrier (AFT-MC) system has been in-
troduced in [3]. It has been shown that the
AFT-MC system can efficiently combat in-
tercarrier interference when the propagation
channels have few multipath components af-
fected by independent frequency offsets. It can
be efficiently implemented by adding a phase-
correction block to the standard OFDM mod-
ulators and demodulators.

In this letter, we derive the exact and ap-
proximated interference power, upper bound
and measure of the AFT-MC applicability.
Since the AFT-MC can be considered as a
generalization of the OFDM, derived expres-
sions represent generalization of results from
[12], [13] and [14]. In a practical example we
clearly demonstrate that the AFT-MC system
effectively minimizes interference in aeronauti-
cal channels that characterize communications
when the aircraft is airborne.

The letter is organized as follows. The per-
formance analysis is presented in Section II,
following by AFT-MC applicability analysis in
Section III. Examples of practical implemen-
tation are given in Section IV. Finally, conclu-
sions are presented in Section V.
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II. P��
�����	� A�����
�

Assume that the data symbols {cn,k}, where
n and k correspond to the symbol interval
and the subcarrier number, respectively, in
the AFT-MC system are statistically indepen-
dent, identically distributed, and with zero-
mean and unit-variance. The translations and
modulations by a chirp basis of a single nor-
malized pulse shape g(t) can be written as

gn,k(t) =

= g(t−nT )ej2π(c1(t−nT )
2+c2k

2+ k
T
(t−nT )), (1)

where T is the symbol period, and c1 and c2
are the AFT parameters. The baseband equiv-
alent of the AFT-MC signal is defined as

s(t) =
∞∑

n=−∞

M−1∑

k=0

cn,kgn,k(t), (2)

where M is total number of subcarriers. The
baseband doubly dispersive channel can be
modeled by the multipath fading linear oper-
ator H. The signal at the receiver is given as
[15]

r(t) = (Hs)(t) + n(t), (3)

where n(t) represents the additive white
Gaussian noise (AWGN), with the one-sided
power spectral density N0. Reconstruction of
the symbols at the receiver is performed by
projecting the received signal on the signal set
{gn,k(t)}. The received symbols {ĉn,k} can be
represented as [13]

ĉn,k = 〈Hs,gn,k〉+ 〈n, gn,k〉

=
∞∑

n′=−∞

M−1∑

k′=0

cn′,k′ 〈Hgn′,k′ ,gn,k〉+ 〈n, gn,k〉 .

(4)
The parameters qn,k,n′,k′ = 〈Hgn′,k′ ,gn,k〉

in (4) represent the coupling produced by the
channel, between the transmitted and received
pulses. The inner product can be written in
the form

qn,k,n′,k′ =

∞∫

−∞

∞∫

−∞

∞∫

−∞

h(τ, ν)gn′,k′(t− τ)

×g∗n,k(t)ej2πνtdtdτdν, (5)

where h(τ, ν) denotes the spreading function
of the channel as a function of delay time τ
and Doppler shift ν. Usually, frequency off-
set correction block, that can be modeled as
ej2πc0t, is inserted in the receiver. Substitut-
ing t′ = t − nT , after some calculations we
have

qn,k,n′,k′ =

∞∫

−∞

∞∫

−∞

∞∫

−∞

h(τ , ν)e−j2πθ(τ,ν)

× [(g(t′)g∗(t′ − ((n′ − n)T + τ))

× e−j2πt
′( 1
T (k

′−k)+ν−c0−2c1((n′−n)T+τ))
]∗

×dtdτdν, (6)

where

θ(τ, ν) = c1((n
′ − n)T + τ)2 + c2(k

′2 − k2)

−k′

T
((n′ − n)T + τ)− νnT.

Now, the expression for qn,k,n′,k′ can be
written as

qn,k,n′,k′ =

∞∫

−∞

∞∫

−∞

h(τ , ν)ej2πθ(τ,ν)

×A∗(τp, νp)dτdν, (7)

where

τp = (n′ − n)T + τ,

vp =
1

T
(k′ − k) + ν − c0

−2c1((n′ − n)T + τ). (8)

The linearly transformed ambiguity func-
tion A(τp, νp) can be defined as

A(τp, νp) =

∫ ∞

−∞

g(t)g∗(t− τp)e
−j2πνptdt,

(9)
in analogy with the classical ambiguity func-
tion definition A(τ, ν) =

∫∞
−∞

g(t)g∗(t −
τ)e−j2πνtdt [13]. Under the assumption of
wide sense stationary uncorrelated scattering
(WSSUS) channel [15], the mean-squared val-
ues of the coefficients satisfy

E
[
|qn,k,n′,k′ |2

]
=

∞∫
−∞

∞∫
−∞

S(τ , ν)

×|A(τp, νp)|2 dτdν, (10)
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where S(τ, ν) denotes a scattering function
that completely characterizes the WSSUS

E [h(τ , ν)h∗(τ1, ν1)] = S(τ , ν)δ(τ−τ1)δ(ν−ν1).
(11)

The useful power is obtained for n = n′ and
k = k′

PU =

∞∫

−∞

∞∫

−∞

S(τ , ν) |A(τp, νp)|2n=n′
k=k′

dτdν.

(12)
The interference power in the n-th interval

on the k-th subcarrier is obtained for n �= n′

or k �= k′

PI =

∞∫

−∞

∞∫

−∞

S(τ , ν)
∑

(n,k)�=(n′,k′)

|A(τp, νp)|2 dτdν.

(13)
Consider the AFT-MC system with rectan-

gular pulses g(t) = 1/
√
T , −T/2 ≤ t ≤ T/2.

Usually, a guard interval (GI) of length TGI is
inserted in the transmitting pulses, that effi-
ciently eliminates all effects of multipath de-
lays. The linearly transformed ambiguity func-
tion A(τp, νp) for n′ = n and k′ = k can be
expressed as

|A(τp, νp)|2n=n′
k=k′

= sinc2πT (ν−c0−2c1τ). (14)

In practical wireless channels, both time
and frequency spread have finite support
and S(τ, ν) has nonzero values only for
τ ∈ [0, τmax] and ν ∈ [−νd, νd]. Since

|A(τp, νp)|2n=n′, k=k′ and S(τ , ν) are given with
unit power, total power PI +PU is equal to 1.
Now, the interference power can be expressed
as

PI = 1−

−
νd∫

−νd

τmax∫

0

S(τ, ν)sinc2πT (ν − c0 − 2c1τ)dτdν.

(15)
The AFT-MC system reduces respectively

to the fractional FT (FrFT) and OFDM based
system for c1 = cotα/(4π) and c1 = 0 in (8).
Furthermore, all derived expressions can also
be used for FrFT and OFDM, by inserting ap-
propriate c1. Note that interference power ex-

pression for AFT-MC can be consider as a gen-
eralization of derivation for OFDM in [12] and
[13].
Interference power can be upper bounded by

using Taylor series sinc2πT (ν − c0 − 2c1τ) ≥
1− 1

3π
2T 2(ν − c0 − 2c1τ)2 as

PI ≤
1

3
m20 (c0, c1)π

2T 2 (16)

where mij (c0, c1) for i, j ∈ N represent mo-
ments of the scattering function for AFT-MC

mij (c0, c1) =

νd∫

−νd

τmax∫

0

S(τ , ν)

×(ν − c0 − 2c1τ)iτ jdτdν. (17)

Similarly, moments for the OFDMmij (0, 0)
can be obtained for c0 = 0 and c1 = 0. Using
binomial formula (a + b)i =

∑i

k=0

(
i
k

)
ai−kbk,

moments mij (c0, c1) for the AFT-MC can be
calculated using mij (0, 0) for the OFDM as

mij (c0, c1) =
i∑

k=0

i−k∑

l=0

(−1)l+k
(
i

k

)(
i− k

l

)

×cl0 (2c1)kmi−k−l,k+j (0, 0) . (18)

Note that (16) represents the AFT-MC
equivalent of the upper bound for OFDM pre-
viously derived in [14].
The Taylor series of sinc2θ around zero ac-

curately represents function for θ 
 1. In
the OFDM case, this restriction is simplified
to νdT 
 1, which is a valid assumption for
practical mobile radio fading channels, where
the time-varying effects in the channel are suf-
ficiently slow and symbol duration is always
much smaller than the coherence time. How-
ever, in aeronautical and satellite communica-
tions, Doppler shifts larger than 103Hz may
occur due to high velocity of the objects. For
(νd + |c0|+ 2 |c1| τmax)T > 1 (e.g. symbol in-
terval and velocity are large) the approxima-
tion diverges toward infinity, whereas the exact
interference power converges towards power of
diffused components σ2diff . Therefore, a mod-
ification of the interference power should be
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made. It can be easily shown that an approx-
imate interference power for the wide range of
channel parameters can be obtained as

PI ∼=
1
3σ

2
diffm20 (c0, c1)π

2T 2

σ2diff +
1
3m20 (c0, c1)π2T 2

. (19)

III. AFT-MC A���
	��
�
�� A�����
�

Let us now analyze multipath scenario with
line-of-sight (LOS) component. The power of
LOS σ2LOS and the power of diffused compo-
nents σ2diff , for unchanged mean throughput
power, can be defined as a function of the Ri-
cian factor K = σ2LOS/σ

2
diff as

σ2LOS =
K

K + 1
, (20)

σ2diff =
1

K + 1
. (21)

In this case, scattering function can be de-
fined as

S(τ , ν) =
K

K + 1
δ (τ) δ (ν − νLOS) +

1

K + 1
Sdiff (τ , ν) , (22)

where νLOS is Doppler shift of the LOS
component, and Sdiff (τ , ν) denotes scattering
function of the diffused components. Non-line-
of-sight (NLOS) channel follows from (22) for
K = 0. In this case, σ2LOS = 0, σ2diff = 1,
and all derived equations can be directly im-
plemented for the NLOS communications.
Note that if carrier frequency offset

νCFO exists, it can lead to the inter-
ference in multicarrier systems. These
effects can be modeled by S(τ , ν) =
1
2δ (τ) [δ (ν + νCFO) + δ (ν − νCFO)]. In this
case, it can be easily shown that PI =
1−sinc2πTνCFO, and the momentm20 (0, c1) =
ν2CFO. Now, the upper bound on interference
and approximate interference power can be
calculated by inserting m20 (0, c1) in (16) and
(19), respectively.
The moments m20(0, 0) and m02(0, 0) have

a special physical importance since they repre-
sent Doppler spread νm and delay spread τm
of the channel in the OFDM system, respec-
tively. Optimal coefficients c0opt and c1opt, can

be calculated by minimizing νm(c0, c1) as [11]

c0opt =

=
m02 (0, 0)m10 (0, 0)−m01 (0, 0)m11 (0, 0)

m02 (0, 0)−m2
01 (0, 0)

,

c1opt =

=
m11 (0, 0)−m01 (0, 0)m10 (0, 0)

2 (m02 (0, 0)−m2
01 (0, 0))

. (23)

A difference between Doppler spreads for
the OFDM with the offset correction νm (c0, 0)
and the AFT-MC system νm (c0, c1) can be
used to indicate advantages of the AFT-MC
system with the respect to OFDM

∆νm = νm (c0, 0)− νm (c0, c1) , (24)

where νm (c0, 0) =m20 (c0, 0) and νm (c0, c1) =
m20 (c0, c1) Now, ∆νm can be obtained as

∆νm = 4

νd∫

−νd

τmax∫

0

S (τ , ν)

×
(
c1ντ − c0c1τ − c21τ

2
)
dτdν. (25)

Using definition of mij(0, 0) parameters, af-
ter some calculations it follows

∆νm = 4m02 (0, 0) c
2
1opt. (26)

It is obvious that ∆νm, with the optimal
choice of c0 and c1, will always be positive, ex-
cept in the case when m02 or c1opt are equal to
0. Since the parameter m02(0, 0) defines delay
spread, it will be zero only when there are no
multipath components of the signal. Parame-
ter c1opt is equal to 0 only if there is no LOS
component or Doppler shift of the LOS com-
ponent is equal to 0. In these cases, the AFT-
MC system reduces to the ordinary OFDM,
whereas in other cases the AFT-MC system
would have smaller νm and better character-
istics. The coherence time for the AFT-MC
system, Tc (c0, c1) = 1/νm (c0, c1) can be ex-
pressed in terms of the coherence time for
the OFDM system with the offset correction
Tc(c0, 0) = 1/νm (c0, 0) as

Tc (c0, c1) = Tc(c0, 0)

(
1 +

∆νm
νm(c0, c1)

)
.

(27)
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It can be seen that Tc (c0, c1) is greater
than Tc(c0, 0) for ∆νm > 0. If Tc (c0, c1) >
Tc(c0, 0), the AFT-MC system will be more
suitable than the OFDM for the given channel
setup. Note that in the NLOS environments
with symmetrical Doppler power profile, that
is typical for the land mobile communications,
c21opt = 0, ∆νm = 0, Tc (c0, c1) = Tc(c0, 0) and
AFT-MC has the same properties as OFDM.

IV. E�������

The en-route scenario in aeronautical chan-
nels models ground-to-air or air-to-air commu-
nications when the aircraft is airborne [16]. It
is a channel model with LOS path and cluster
of scattered paths. In this case, S (τ , ν) takes
form

S(τ, ν) =
K

K + 1
δ (τ) δ (ν − νLOS)

+
1

K + 1
Pdiff (ν) δ (τ − τdiff ) , (28)

where Pdiff (ν) represents Doppler power pro-
file and τdiff denotes time delay of the scat-
tered components. The beamwidth of the scat-
tered components is narrow, leading to the
asymmetrical Pdiff (ν) that can be modeled
by restricted Jakes model [17]

Pdiff (ν) = ψ
1

νd

√
1−

(
ν
νd

)2 , ν1 ≤ ν ≤ ν2,

(29)
where ψ = 1/ (arcsin (ν2/νd)− arcsin (ν1/νd)),
denotes a factor introduced to normalize
Pdiff (ν). For this channel, optimal parame-
ters are

c0opt = νLOS,

c1opt =
1

2τdiff
ψ

(√
ν2d − ν21 −

√
ν2d − ν22

)

− 1

2τdiff
νLOS. (30)

In the worst case the LOS component comes
directly to the front of the aircraft and scat-
tered components come from behind. Here,
ν1 = − νd and ν2 = −νd(1−∆ϕB/π), where
∆ϕB represents the beamwidth of the scat-
tered components symmetrically distributed

around the ϕ = π. Parameters for this sce-
nario are: carrier frequency fc = 1.55GHz
(corresponding to the L band), ∆ϕB =3.5◦,
τdiff = 66µs, T = 1056µs and K = 15dB.
Maximal Doppler shift depends on the veloc-
ity of the aircraft νd = vmaxfc/c, where c de-
notes speed of light and maximal velocity is
assumed to be up to vmax = 250 m/s. From
Fig. 1, it can be observed that the AFT-
MC system efficiently suppresses interference
even for the large Doppler shifts. The approxi-
mated interference powers stay close to the ex-
act ones (in AFT-MC case, they are practically
indistinguishable). When GI is implemented,
the interference power in the AFT-MC is neg-
ligible, comparing to its significant value in
the OFDM. Thus, in channels with LOS path
and cluster of scattered paths with narrow
beamwidth, implementation of the AFT-MC
leads to significant reduction of interference.
Similar to the en-route scenario in aeronauti-
cal communications, this type of channel also
occurs in various satellite communications. In
each of these scenarios AFT-MC efficiently
minimizes interference and simultaneously of-
fers all advantages of multicarrier communi-
cations. Note that simulations in the typical
NLOS environments would not show any dif-
ferences between AFT-MC and OFDM, since
c21opt = 0 and AFT-MC reduces to OFDM.
A detailed analysis of bounds on interference
in time-varying multipath channels and imple-
mentation in aeronautical and satellite chan-
nels will be reported elsewhere.

V. C��	���
��

In this letter, the interference analysis of the
AFT-MC in time-varying multipath channels
with LOS component is presented. The AFT-
MC system significantly improves the interfer-
ence suppression in channels with LOS compo-
nent and narrow beamwidth of scattered com-
ponents, which is a typical scenario in aero-
nautical and satellite channels.
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