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Robust Time-Frequency Distributions

Vladimir Katkovnik, Igor Djurovié, LJubisa Stankovié

Study of the additive Gaussian noise influ-
ence on time-frequency (TF) distributions is
an important issue [Article 9.1]. However, in
many practical applications, especially in com-
munications, signals are disturbed by a kind
of impulse noise. These noises are commonly
modeled by heavy-tailed (long-tailed) proba-
bility density functions (pdfs) [6]. It is well
known fact that the conventional TF distribu-
tions are quite sensitive to this kind of noise,
which is able to destroy sensitive signal in-
formation. The minimax Huber M-estimates
[5] can be applied in order to design the pe-
riodogram and TF distributions, robust with
respect to the impulse noise. For nonstation-
ary signals, the robust TF distributions are
developed as an extension of the robust M-
estimation approach.

A. Robust Spectrogram

The standard short-time Fourier transform
(STFT), at a given point (¢, f), can be de-
fined as a solution of the following optimiza-
tion problem:

F(t.f) = ag{mnl(t,fm)}, (1
N/2—1

I(t, f,;m) = Y wnAtF(e(t, f,n)). (2)
n=—N/2

Here, the loss function is given as F(e) = |e¢|?,
w(nAt) is a window function and At is a sam-
pling interval. The error function has the form:

e(t, f,n) = z(t + nAt)e I2MA _ o (3)

where m is a complex-valued optimization pa-
rameter in (1). The error function can be con-
sidered as a residuum expressing the “similar-
ity” between the signal and a given harmonic
exp(j2m fnAt).
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The solution of (1) easily follows from

oI(t, f,m)
— < =90 4
om* (4)
in the form of the well-known standard STFT:
F.(t, f) =
N/2-1
— Z w(nAt)z(t + nAt)e I2m AL (5)
Guw n=—N/2
where
N/2-1
Uy = Z w(nAt). (6)
n=—N/2

The corresponding spectrogram is defined by

S:(t, f) = |F:(t, ). (7)

The maximum likelihood (ML) approach
can be used for selection of the appropriate
loss function F(e) if the pdf p(e) of the noise
is known. The ML approach suggests the
loss function F(e) ~ —logp(e). For exam-
ple, the loss function F(e) = [e|? gives the
standard STF'T, as the ML estimate of spectra
for signals corrupted with the Gaussian noise,
p(e) ~ exp(—|e|?). The standard STFT pro-
duces poor results for signals corrupted by im-
pulse noise. Additionally, in many cases the
ML estimates are quite sensitive to deviations
from the parametric model and the hypothet-
ical distribution. Even a slight deviation from
the hypothesis can result in a strong degrada-
tion of the ML estimate. The minimax robust
approach has been developed in statistics as an
alternative to the conventional ML in order to
decrease the ML estimates sensitivity, and to
improve the efficiency in an environment with
the heavy-tailed pdfs. The loss function

F(e) = le| = vR*{e} +3{e}  (8)

is recommended by the robust estimation the-
ory for a wide class of heavy-tailed pdfs. It is
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worth noting that the loss function

F(e) = [Rie}| + |3{e}| (9)

is the ML selection for the Laplacian distrib-
ution of independent real and imaginary parts
of the complex valued noise.

Nonquadratic loss functions in (1) can im-
prove filtering properties for impulse noises.
Namely, in [7], [8] it is proved that there is
a natural link between the problem of spectra
resistance to the impulse noise and the min-
imax Huber’s estimation theory. It has been
shown that the loss function derived in this
theory could be applied to the design of a new
class of robust spectra, inheriting properties of
strong resistance to impulse noises.

In particular, the robust M-STFT has been
derived by using the absolute error loss func-
tion F(e) = |e] in (1)-(4) [7]. Tt is a solution of
the nonlinear equation:

1

N/2-1
X Z d(t, f,n)z(t + nAt)e 927/mAL - (10)
n=—N/2

where:
d(t, f,n) =
w(nAt)
|2(t + nAt)e—i2nfndt — F (¢ f)]’ (11)
and
N/2—1
aw(taf) = Z d(t7f7 ’I’L) (12)
n=—N/2

If real and imaginary parts of the additive
noise are independent, the statistically optimal
robust estimation theory requires replacement
of (1) with [8]:

F.(t, f) = arg {n},ilnll(t, /s m)} , (13)

Il(t7 f7 m) =
N/2—1

Y whA)F®R{er}) +F(S{er})] (14)

n=—N/2

where e; is an error function of the form

ei(t, f,n) = z(t + nAt) — me? 27 IMAL - (15)
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For F(e) = |e|, the robust STFT (13) can be
presented as a solution of (10), where d(t, f,n)
is given by:

d(t, f,n) = w(nAt)

At i) + St fn)
[R{er(t, f,n)}? + 1S{er (t, f,n)}>

The robust spectrogram defined in the form

Sz(taf) = Il(thfvo) - Il(t7f7Fz(t7f))

(16)

(17)

is called the residual spectrogram, in order to
distinguish it from the amplitude spectrogram
(7). For the quadratic loss function F(e) the
residual spectrogram (17) coincides with the
standard amplitude spectrogram (7). In [8] it
has been shown that, in a heavy-tailed noise
environment, the residual robust spectrogram
performs better than its amplitude counter-
part.

The accuracy analysis of the robust spectro-
grams, as well as a discussion on further details
on the minimax approach, can be found in [7],
[8].

B. Realization of the Robust STFT
B.1 Iterative Procedure

The expression (10) includes F(t, f) on the
right hand side. Therefore, to get the robust
STFT we have to solve a nonlinear equation of
the form = = f(x). Here, we will use the fixed
point iterative algorithm z; = f(x;—1), with
the stopping rule |z; — x;_1|/|z;| < n, where n
defines the solution precision. This procedure,
applied to (10), can be summarized as follows.

Step (0): Calculate the standard STFT
(5): F{O(t, f) = F.(t, f), and i = 0.

Step (i): Set i = ¢ 4+ 1. Calculate
dW(t, f,n) for Fz(ifl)(t, f) determined from
(11) or (16). Calculate FZ(Z)(t,f) as:

; 1
FOWf) = =~
SN dO(E, f.n)
N/2-1
X Z dD(t, f,n)z(t + nAt)eI2m AL
n=—N/2

(18)
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Step (ii): If the relative absolute difference
between two iterations is smaller than 7:

[t f) ~ FEV ()
PO, )
then the robust STFT is obtained as F(¢t, f) =
FO(t, f).
B.2 Vector Filter Approach

Note that the standard STFT (5) can be
treated as an estimate of the mean, calculated
over a set of complex-valued observations:

<n

— )

(19)

E®S —

{z(t4+nAt)e= 2 A e [-N/2, N/2)}. (20)

If we restrict possible values of m in (1) to the
set E(/) the vector filter concept [1], [3], [9]
can be applied to get a simple approximation
of the robust estimate of the STFT. Here, the
coordinates of vector-valued variable are real
and imaginary parts of z(t + nAt)e J2m/nAt,
The vector estimate of the STFT is defined
as F.(t,f) = m, where m € E®*f) and for
all k € [-N/2,N/2) the following inequality
holds:

N/2—1
3" F(|m - 2t +nAt)e I2mA) <

N/2—-1
> F(|z(t + kAt)e 2R
n=—N/2

—2(t + nAt)e I2TIAY), (21)

For F(e) = |e| this estimate is called the vector
median.

The marginal median can be used for inde-
pendent estimation of real and imaginary parts
of F,(t, f). It results in

R{F.(t, )} =
{R{z(t+ nAt)eijQ”f"At}},

med}\f;mN
ne[-5,%)

S{EL(t, )} =

median  {S{z(t+nAt)e 72T MALL (22)
n e [7%7 %)
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The separate estimation of the real and imag-
inary parts of F.(t, f) assumes independence
of the real and imaginary parts of z(t +
nAt)e 727 "At what in general does not hold
here. However, in numerous experiments the
accuracy of the median estimates (21) and (22)
is of the same order. A simplicity of calcula-
tion is the advantage of these median estimates
over the iterative procedures.

C. Robust Wigner Distribution

The standard Wigner distribution (WD) of
a discrete-time signal is defined as:

1
WZ (t7 f) =
%
X Zw(nAt)z(t + nAt)z*(t — nAt)e—j47Tant’
¥

(23)

with the normalization factor

N/2
Gy = Z w(nAt). (24)
n=—N/2

It can be interpreted as a solution of the prob-
lem

W.(t, f) = avg {min S, frm) |, (25)
N/2
It fm) = > [w(nAt)
n=—N/2
XF(|z(t + nAt)z*(t — nAt)e 4™ nAt )],
(26)

where F(e) = |e|2. For the loss function F(e) =
le], solution of (25)-(26) is a WD robust to the
impulse noise. It can be obtained as a solution
of the nonlinear equation [4]

1

)

n—=—a

N
2
X Z d(t, f,n)2(t+nAt) 2 (t—nAt)e 4Tl
__ N
(1)

d(tva n) =
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w(nAt)
|2(t +nAt)z* (t — nAt)e—i4nfnit — W (¢, )|’
(28)
N/2
awe t f Z d t f 7’L
n=—N/2

An iterative procedure similar to the one de-
scribed for the robust STFT can be used to
find W, (¢, f) from (27)-(28).

C.1 Properties of the Robust WD

1) The robust WD is real-valued for real and
symmetric window function:

1
Wt f) = ———
SRLRTREN
N/2
X Z [w*(nA) 2" (t + nAt)z(t — nAt)
—
ej47rf'nAt
X |2*(t+nAt)z(t—nAt)eldmfndt — W (¢, f)|]
L
=— Z [w*(—nAt)z(HnAt)z* (tnAt)
Qe (t7 f)L:—N/Z
e—j47rant
X Etn Az (—ndb)e T T ).

2) The robust WD is TF invariant. For sig-
nal y(t) = 2(t — to)e??™ ot we get W, (¢, f) =
W.(t —to, f — fo).

3) For linear FM signals z(t) = exp(jat?/2+
jbt), when w(nAt) is very wide window, the
WD is an almost ideally concentrated TF dis-
tribution.

C.2 Median WD

For rectangular window, the standard WD
can be treated as an estimate of the mean,
calculated over a set of complex-valued obser-
vations

G ={z(t + nAt)z* (t — nAt)eJ4m/nAt

n € [-N/2,N/2]}, (30)

ie.,
1

Wz(t7f):N—H
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NJ2
X > At +nAt)z (t— nAt)e AL (3])
n=—N/2

From (29) follows that the robust WD is real-

valued, thus the minimization of J(t, f,m)
can be done with respect to the real part of
2(t 4+ nAt)z* (t — nAt)e 74774 only. A form
of the robust WD, the median WD, can be
introduced as:

W.(t, f) = median {§R{z(t + nAt)
nel-%, %]
X2 (t — nAt)e I4mfnAL (32)

Generally, it can be shown that any robust
TF distribution, obtained by using the Her-
mitian local auto-correlation function (LAF),
R.(t,nAt) = Ri(t,—nAt) in the minimiza-
tion, is real-valued. In the WD case this con-
dition is satisfied, since R, (t,nAt) = z(t +
nAt)z*(t — nAt). For a general quadratic dis-
tribution from the Cohen class with a Her-
mitian LAF, the proposed robust version reads

p.(t, f) =

rned1an {R{R.(t,nAt)e —J47rant}}
ne[-4, 4

where R, (t,nAt) includes the kernel in time-
lag domain.

Note, that for an input Gaussian noise the
resulting noise in the WD has both Gaussian
and impulse component, due to the WD’s
quadratic nature. Thus, as it is shown in [2],
robust WD forms can improve performance of
the standard WD, even in a high Gaussian in-
put noise environment.

D. Example

Consider the nonstationary FM signal:

z(t) = exp(j204.87t|t|), (34)

corrupted with a high amount of the heavy-
tailed noise:

e(t) = 0.5(1() + jez(t)),

where €;(t), ¢ = 1,2 are mutually indepen-
dent Gaussian white noises A(0,1). We con-
sider the interval ¢ € [—7/8,7/8] with a sam-
pling rate At = 1/512 for spectrograms, and

(35)



ROBUST TIME-FREQUENCY DISTRIBUTIONS

Frequency

05 0 05

1813

250 =
200 [ S—
150 —

w0l — =

50

250
200 [,
150\,
100 N\

50 N

Fig. 1. TF representations of signal corrupted by impulse noise: a) Standard spectrogram; b) Robust spectro-

gram; c¢) Standard WD; d) Robust WD.

At = 1/1024 for WDs. The rectangular win-
dow width is N = 256 in all cases. The stan-
dard spectrogram and the WD (Figs.1(a),(c))
are calculated according to (5) and (23). The
robust spectrogram (Fig.1(b)) is calculated by
using iterative procedure (18)-(19). In this
case, similar results would be produced by
residual spectrogram (13)-(17), vector median
(21), and marginal median (22). The robust
WD (Fig.1(d)) is calculated by using expres-
sion (32) for the considered TF point. It can
be concluded from Fig.1 that the robust spec-
trogram and the robust WD filter the heavy-
tailed noise significantly better than the stan-
dard spectrogram and the standard WD. Note
that the standard and the robust WD exhibit
higher TF resolution in comparison with the
corresponding spectrograms.

E. Summary and Conclusions

The TF distributions are defined within the
Huber robust statistics framework. The loss
function F(e) = |e| gives distributions robust
to the impulse noise influence. They can be re-
alized by using: the iterative procedures, the
vector median, or the marginal median ap-
proach. All calculation procedures produce ac-

curacy of the same order of magnitude.

(1]

2]

(3]

(4]

(5]

(7]
(8]

[9]

REFERENCES

J. Astola, P. Haavisto and Y. Neuvo, “Vector me-
dian filters,” Proc. IEFE, vol.78, pp.678-689, Apr.
1990.

I. Djurovi¢, LJ. Stankovi¢ and J.F. Bohme, “Esti-
mates of the Wigner distribution in Gaussian noise
environment,” AFEU - Int. Journal Elec. Comm.,
vol.56, no.2, 2002.

I. Djurovi¢, LJ. Stankovi¢ and V. Katkovnik, “Me-
dian filter realization of the robust time-frequency
distributions,” Sig. Proc., vol.81, pp.1771-1776,
Aug. 2001.

I. Djurovi¢ and LJ. Stankovi¢, “Robust Wigner
distribution with application to the instantaneous
frequency estimation,” IEEE Trans. SP, vol.49,
pp-2985-2993, Dec. 2001.

P.J. Huber, Robust statistics, John Wiley&Sons
Inc., 1981.

S.A. Kassam, Signal detection in Non-Gaussian
noise, Springer-Verlang, 1988.

V. Katkovnik, “Robust M-periodogram,” IEFEE
Trans. SP, vol.46, pp.3104-3109, Nov. 1998.

V. Katkovnik, “Robust M-estimates of the fre-
quency and amplitude of a complex-valued har-
monic,” Sig. Proc., vol.77, no.l, pp.71-84, Aug.
1999.

I. Pitas and A.N. Venetsanopoulos, Nonlinear dig-
ital filters: Principles and applications, Kluwer
Academic, 1990.



