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Analysis of Noise in Time-Frequency
Distributions

LJubiša Stanković

Noise analysis for commonly used time-
frequency distributions is presented. The
Wigner distribution, as a basic time-frequency
representation, is studied first. The bias and
variance in the case of complex white noise are
derived. The analysis of noise is extended to
other quadratic distributions, and to different
types of additive and multiplicative noise, in-
cluding: stationary white noise, nonstationary
white noise, and colored stationary noise. Ex-
act expressions for the mean value and the
variance of quadratic distributions for each
point in the time-frequency plane are given.

A. Wigner distribution

The pseudo Wigner distribution (WD) of a
discrete-time noisy signal x(n) = s(n) + ε(n)
is defined by1 :

Wx(n, f) =
∑

m
w(m)w(−m)x(n+m)x∗(n−m)e−j4πfm.

(1)
where w(m) is a real-valued lag window, such
that w(0) = 1.
Consider first the case when s(n) is de-

terministic and the noise ε(n) is a white,
Gaussian, complex, stationary, zero-mean
process, with independent real and imaginary
parts having equal variances. Its autocorrela-
tion function is Rεε(m) = σ2εδ(m). The WD
mean for the noisy signal x(n) is

E{Wx(n, f)} =

∑
m

w(m)w(−m)s(n+m)s∗(n−m)e−j4πfm

+
∑

m
w(m)w(−m)Rεε(2m)e

−j4πfm
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1Notation

∑
m
, without limits, will be used for∑

∞

m=−∞
. The constant factor of 2 is omitted in the

WD definition, and in other TFD definitions.

= 2

∫ 1/4

−1/4

Ws(n, f − α)Fw(2α)dα+ σ2ε , (2)

where Fw(f) = Fm→f [w(m)w(−m)] is
the Fourier transform (FT) of the product
w(m)w(−m), and Ws(n, f) is the original WD
of s(n), without a lag window.
The lag window w(m) causes theWD bias.

The second term on the right-hand side in (2)
is constant, so one can assume that it does not
distort the WD. Expanding Ws(n, f − α) into
a Taylor series, around f , we get

2

∫ 1/4

−1/4

Ws(n, f − α)Fw(2α)dα ∼=

Ws(n, f) +
1

8

∂2Ws(n, f)

∂f2
m2 + .... (3)

Thus, the bias can be approximated by

bias (n, f) ∼=
1

8

∂2Ws(n, f)

∂f2
m2 =

1

8
b(n, f)m2,

where m2 =
∫ 1/2
−1/2 f

2Fw(f)df . For the regions

where the WD variations in the frequency di-
rection are small, the bias is small, and vice
versa.
The WD estimator variance, at a given

point (n, f), is defined by:

σ2WD(n, f) = E{Wx(n, f)W
∗
x (n, f)}

−E{Wx(n, f)}E{W
∗
x (n, f)}. (4)

For signals x(n) = s(n) + ε(n) it results in

σ2WD(n, f) =

∑

m1

∑

m2

w(m1)w(−m1)w(m2)w(−m2)e
−j4πf(m1−m2)

×[s(n+m1)s
∗(n+m2)Rεε(n−m2, n−m1)

+s∗(n−m1)s(n−m2)Rεε(n+m1, n+m2)
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+s(n+m1)s(n−m2)R
∗
εε∗(n−m1, n+m2)

+s∗(n−m1)s
∗(n+m2)Rεε∗(n+m1, n−m2)

+Rεε(n+m1, n+m2)Rεε(n−m2, n−m1)

+Rεε∗(n+m1, n−m2)R
∗
εε∗(n−m1, n+m2)].

(5)
The fourth-order moment of noise is re-

duced to the correlation functions by using
the relation E{z1z2z3z4} = E{z1z2}E{z3z4}+
E{z1z3}E{z2z4} + E{z1z4}E{z2z3}, which
holds for Gaussian zero-mean random vari-
ables zi, i = 1, 2, 3, 4. For the considered
complex noise Rεε(n,m) = σ2εδ(n − m) and
Rεε∗(n,m) = 0. The variance of the WD esti-
mator reduces to

σ2WD(n, f) = σ2ε
∑

m
w2(m)w2(−m)

×
[
2 |s(n+m)|

2 + σ2ε

]
.

It is frequency independent. For constant
modulus signals, s(n) = a exp[jφ(n)], the vari-
ance is constant σ2WD(n, f) = σ2εEw(2a

2+σ2ε),
where Ew =

∑
m[w(m)w(−m)]2 is the energy

of w(m)w(−m) window. A finite energy lag
window is sufficient to make the variance of
Wx(n, f) finite.

The optimal lag window width can be
obtained by minimizing the error e2 =
bias2(n, f) + σ2WD(n, f). For example, for
constant modulus signals, and the Hanning
window w(m)w(−m) of the width N , when
Ew = 3N/8 and m2 = 1/(2N

2), we get:

e2 ∼=
1

256N4
b2(n, f) +

3N

8
σ2ε(2a

2 + σ2ε).

From ∂e2/∂N = 0 the approximation of opti-
mal window width follows:

Nopt(n, f) ∼=
5

√
b2(n, f)

24σ2ε(2a
2 + σ2ε )

.

An approach to the calculation of the esti-
mate of Nopt(n, f), without using the value
of b2(n, f), is presented in [10], [Article 10.2].
Other statistical properties of the Wigner dis-
tribution are studied in [4].

B. Noise in Quadratic Time-Frequency Distri-

butions

A discrete-time form of the Cohen class of
distributions of noise ε(n) is defined by:

ρε(n, f ;G) =

∑
l

∑
m
G(m, l)ε(n+m+l)ε∗(n+m−l)e−j4πfl,

(6)
where G(m, l) is the kernel in the time-lag do-
main.
Itsmean value, for a general nonstationary

noise, is
E{ρε(n, f ;G)} =

∑
l

∑
m
G(m, l)Rεε(n+m+l, n+m−l)e−j4πfl,

where Rεε (m,n) is the noise autocorrelation
function. For special cases of noise the values
of E{ρε(n, f ;G)} follow.
1) Stationary white noise, Rεε (m,n) =
σ2εδ(m− n),

E{ρε(n, f ;G)} = σ2εg(0, 0).

2) Nonstationary white noise, Rεε (m,n) =
I(n)δ(m− n), I(n) ≥ 0,

E{ρε(n, f ;G)} =
∑

m
G(m, 0)I(n+m).

3) Stationary colored noise, Rεε (m,n) =
Rεε (m− n),

E{ρε(n, f ;G)} =

∫ 1/2

−1/2

G(0, 2(f−α))Sεε(α)dα,

where Sεε(f) = Fm→f [Rεε (m)] is the noise
power spectrum density, and the kernel
forms in time-lag, Doppler-lag, and Doppler-
frequency domains are denoted by:

∑
m

G(m, l)e−j2πνm = g(ν, l)

=

∫ 1/2

−1/2

G(ν, f)ej2πfldf. (7)

The variance of ρε(n, f ;G), is defined by

σ2εε(n, f) = E{ρε(n, f ;G)ρ
∗
ε (n, f ;G)}

−E{ρε(n, f ;G)}E{ρ
∗
ε (n, f ;G)}.
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For Gaussian noise, as in (4)-(5), we get:

σ2εε(n, f) =

∑
l1

∑
l2

∑
m1

∑
m2

G(m1, l1)G
∗(m2, l2)

×[Rεε(n+m1 + l1, n+m2 + l2)

×R∗εε(n+m1 − l1, n+m2 − l2)

+Rεε∗(n+m1 + l1, n+m2 − l2)

×Rε∗ε(n+m1 − l1, n+m2 + l2)]e
−j4πf(l1−l2).

(8)
Form of σ2εε(n, f) for the specific noises will

be presented next.
Complex stationary and nonstationary

white noise

For nonstationary complex white noise,
with independent real and imaginary part of
equal variance, Rεε (m,n) = I(n)δ(m − n),
Rεε∗(n,m) = 0, we get

σ2εε(n, f) =

∑
l

∑
m
|G(m, l)|2 I(n+m+ l)I∗(n+m− l)

= ρI(n, 0; |G|
2). (9)

For stationary white noise, I(n) = σ2ε , the
variance is proportional to the kernel energy,

σ2εε(n, f) = σ4ε
∑

l

∑
m
|G(m, l)|2 . (10)

Colored stationary noise

For complex colored stationary noise, the
variance (8) can be written as

σ2εε(n, f) =

∑
l1

∑
m1

G(m1, l1)
∑

m2

∑
l2
G∗(m2, l2)

×[Rεε(m1−m2+l1−l2)R
∗
εε(m1−m2−(l1−l2))]

×e−j4πf(l1−l2),

or
σ2εε(n, f) =

∑
l

∑
m

G(m, l)

×
{
G(m, l)∗l∗m[R

∗
εε(m+ l)Rεε(m− l)ej4πfl]

}∗
,

where “ ∗l ∗m” denotes a twodimensional
convolution in l,m. Consider the product
of G(m, l) and Y ∗(m, l) = {G(m, l) ∗l ∗m

[R∗εε(m+ l)Rεε(m− l)ej4πfl]
}∗

in the last ex-
pression. Twodimensional FTs of these terms
are G(ν, ξ) and y(ν, ξ) = G(ν, ξ)Sεε(f − (ξ −
ν)/2)S∗εε(f − (ξ + ν)/2)/2. According to the
Parseval’s theorem we get:

σ2εε(n, f) =
1

2

∫ 1/2

−1/2

∫ 1/2

−1/2

|G(ν, ξ)|2

×S∗εε(f −
ξ

2
+

ν

2
)Sεε(f −

ξ

2
−

ν

2
)dνdξ

= ρSεε(0, f ; |G|
2), (11)

for |f − (ξ − ν)/2| < 1/2 and |f − (ξ + ν)/2| <
1/2. The transforms in (11) are periodic
in ν and ξ with period 1. It means that
we should take into account all ν and ξ
when |f − [(ξ + k1)− (ν + k2]/2| < 1/2 and
|f − [(ξ + k1) + (ν + k2)]/2| < 1/2, where k1
and k2 are integers.
Note that the FT of a colored stationary

noise is a white nonstationary noise, with au-
tocorrelation in the frequency domain

RΞΞ(f1, f2) =

∑
m

∑
n
E{ε(m)ε∗(n)}e(−j2πf1m+j2πf2n)

= Sεε(f2)δp(f1 − f2),

where δp(f) is a periodic delta function with
period 1. Thus, (11) is just a form dual to (9).
Analytic noise

In the numerical implementation of quadratic
distributions, an analytic part of the signal is
commonly used, rather than the signal itself.
The analytic part of noise can be written as
εa(n) = ε(n) + jεh(n), where εh(n) = H[ε(n)]
is the Hilbert transform of ε(n). Spectral
power density of εa(n), within the basic pe-
riod |f | < 1/2, for a white noise ε(n), is
Sεaεa(f) = 2σ

2
εU(f), where U(f) is the unit

step function. The variance follows from (11)
in the form

σ2εε(n, f) = 2σ
4
ε

×

∫ 1/2

−1/2

∫ d(f,ξ)

−d(f,ξ)

|G(ν, ξ)|2 dξdν for |2f | ≤
1

2
,

(12)
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where the integration limits are defined by
d(f, ξ) = |arcsin(sin(π(2f − ξ)))| /π (for de-
tails see [8]).
The kernel G(ν, ξ) is mainly concentrated at

and around the (ν, ξ) origin and ξ = 0 axis.
Having this in mind, as well as the fact that
|G(ν, ξ)|

2 is always positive, we may easily con-
clude that the minimal value of σ2εε(n, f) is for
f = 0. The maximal value will be obtained for
|f | = 1/4. It is very close to [8]:

max{σ2εε(n, f)}
∼=2σ4ε

∫ 1/2

−1/2

∫ 1/2

−1/2

|G(ν, ξ)|2 dξdν

= 2σ4ε
∑

l

∑
m
|G(m, l)|2 .

Real noise

Now consider a real stationary white
Gaussian noise ε(n) with variance σ2ε . In this
case, variance (8) contains all terms. It can be
written as:

σ2εε(n, f) = σ4ε
∑

l

∑
m
[|G(m, l)|2

+G(m, l)G∗(m,−l)e−j8πfl]. (13)

For distributions whose kernel is symmetric
with respect to l, G(m, l) = G(m,−l) holds.
The FT is therefore applied to the positive
and even function |G(m, l)|2. The transform’s
maximal value is reached at f = 0, and |f | =
1/4. Accordingly:

max
{
σ2εε(n, f)

}
= 2σ4ε

∑
l

∑
m
|G(m, l)|2 .

(14)
The crucial parameter in all previous cases is
the kernel energy

∑
l

∑
m |G(m, l)|2. Its min-

imization is thoroughly studied in [1]. It has
been concluded that, out of all the quadratic
distributions satisfying the marginal and time-
support conditions, the Born-Jordan distribu-
tion is optimal with respect to this parameter.

C. Noisy Signals

Analysis of deterministic signals s(n) cor-
rupted by noise, x(n) = s(n) + ε(n), is highly
signal dependent. It can be easily shown [1],
[8], that the distribution variance σ2ρ(n, f) con-
sists of two components:

σ2ρ(n, f) = σ2εε(n, f) + σ2sε(n, f). (15)

The first variance component, and the distri-
bution mean value, have already been stud-
ied in detail.2 For the analysis of the second,
signal dependent, component σ2sε(n, f) we will
use the inner product form of the Cohen class
of distributions:

ρx(n, f ; G̃) =
∑

l

∑
m

G̃(m, l)

×
[
x(n+m)e−j2πfm

] [
x(n+ l)e−j2πfl

]∗
, (16)

where G̃(m, l) = G((m+ l)/2, (m− l)/2). Cal-
culation of G̃(m, l) is described in the next sec-
tion. For a real and symmetric G(m, l), and
complex noise, we get

σ2sε(n, f) =

2
∑

l1

∑

m1

∑

l1

∑

m2

G̃(m1, l1)G̃
∗(m2, l2)s(n+m1)

×s∗(n+m2)Rεε(n+l2,n+l1)e
−j2πf(m1−l1−m2+l2),

what can be written as

σ2sε(n, f) = 2
∑

m1

∑
m2

Φ̃(m1,m2)

×[s(n+m1)e
−j2πfm1 ][s(n+m2)e

−j2πfm2 ]∗,
(17)

where the new kernel Φ̃(m1,m2) reads

Φ̃(m1,m2) =
∑

l1

∑
l2
G̃(m1, l1)G̃

∗(m2, l2)

×e−j2πf(l2−l1)Rεε(n+ l2, n+ l1). (18)

The signal dependent part of the variance
σ2ρ(n, f) is a quadratic distribution of the

signal, with the new kernel Φ̃(m1,m2), i.e.,
σ2sε(n, f) = 2ρs(n, f ; Φ̃).

Special case 1: White stationary com-

plex noise, when Rεε(n+l1, n+l2) = σ2εδ(l1−
l2), produces

Φ̃(m1,m2) = σ2ε
∑

l
G̃(m1, l)G̃

∗(m2, l). (19)

For time-frequency kernels we assumed re-
alness and symmetry throughout the article,
i.e., G̃∗(m2, l) = G̃(l,m2). Thus, for finite
limits (19) is a matrix multiplication form,

2An analysis of the bias, i.e., kernel influence on the
form of ρ

s
(n, f ;G) may be found in [10].
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Φ̃ = σ2εG̃ ·G̃
∗ = σ2εG̃

2. Boldface letters, with-
out arguments, will be used to denote a ma-
trix. For example G̃ is a matrix with elements
G̃(m, l). Thus,

σ2sε(n, f) = 2ρs(n, f ;σ
2
εG̃

2). (20)

Note: Any two distributions with kernels
G̃1(m, l) = G̃2(m,−l) have the same variance,
since ∑

l
G̃1(m1, l)G̃

∗
1(m2, l) =

∑
l
G̃1(m1,−l)G̃∗

1(m2,−l)

=
∑

l
G̃2(m1, l)G̃

∗
2(m2, l).

Corollary: A distribution with real and
symmetric product kernel g(ντ) and the dis-
tribution with its dual kernel gd(ντ) =
Fα→ν,β→τ [g(αβ)] have the same variance.
Proof: Consider all coordinates in the ana-

log domain. The time-lag domain forms of
g(ντ), G(t, τ) = Fν→t[g(ντ)], and gd(ντ),
Gd(ντ) = Fν→t[gd(ντ)] are related by
G(t, τ) = Gd(τ, t). In the rotated domain
this relation produces G̃(t1, t2) = G̃d(t1,−t2),
what ends the proof, according to the previous
note.

Example: The WD has the kernel g(ντ) =
1, G̃(m, l) = δ(m + l). According to
the Corollary, the WD has the same vari-
ance as its dual kernel counterpart, with
g(ντ) = δ(ν, τ), G̃(m, l) = δ(m − l). This
dual kernel corresponds to the signal energy∑

m |x(n+m)|2 (see (16)). Thus, the WD
and the signal energy have the same vari-
ance. The same holds for the smoothed spec-
trogram, and the S-method [10], [Article 6.2],
whose kernels are G̃(m, l) = w(m)p(m+l)w(l),
and G̃(m, l) = w(m)p(m− l)w(l), respectively.
Their variance is the same.

Eigenvalue decomposition: Assume that
both the summation limits and values of
G̃(m, l) are finite. It is true when the ker-
nel G(m, l) is calculated from the well de-
fined kernel in a finite Doppler-lag domain,
G(m, l) = Fν→m[g(ν, l)], using a finite number
of samples. The signal dependent part of the
variance σ2sε(n, f) can be calculated, like other
distributions from the Cohen class, by using

eigenvalue decomposition of matrix G̃, [2], [3].
The distribution of nonnoisy signal (16) is

ρs(n, f)=

N/2−1∑

i=−N/2

λiSs(n, f ; qi) = ρs(n, f ;λ, q),

(21)
where λi and qi(m) are eigenvalues and eigen-
vectors of the matrix G̃, respectively, and

Ss(n, f ; qi) =

∣∣∣∣∣

N/2−1∑

i=−N/2

s(n+m)qi(m)e
−j2πfm

∣∣∣∣∣

2

is the spectrogram of signal s(n) calculated by
using qi(m) as a lag window. Since Φ̃ = σ2εG̃

2,

its eigenvalues and eigenvectors are σ2ε |λi|
2

and qi(m), respectively. Thus, according to
(20)

σ2sε(n, f) = 2σ
2
ε

N/2−1∑

i=−N/2

|λi|
2 Ss(n, f ; qi)

= 2σ2ερs(n, f ; |λ|
2 , q). (22)

Relation between the original kernel and

variance σ2sε(n, f) kernel: According to (21),
we can conclude that the original kernel in the
Doppler-lag domain can be decomposed into

g(ν, l) =
∑N/2−1

i=−N/2 λiai(ν, l), where ai(ν, l)

are ambiguity functions of the eigenvectors
qi(m). The kernel of ρs(n, f ; |λ|

2 , q), in (22),

is gσ(ν, l) =
∑N/2−1

i=−N/2 |λi|
2 ai(ν, l). A detailed

analysis of distributions, with respect to their
eigenvalue properties, is presented in [3], [Ar-
ticle 6.4]. In the sense of that analysis, the
signal dependent variance is just “an energetic
map of the time-frequency distribution” of the
original signal.

The mean value of variance (17) is:

σ2sε(n, f) =

∫ 1/2

−1/2

σ2sε(n, f)df

= 2σ2ε
∑

m
Φ̃(m,m) |s(n+m)|2 . (23)

For frequency modulated signals s(n) =
a exp[jφ(n)] it is a constant proportional to
the kernel energy [1].

Special case 2: For nonstationary white
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Fig. 1. Time-frequency representations of a nonnoisy signal (First column); One realization of time-frequency
representations of the signal corrupted by a white stationary complex noise (Second column); Variances of
the distributions, obtained numerically by averaging over 1000 realizations (Third column): a) Spectrogram,
b) Smoothed spectrogram, c) S-method, d) Choi-Williams distribution, e) Pseudo Wigner distribution.

complex noise, (18) results in:

Φ̃(m1,m2)=

N/2−1∑

i=−N/2

I(n+ l)G̃(m1, l)G̃
∗(m2, l),

(24)
or Φ̃ = G̃InG̃, where In is a diagonal matrix,
with the elements I(n + l). For the quasista-
tionary case, I(n+l1)δ(l1−l2) ∼= I(n)δ(l1−l2),

we have µi = I(n) |λi|
2
, with all other parame-

ters as in (22).

Special case 3: In the case of colored sta-
tionary complex noise, relations dual to
those in Special case 2, hold (like (9) and (11)).

Special case 4: Let x(n) = s(n)(1 + µ(n)),
where µ(n) is a multiplicative noise. We
can write x(n) = s(n)+s(n)µ(n) = s(n)+ε(n),

where ε(n) = s(n)µ(n) is an additive noise.
Thus, the case of this kind of multiplicative
noise can be analyzed in the same way as the
additive noise. For example, if the noise µ(n)
is a nonstationary white complex one with
Rµµ(m,n) = Iµ(n)δ(n−m), then Rεε(m,n) =

Iε(n)δ(n−m), where Iε(n) = |s(n)|
2 Iµ(n).

D. Numerical Example

Consider the signal

x(t) = exp(j1100(t+ 0.1)2)

+e−25(t−0.25)
2

exp(j1000(t+ 0.75)2)

+e−25(t−0.67)
2

exp(j1000(t− 0.4)2)

+exp(j2850t) + ε(t),



1802 TIME-FREQUENCY SIGNAL ANALYSIS

within the interval [0, 1], sampled at ∆t =
1/1024. A Hanning lag window of the width
Tw = 1/4 is used. Stationary white com-
plex noise with variance σ2ε = 2 is as-
sumed. The spectrogram, smoothed spec-
trogram, S-method, Choi-Williams distribu-
tion (CWD), and the WD, of signal with-
out noise are presented in the first column of
Fig. 1, respectively. For the CWD, the kernel
g(ν, τ) = exp(−(ντ)2) is used, with normal-
ized coordinates −

√
πN/2 ≤ |2πν| <

√
πN/2,

−
√

πN/2 ≤ |τ | <
√

πN/2, and 128 samples
within the intervals. Elements of the matrix
G̃ were calculated as, [3]

G̃(m, l) =
∑N/2

p=−N/2
g(p∆ν, (m− l)∆τ)

× exp(−j2π(m+ l)p/(2N))∆ν. (25)

The normalized eigenvalues of the matrix
Φ̃ were λi = {1,−0.87, 0.69,−0.58, 0.41,

−0.30, ...} and µi = |λi|
2 = {1, 0.76, 0.47,

0.33, 0.17, 0.09, ...}. In the spectrogram and
smoothed spectrogram the whole signal de-
pendent part of variance is “located” just on
the signal components, while in the WD it is
“spread” over the entire time-frequency plane.
Variance behavior in other two distributions is
between these two extreme cases. As it has
been shown, the variances in the smoothed
spectrogram and the S-method are the same
(Fig. 1(b) and (c)).

E. Summary

The variance values for a white nonsta-
tionary complex noise, with Rεε(m,n) =
I(n)δ(m−n), I(n) ≥ 0, for some distributions,
are summarized next.
-Pseudo Wigner distribution Ws(n, f ;w), with
G̃(m, l) = w(m)δ(m+ l)w(l):

σ2WD(n, f) = σ2εε(n, f) + σ2sε(n, f)

=WI(n, 0;w
2) + 2WI,|s|2(n, 0;w

2), (26)

where WI,|s|2 denotes the cross Wigner distri-

bution for I(n) and |s(n)|2.
-Spectrogram Ss(n, f ;w), with G̃(m, l) =
w(m)w(l):

σ2SPEC(n, f) = SI(n, 0;w
2)

+2FI(n, 0;w
2)Ss(n, f ;w). (27)

The STFT of I(n), calculated using the win-
dow w2(m), is denoted by FI(n, f ;w

2).
-A general quadratic distribution, with ker-
nel G̃(m, l) = G((m + l)/2, (m − l)/2), in (6)
or (16), and G̃ being a matrix with elements
G̃(m, l) :

σ2ρ(n, f)=ρI(n, 0; |G|
2)+2ρs(n, f ; G̃InG̃). (28)

First two formulae are special cases of (28).
Expressions for stationary white noise follow
with I(n) = σ2ε . Dual expressions hold for a
colored stationary noise.
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