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ABSTRACT 

 
An approach to multiwindow time-frequency analysis that 

provides robust performance in noisy environment is 

proposed. The concept of robust estimates of instantaneous 

frequency is used to define the optimal weighting 

coefficients for the multiwindow spectrogram. The proposed 

form of multiwindow spectrogram provides improved 

instantaneous frequency estimation for nonstationary signals 

in the presence of additive Gaussian noise. The efficiency of 

the proposed approach is tested in the experiments. 

 

Index Terms— time-frequency analysis, instantaneous 

frequency estimation, Hermite functions, multiwindow 

approach 

 
1. INTRODUCTION 

 

Time-frequency analysis has been used in applications 

where the information, carried by the signal, is contained in 

its time-varying frequency content. Various time-frequency 

distributions have been proposed for the instantaneous 

frequency (IF) estimation [1]-[4]. One of the commonly used 

quadratic distributions is the spectrogram, defined as the 

square module of the short-time Fourier transform. It is 

simple for realization, and thus suitable for practical 

applications. However, the spectrogram has a low time-

frequency resolution. In order to improve concentration in 

the time-frequency plane, other quadratic distributions are 

considered, such as the Wigner distribution, the S-method, 

etc. For instance, the Wigner distribution provides ideal 

representation when IF is a linear function of time. For non-

linear IF, the estimation accuracy can be improved by using 

the multiwindow approaches [5]-[8]. The multiwindow 

spectrogram [5] is defined as a weighted sum of 

spectrograms calculated with Hermite functions of different 

order. The weighting coefficients for the Hermite window-

based spectrograms are typically set according to desired 

constraints related to signal power localization in the time-

frequency domain. 

The signals used in the time-frequency analysis are usually, 

more or less, corrupted by the noise, which consequently 

affects the time-frequency representation. In order to reduce 

the noise influence, in this paper we propose a modified 

form of multiwindow spectrogram. The modification is 

related to the weighting coefficients, which are derived by 

using the concept of robust estimates [9]. The proposed 

modified form of multiwindow spectrogram provides good 

time-frequency representation and high accuracy of IF 

estimation even for low signal to noise ratio. It outperforms 

other standard distributions, including the former 

multiwindow spectrogram form.    

The paper is organized as follows. Section II presents the 

theoretical background related to the standard form of 

multiwindow spectrogram. The multiwindow spectrogram 

based on the optimal weighting coefficients in noisy 

conditions is proposed in Section III. The efficiency of the 

proposed approach is tested experimentally in Section IV. 

Concluding remarks are given in Section V.     

  

2. THEORETICAL BACKGROUND – 

MULTIWINDOW TIME-FREQUENCY ANALYSIS 

 

2.1. Optimal windows selection 

 

In order to improve the analysis of stationary and non-

stationary spectrum over the standard methods, various 

multiwindow approaches have been introduced [5]-[7], [10]-

[11]. In stationary spectrum estimation, the multiple 

windows are usually chosen as discrete prolate spheroidal 

sequences (DPSS) [10], being a family of orthonormal 

functions that maximize the energy in the given frequency 

band. Further, the minimum bias windows, having close 

behavior to the DPSS, have been used in spatial filtering for 

beamspace processing [11]. However, in the non-stationary 

cases, it is preferred to use functions that are optimally 

concentrated in the time-frequency domain with elliptic 

symmetry [12]. Such functions are orthogonal Hermite 

functions. They minimize the variance and simultaneously 

provide low bias estimate. The k-th order Hermite function 

is defined as: 
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The recursive realization of the Hermite functions, which 

is considered attractive in practical applications, is given by: 
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2.2. Multiwindow spectrogram 

 

The multiwindow spectrogram has been introduced as an 

improved quadratic time-frequency distribution for 

analyzing signals with time-varying spectra. It has been 

defined as a weighted sum of spectrograms calculated for 

different window functions. By using the Hermite functions, 

as an optimal choice, the multiwindow spectrogram is 

defined as [5]: 
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where ( , )kS t ω  represents a spectrogram calculated using the 

k-th order Hermite function as follows: 
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Let us observe the signal in the form: 

 

 ( )( ) ( ) j ts t A t e ϕ=  (5) 

 

where A(t) is signal’s amplitude, while ( )tϕ is a phase 

function. Then, the conditional mean frequency obtained by 

using the spectrogram ( , )kS t ω is defined as [5]: 
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Consequently, the conditional mean frequency 
tω

 of the 

multiwindow spectrogram is given by: 
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For signals with the K-th order polynomial phase: 
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 the conditional mean frequency can be expressed as: 
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where ( )
( )

n tϕ  denotes the n-th derivative of the phase, 

while the n-th order moment of the spectrogram is: 
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In order to recover the instantaneous frequency from (9), the 

following equation holds: 
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Hence, to satisfy the instantaneous frequency constraints, the 

weights ( )kd t  are obtained by using at least K 

spectrograms.  

Furthermore, as it is derived in [5], a number of 2K-1 

windows is required to satisfy the instantaneous bandwidth 

requirements. It means that, to satisfy both the instantaneous 

frequency and instantaneous bandwidth requirements, the 

weights are calculated by using 2K-1 windows:  
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This method is asymptotically unbiased in the noise-free 

case. However, as shown in [5], it outperforms standard 

distributions, such as the single window (standard) 

spectrogram, in noisy conditions as well. 

 

3. OPTIMAL WEIGHTING COEFFICIENTS FOR 

NOISY ENVIRONMENT  

 

The peak frequency at each time is generally less affected 

by noise than the conditional mean frequency. Thus, in order 

to increase the performance of multiwindow distribution in 

the presence of noise, the concept of robust estimates is used 

in the sequel. Instead of conditional mean frequency, one 

may use the M-estimate of the instantaneous frequency [9]. 

It is obtained as a solution of the optimization problem given 

by: 

  � arg min ( ).k J
ω

ω ω=  (13) 

where, 
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The function F is convex non-negative loss function, 

while e1 and e2 are, respectively, real and imaginary part of 

error function [9].  

In order to determine optimal weights in the presence of 

noise, we may consider arg min ( ) ( , ).kJ S tω ω=  The 

necessary minimum conditions in (13) and (14) can be given 

by the following complex valued equations:  
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By applying the linearization with respect to small IF bias 

kω∆  and small influence of higher phase derivatives [9]: 
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the bias for the spectrogram with the k-th order window 

function is defined as:  
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Thus, the total bias for the multiwindow spectrogram with K 

window functions can be defined in the form: 
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where ck(t) are optimal weights for noisy conditions. Thus, 

by using (16) and (18), the total bias can be written as: 
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Furthermore, the estimated instantaneous frequency can be 

written as follows: 
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Finally, the weights ck can be obtained by solving the linear 

set of equations: 
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Based on the optimal weighting coefficients, the 

multiwindow spectrogram is defined as: 
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Note that the windows kh should satisfy a number of 

conditions [9], e.g., they should be even and non-negative 

functions. Thus, we use the windows in the form: 

2
/ 4( ) ( )t

k kt e h t−=h , where ( )kh t is the k-th order Hermite 

function. Although, there are some of the required 

conditions that are not satisfied, the proposed form of 

windows, combined with the coefficients ck, provides 

improved results in comparison with the former 

multiwindow approach. The optimal windows choice can be 

a topic for some further research. 

 

4. EXPERIMENTAL RESULTS 

 

Consider the noisy signal in the form:  
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where 1 2( ) ( ) ( )t t j tυ υ υ= + , 1( )tυ and 2 ( )tυ  are Gaussian 

noises (zero mean with variance equal to 1). The time 

interval t∈[-1,1], with sampling rate T=2/128, is used. The 

spectrogram, the Wigner distribution and the S-method are 

shown in Fig 1.a-c, respectively. Note that these 

distributions suffer from the noise and interference terms 

and do not provide satisfactory results. Further, the standard 

multiwindow spectrogram (MWS) is calculated with weights 

dk (Fig 1.d). The proposed multiwindow spectrogram with 

coefficients ck is shown in Fig 1.e. Three Hermite functions 

are used (K=3). Namely, it has been shown experimentally 

that this number of functions provides efficient results. 

Clearly, the proposed approach with optimal weighting 

coefficients ck, provides the best results for the considered 

noisy signal.  

Based on the distributions from Fig 1, the IF is estimated 

for different values of SNR. The mean square errors (MSE) 

of IF estimations are calculated and presented in Table 1. 

The results are given for the spectrogram (SPEC) with 

rectangular window, the Wigner distribution (WD), the 

multiwindow spectrogram with coefficients dk (MWS_d, for 

K=1 and K=3), and the proposed multiwindow spectrogram 

MWS_c (for K=1 and K=3). The case with K=1 (one 

window function) is considered only for the comparison 

purpose. It can be observed that the proposed approach 

(MWS_c, K=3) provides high accuracy of IF estimation for 

signals with fast varying IF, even for low values of SNR. 



 

    
    a)          b)              c) 

  
d) e) 

Fig 1. a) spectrogram, b) Wigner distribution, c) S-method, d) multiwindow spectrogram with coefficients dk , e) 

multiwindow spectrogram with coefficients ck . SNR=10dB 

 

 

Table 1. MSE for different distributions 

 

Distribution SNR=5dB  SNR=10dB SNR=15dB 

SPEC 210 207 200 

WD 158 150 140 

MWS_d, K=1 12.4 11.2 10.4 

MWS_c, K=1 6.7 6.1 5.8 

MWS_d, K=3 5.8 3.7 3 

MWS_c, K=3 3 2 1.6 
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