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Adaptive Instantaneous Frequency
Estimation Using TFDs

LJubiša Stanković

Instantaneous frequency (IF) estimators
based on maxima of time-frequency represen-
tations have variance and bias which are highly
dependent on the lag window width. The op-
timal window width may be determined by
minimizing the estimation mean squared error
(MSE), provided that some signal and noise
parameters are explicitly known. However,
these parameters are not available in advance.
This is especially true for the IF derivatives
which determine the estimation bias. In this
article, an adaptive algorithm for the lag win-
dow width determination, based on the confi-
dence intervals intersection, will be presented
[3]-[7]. This algorithm does not require knowl-
edge of the estimation bias value. The theory
and algorithm presented here are not limited
to the IF estimation and time-frequency analy-
sis. They may be applied to a parameter value
selection in various problems.

A. Optimal Window Width

Consider a noisy signal:

x(n∆t) = s(n∆t) + ε(n∆t),

s(t) = a exp(jφ(t)), (1)

with s(n∆t) being a signal and ε(n∆t) being a
white complex-valued Gaussian noise with mu-
tually independent real and imaginary parts of
equal variances σ2ε/2. Sampling interval is de-
noted by ∆t. Consider the problem of the IF,
fi(t) = φ′(t)/2π, estimation from the discrete-
time observations x(n∆t), based on maxima of
a time-frequency distribution ρx(t, f),

f̂(t) = arg{max
f

ρx(t, f)}. (2)

Let �f̂(t) = fi(t) − f̂(t) be the estima-

tion error. The MSE, E{(�f̂(t))2}, is used
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for the accuracy characterization at a given
time instant t. Asymptotically, the MSE
for commonly used time-frequency represen-
tations (e.g. the spectrogram, the pseudo
Wigner distribution (WD), and its higher or-
der versions) can be expressed in the following
form [1], [4]-[7] [Articles 10.3, 10.4]

E
{
(�f̂(t))2

}
=

V

hm
+B(t)hn, (3)

where h is a lag window wh(t) width, such that
wh(t) = 0 for |t| > h/2. It is related to the
number of samples N by h = N∆t. The vari-
ance and the bias of estimate, for a given h,
are

σ2(h) = V/hm, bias (t, h) =
√
B(t)hn. (4)

The expression for B(t) is a function of the IF
derivatives.

For example, for the WD with a rectangular
lag window we have [5]

E
{
(�f̂(t))2

}
=

6σ2ε∆t

(2πa)2
1

h3
+

(
φ(3)(t)

80π

)2
h4, (5)

corresponding to m = 3 and n = 4 in (3). Val-
ues of m and n for some other distributions are
indicated in Table 1, according to the results
from [4]-[7].

The MSE in (3) has a minimum with respect
to h. This minimum occurs for the optimal
value of h given by

hopt(t) = [mV/(nB(t))]1/(m+n). (6)

Note that this relation is not useful in prac-
tice, because its right hand-side contains B(t)
which depends on derivatives of the unknown
IF.
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B. Adaptive Algorithm

Here, we present an adaptive method which
can produce an estimate of hopt(t) without
having to know the value of B(t). For the op-
timal window width, according to (3), holds

∂E
{
(�f̂(t))2

}

∂h
=

−m
V

hm+1
+ nB(t)hn−1 = 0|h=hopt . (7)

Multiplying (7) by h, we get the relationship
between the bias and standard deviation, (4),
for h = hopt,

bias (t, hopt) =

√
m

n
σ(hopt). (8)

It will be assumed, without loss of general-
ity, that the bias is positive. The IF estimate
f̂h(t) (obtained from (2) by using the lag win-
dow of width h) is a random variable distrib-
uted around the true IF fi(t) with the bias
bias (t, h) and the standard deviation σ(h).
Thus, we may write the relation:
∣∣∣fi(t)−

(
f̂h(t)− bias (t, h)

)∣∣∣ ≤ κσ(h), (9)

where the inequality holds with probability
P (κ) depending on parameter κ.1 We will as-
sume that κ is such that P (κ)→ 1.

Let us introduce a set of discrete dyadic
window-width values, h ∈ H,

H = {hs | hs = 2hs−1, s = 1, 2, ..., J } . (10)

Define the confidence intervals Ds = [Ls, Us]
of the IF estimates, with the following upper
and lower bounds

Ls = f̂hs(t)− (κ+ ∆κ)σ(hs),

Us = f̂hs(t) + (κ+ ∆κ)σ(hs), (11)

where f̂hs(t) is an estimate of the IF, for
the window width h = hs, and σ(hs) is its

1If we assume, for example, that the random variable

f̂h(t) is Gaussian, with the mean value M = fi(t) +
bias (t, h) and the standard deviation σ(h), then the

probability that f̂h(t) takes a value within the interval
[M −κσ(h),M +κσ(h)] is P (κ) = 0.95 for κ = 2 , and
P (κ) = 0.997 for κ = 3.

standard deviation. Assume that a window
width denoted by hs+ ∈ H is of hopt order,
hs+ ∼ hopt. Since hopt does not correspond to
any hs from the set H, for the analysis that
follows we can write hs+ = 2phopt, where p is
a constant close to 0. According to (10) all
other windows can be written as a function of
hs+ as

hs = hs+2(s−s
+) = hopt2

s−s++p,

(s− s+) = ...,−2,−1, 0, 1, 2, ... . (12)

With this notation, having in mind (8), the
standard deviation and the bias from (4) can
be expressed by

σ(hs) =
√
V/hms = σ(hopt)2

−(s−s++p)m/2,

bias (t, hs) =
√
B(t)hns =

√
m/n σ(hopt)2

(s−s++p)n/2. (13)

For small window widths hs, when s
 s+,
the bias of f̂hs(t) is negligible, thus fi(t) ∈ Ds

(with probability P (κ+ ∆κ)→ 1). Then, ob-
viously, Ds−1 ∩Ds �= ∅, since at least the true
IF, fi(t), belongs to both confidence intervals.
For s� s+ the variance is small, but the bias
is large. It is clear that for bias (t, hs) �= 0
there exists such a large s that Ds ∩Ds+1 = ∅
for a finite κ+ ∆κ.

The idea behind the algorithm is that
∆κ in Ds can be found in such a way that the
largest s, for which the sequence of the pairs
of the confidence intervals Ds−1 and Ds has
at least a point in common, is s = s+. Such
a value of ∆κ exists because the bias and the
variance are monotonically increasing and de-
creasing functions of h, respectively, (13). As
soon as this value of ∆κ is found, an intersec-
tion of the confidence intervals Ds−1 and Ds,

∣∣∣f̂hs−1(t)−f̂hs(t)
∣∣∣≤(κ+∆κ)[σ(hs−1)+σ(hs)],

(14)
works as an indicator of the event s = s+, i.e.,
the event hs = hs+ ∼ hopt. The value of hs+
is the last hs when (14) is still satisfied.
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B.1 Parameters in the Adaptive Algorithm

There are three possible approaches to
choosing algorithm parameters κ, ∆κ, and p.
Their performance do not differ significantly.

1) When our knowledge about the variance
and bias behavior, given by (3), is not quite re-
liable, an approximative approach for κ, ∆κ,
and p determination can be used. Then, we
can assume a value of κ ∼= 2.5, such that
P (κ) ∼= 0.99 for Gaussian distribution of es-
timation error. The value of ∆κ should take
into account the bias for the expected opti-
mal window width (8). It is common to as-
sume that, for the optimal value of h, the bias
and variance are of the same order, resulting in
∆κ ∼= 1. Then we can expect that the obtained
value hs+ is close to hopt, thus p ∼= 0, and
all parameters for the key algorithm equa-
tion (14) are defined. This simple heuristic
form has been successfully used in [4],[5], and
it is highly recommended for most of practi-

cal applications. Estimation of the standard
deviation σ(hs) will be discussed within the
Numerical example.

2) When the knowledge about the variance
and bias behavior is reliable, i.e., when (3) ac-
curately describes estimation error, then we
can calculate all algorithm parameters. Ac-
cording to the algorithm basic idea, only three
confidence intervals, Ds+−1,Ds+ , and Ds++1,
should be considered. The confidence inter-
vals Ds+−1 and Ds+ should have, while
Ds+ and Ds++1 should not have, at least
one point in common. Assuming that rela-
tion (9) holds, and that the bias is positive,
this condition means that the minimal pos-
sible value of upper Ds+−1 bound, (11), de-
noted by min{Us+−1}, is always greater than
or equal to the maximal possible value of the
lower Ds+ bound, denoted by max{Ls+}, i.e.,
min{Us+−1} ≥ max{Ls+}. The condition that
Ds+ and Ds++1 do not intersect is given by
max{Us+} < min{Ls++1}. According to (9)
and (11) the above analysis results in

bias (hs+−1) + ∆κσ(hs+−1) ≥

bias (hs+)−∆κσ(hs+),

bias (hs+) + (2κ+ ∆κ)σ(hs+) <

bias (hs++1)− (2κ+ ∆κ)σ(hs++1). (15)

Since the inequalities are written for the worst
case, we can calculate the algorithm para-
meters by using the corresponding equalities.
With (13) we get

∆κ =
2κ

2(m+n)/2 − 1
,

2p =

[
∆κ
√
n/m

(
2m/2 + 1

)

1− 2−n/2

]2/(m+n)
. (16)

Values of the parameters ∆κ and p for various
distributions, i.e., for various values of m and
n, are given in Table 1.

For further, and very fine tuning of the algo-

rithm parameters, one may want that the adaptive

window is unbiased in logarithmic, instead of in linear

scale (due to definition (10)). The estimation bias and

variance are exponential functions with respect to m

and n, (13). Thus the confidence interval limits vary

as 2(s−s
+)(m+n)/2. The mean value for this exponen-

tial function, for two successive confidence intervals,

for example (s − s+) = 0 and (s − s+) = 1, is (1 +

2(m+n)/2)/2. It is shifted with respect to the geomet-

rical mean
√
2(m+n)/2 of these two intervals, by ap-

proximately∆p ∼=
[
log2

(
(1 + 2(m+n)/2)/2

)]
2

m+n
− 1
2
,

resulting in the total logarithmic shift p1 = p + ∆p,

presented in Table 1. Therefore the adaptive window

width (as an estimate of the optimal window width)

should be ĥopt = hs+/2
p1 .

Note that the set H of window widths h is a priori

assumed. Therefore, as long as we can calculate p1, we

can use it in the following ways: a) To calculate distrib-

ution with the new window width ha = hs+/2
p1 as the

best estimate of hopt, b) To remain within the assumed

set of hs ∈ H, and to decide only whether to correct the

obtained hs+ or not. For example, if |p1| ≤ 1/2 the

correction is smaller than the window discretization

step. Thus, we can use ha = hs+ . For 1/2 < p1 ≤ 3/2
it is better to use ha = hs+/2 = hs+−1, as the adap-

tive window width value. Fortunately, the loss of ac-

curacy for the adaptive widths ha, as far as they are

of hopt order, is not significant since the MSE varies

slowly around its stationary point. Thus, in numerical

implementations we can use only the lag windows from

the given set H.
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TABLE I

P��������� �	 �
� ������
� �������
� ��� 
������ m,n, κ: m = 3, n = 4 ��� �
� �����������,

W��	�� �	� L-W��	�� �����������	 ����� IF ����������; m = 3, n = 8 ��� �
� �����
 �����

����	����� W��	��-V���� �����������	, �	� ����� ����	����� �����������	 ����� IF ����������;

m = 1, n = 4 ��� �
� W��	�� �����������	 �� � �������� ���������.

m 1 1 3 3 3 3 3 3

n 4 4 4 4 4 8 8 8

κ 2 3 2 3 5 2 3 5

∆κ 0.86 1.29 0.39 0.58 0.97 0.09 0.14 0.23

p 0.99 1.22 0.34 0.51 0.72 -0.13 -0.03 0.11

p1 1.18 1.41 0.59 0.76 0.97 0.19 0.30 0.43

C. Illustration

We have simulated the IF estimates as a ran-
dom variable

f̂h(t) = a

√
V/hm +

√
B(t)hn + fi(t), (17)

having the MSE given by (3), where a =
N (0, 1) is a Gaussian (zero-mean, unity-
variance) random variable, m = 3, n = 4, and
V = 1. For the true IF value fi(t), at a given
t, any constant can be assumed. The bias
parameter B(t) in f̂h(t) logarithmically varies
within 1

7 log2(mV/nB(t)) ∈ [−4, 3], with step
0.05.

-For each value of parameter B(t) we have
calculated optimal window width according to
(6), and plotted log2(hopt) as a thick line in
Fig. 1.

-The value of f̂h(t) was simulated for
each B(t) and hs ∈ H. The assumed
set of possible window widths was H =
{1/16, 1/8, 1/4, 1/2, 1, 2, 4, 8, 16, 32}, and κ =
2. The key algorithm relation (14) was tested
each time, with the known standard deviation
σ(hs) =

√
V/hms . The largest value of hs when

the key equation (14) was still satisfied was de-
noted by hs+ . Value ∆κ = 0.39, corresponding
to m = 3, n = 4, κ = 2, was used (Table 1).
The adaptive values ha = hs+/2

p1 , p1 = 0.59
(Table 1), produced in this way, are connected
with the optimal window line, by thin vertical
lines in Fig. 1.

-The same simulation is repeated with κ = 3
and κ = 5.

-We can conclude that the presented algo-
rithm almost always chooses the width hs from
H which is the nearest to the optimal one.

However, for relatively small κ = 2 there are
few complete misses of the optimal window
width, since (9) is satisfied only with proba-
bility P (2) = 0.95. For κ = 2, two successive
confidence intervals do not intersect when the
bias is small, producing false result, with prob-
ability of 2(0.05)2 ∼ 10−2 order.

3) The third approach for the parameter
(κ+∆κ) estimation is based on the statistical
nature of confidence intervals, and a posteriori
check of the fitting quality [4]. This approach
is beyond the scope of this article.

D. Numerical Example

In the example we assumed a signal of (1)
form, with the given IF,

fi(n∆t) = 128 arctan(250(n∆t−0.5))/π+128,

and the phase φ(n∆t) = 2π∆t
∑n
m=0 fi(m∆t).

The signal amplitude was a = 1, and
20 log(a/σε) = 10[dB] (a/σε = 3.16). Con-
sidered time interval was 0 ≤ n∆t ≤ 1, with
∆t = 1/1024. The IF is estimated by using the
discrete WD with a rectangular lag-window,
Wh
x (t, f) = DFTn→f [wh(n∆t)x(t+ n∆t)

x∗(t− n∆t)], calculated with the standard
FFT routines.
The algorithm is implemented as follows:

1) A set H of window widths hs, corre-
sponding to the following number of signal
samples N = {4, 8, 16, 32, 64, 128, 256, 512}, is
assumed. In order to have the same num-
ber of frequency samples, as well as to reduce
the quantization error, all windows are zero-
padded up to the maximal window width.
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Fig. 1. Optimal window width (straight thick line), and adaptive window widths (end of the vertical lines,
starting from the optimal window width line) for m = 3, n = 4, V = 1. The variance to bias ratio V/B(t)
is logarithmically varied. The adaptive width ha = hs+/2

p1 is obtained from hs+ , according to (14), after
correction for the corresponding values of p1, given in Table 1.

2) For a given time instant t = n∆t, the
WDs are calculated starting from the smallest
toward the wider window widths hs.

3) The IF is estimated using equation (2)
and Whs

x (t, f).
4) The confidence intervals intersection,

(14), is checked for the estimated IF, f̂hs(t),
and σ(hs) =

√
3σ2ε∆t/(2π2a2h3s) with, for

example, κ + ∆κ = 6, when p1 ∼= 1, and
P (κ)→ 1 (see Table 1, and the Comment that
follows).

5) The adaptive window width ha = hs+/2
is obtained from the last hs = hs+ when (14)
is still satisfied. Back to 2).
Comment: Estimation of the signal and noise para-
meters a and σ2ε can be done by using |â|2 + σ̂2ε =
1
N

∑N
n=1 |x(n∆t)|2. The variance is estimated by

σ̂2ε = σ̂
2
εr + σ̂

2
εi, where

σ̂εr,i=

median
n=2,..,N

(|xr,i(n∆t)− xr,i((n− 1)∆t)|)

0.6745
√
2

, (18)

with xr(n∆t) and xi(n∆t) being the real and imagi-

nary part of x(n∆t). It is assumed that N is large, and

∆t is small [4]-[7]. For this estimation we oversampled

the signal by factor of four.

The WDs with constant window widths
Ns = 16 and Ns = 256 are presented in
Fig.2(a), and Fig.2(b), respectively. The IF
estimates using the WDs with constant win-
dow widths Ns = 8, and Ns = 256 are given
in Fig.2(c) and Fig.2(d). Fig.2(e) shows the

WD with adaptive window width. Values of
the adaptive window width, determined by
the algorithm, are presented in Fig.2(f). We
can see that when the IF variations are small
the algorithm uses the widest window in or-
der to reduce the variance. Around the point
n∆t = 0.5, where the IF variations are fast,
the windows with smaller widths are used.
The IF estimate with adaptive window width
is presented in Fig.2(g). Mean absolute error,
normalized to the discretization step, is shown
in Fig.2(h) for each considered window width.
The line represents value of the mean absolute
error for the adaptive window width.

E. Conclusion

The algorithm that can produce accurate es-
timate of the optimal window width, without
using the bias value, is presented. The IF es-
timates obtained by using this algorithm and
the WD have lower error than by using the
best constant-window width, which also is not
known in advance. Additional examples, in-
cluding distributions with adaptive order, the
WD as a spectrum estimator, algorithm appli-
cation to the sensor array signal tracking, as
well as other realization details can be found
in [2], [4]-[7]. The presented algorithm can be
used in various other similar problems.
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Fig. 2. Time-frequency analysis of a noisy signal: a) Wigner distribution with N = 16, b) Wigner distribution
with N = 256, c) Estimated instantaneous frequency using the Wigner distribution with N = 8, d) Estimated
instantaneous frequency using the Wigner distribution with N = 256, e) Wigner distribution with adaptive
window width, f) Adaptive window width as a function of time, g) Estimated instantaneous frequency
using the Wigner distribution with the adaptive window width, h) Absolute mean error as a function of the
window width; The line represents the mean absolute error value for the adaptive window width.
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