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Measuring Time-Frequency
Distributions Concentration

LJubiša Stanković

Efficient measurement of time-frequency
distributions (TFDs) concentration can pro-
vide a quantitative criterion for evaluation of
various distributions performance. It can be
used for adaptive and automatic parameter
selection in time-frequency analysis, without
supervision of a user. Measures for distribu-
tion concentration of monocomponent signals
date back to [3], [8]. For more complex sig-
nals, some quantities from statistics and infor-
mation theory were the inspiration for defin-
ing measures of the TFDs concentration [4]-
[5]. They provided good quantitative mea-
sure of the auto-terms concentration. Various
and efficient modifications are used in order to
take into account the appearance of oscillatory
cross-terms.

The application of concentration measures
will be demonstrated on automatic determi-
nation of the “best window length” for the
spectrogram or “the best number of terms” in
the method that provides transition form the
spectrogram toward the pseudo Wigner distri-
bution (pseudo WD) [Article 6.2].

A. Concentration Measurement

The basic idea for measuring TFDs con-
centration can be explained on a simplified
example motivated by the probability the-
ory. Consider a set of N nonnegative num-
bers p1, p2, ..., pN ≥ 0, such that p1 + p2 +
... + pN = 1. Form a simple test function
M(p1, p2, ..., pN) = p

2
1+p

2
2+ ...+p

2
N . It is easy

to conclude that M(p1, p2, ..., pN), under the
constraint p1+ p2+ ...+ pN = 1, has the min-
imal value for p1 = p2 = ... = pN = 1/N , i.e.,
for maximally spread values of p1, p2, ..., pN .
The highest value of M(p1, p2, ..., pN), under
the same constraint, is achieved when only one
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pi is different from zero, pi = δ(i− i̇0), where
i0 is an arbitrary integer 1 ≤ i0 ≤ N . This
case corresponds to the maximally concen-
trated values of p1, p2, ..., pN , at a single pi0 =
1. Therefore, the function M(p1, p2, ..., pN)
can be used as a measure of concentration
of the set of numbers p1, p2, ..., pN , under the
unity sum constraint.1 In general, the con-
straint can be included in the function it-
self by using the form M(p1, p2, ..., pN) =(
p21 + p

2
2 + ...+ p

2
N

)
/ (p1 + p2 + ...+ pN)

2
. For

nonnegative p1, p2, ..., pN this function has the
minimum for p1 = p2 = ... = pN , and reaches
its maximal value when only one pi is different
from zero.
In time-frequency analysis this idea has been

used in order to measure the concentration.
Several forms of the concentration measure,
based on this fundamental idea, are intro-
duced.

1. Measure based on the ratio of

norms: For the WD of energy normalized sig-
nals, the relation

∑
n

∑
k ρ

2
x(n, k) ≡ 1 holds.

Therefore, substitution pi → ρ2x(n, k) in the
basic example, gives a function that can be
used for measuring the concentration of the
time-frequency representation ρx(n, k):

MJP =

(
L4
L2

)4
=

∑
n

∑
k ρ

4
x(n, k)

(
∑
n

∑
k ρ

2
x(n, k))

2
. (1)

This form is just the fourth power of the ratio
of L4 and L2 norms of ρx(n, k).

2 It has been

1In probability theory, the famous Shannon entropy
−
∑

i pi log(pi) is commonly used for the same pur-
pose. It produces the maximal value for the lowest
concentration of probabilities pi, p1 = p2 = ... = pN =
1/N, and the minimal value for the highest concentra-

tion pi = δ(i− i̇0).
2In statistics, similar form (known as kurtosis) is

used as a measure of the flatness or peakedness of a
distribution. Kurtosis is zero for a Gaussian distribu-
tion. Values greater than zero mean that the distribu-
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introduced by Jones and Parks in [4]. They
have used the magnitude of the signal’s short-
time Fourier transform as the time-frequency
representation ρx(n, k) in (1). High values of
MJP indicate that the representation ρx(n, k)
is highly concentrated, and vice versa. In gen-
eral, any other ratio of norms Lp and Lq,
p > q > 1, can also be used for measuring
the concentration of ρx(n, k) [4].
When there are two or more components

(or regions in time-frequency plane of a single
component) of approximately equal energies
(importance), whose concentrations are very
different, the norm based measures will favor
the distribution with a “peaky” component,
due to raising of distribution values to a high
power. It means that if one component (re-
gion) is “extremely highly” concentrated, and
all the others are “very poorly” concentrated,
then the measure will not look for a trade-off,
when all components are “well” concentrated.
In order to deal with this kind of problems,
common in time-frequency analysis, a concen-
tration measure could be applied to smaller,
local time-frequency regions [4]:

MJPL(n, k) =
∑
n

∑
kQ

2(m− n, l − k)ρ4x(m, l)

(
∑
n

∑
kQ(m− n, l − k)ρ

2
x(m, l))

2
(2)

The localization weighting function Q(n, k)
determines the region where the concentration
is measured. In [4] the Gaussian form of this
function is used.

2. Rényi entropy based measures:

The second class of TFD measures is defined
in analogy with the Rényi entropy. It has
been introduced in time-frequency analysis by
Williams et al. [5], [9], with a significant con-
tribution of [1], [2] in establishing the proper-
ties of this measure. The Rényi entropy, ap-
plied on the TFD ρx(n, k), has the form

Rα =
1

1− α
log2(

∑
n

∑
k
ραx(n, k)) (3)

with α > 2 being recommended for the TFD
measures [2]. For α = 2 and the WD of en-
ergy normalized signals (

∑
n

∑
k ρ

2
x(n, k) ≡ 1),

tion has more of a peak than a Gaussian distribution,
while values less than zero mean flatter distributions.

R2 = 0 for all signals. Note that the loga-
rithm is a monotone function. Thus, the be-
havior of Rα is determined by the argument∑
n

∑
k ρ

α
x(n, k) behavior, as explained at the

beginning of this section. In contrast to the
measure (1), the entropy (3) has larger val-
ues for less concentrated distributions due to
a negative coefficient 1/(1−α) for α > 2. This
will be the case for all other measures which
will be presented in the sequel.
It is interesting to note that the Shannon

entropy

H = −
∑

n

∑
k
[ρx(n, k) log2 ρx(n, k)]

could be recovered from the Rényi entropy,
from the limit case α → 1, [2]. The Shannon
entropy could not be used for general TFDs
ρx(n, k), which can assume negative values [2].

3. Normalized Rényi entropy mea-

sures. In order to avoid the problem which
could be caused by the fact that the Rényi en-
tropy based measure with α = 3 ignore the
presence of oscillatory cross-terms (when the
auto-terms are well separated), some kind of
normalization should be done. It can be done
in various ways, leading to a variety of possible
measure definitions [5].

Normalization with the distribution volume

is performed as:

RV3 = −
1

2

× log2
∑

n

∑
k

[
ρx(n, k)/

∑
n

∑
k
|ρx(n, k)|

]3
.

(4)
If the distribution contains oscillatory values,
then summing their absolute values means
that large cross-terms will decrease the mea-
sure RVα. This is the expected behavior of a
measure, since it will seek for a balance be-
tween the cross-terms suppression and auto-
terms enhancement. The volume normalized
form of measure has been used for adaptive
kernel design in [5].

4. The basic idea for the measure that will
be presented next comes from an obvious clas-
sical definition of the time-limited signal

duration. If a signal x(n) is time-limited to
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the interval n ∈ [n1, n2 − 1], i.e., x(n) 	= 0
only for n ∈ [n1, n2 − 1], then the duration
of x(n) is d = n2 − n1. It can be written

as d = limp→∞
∑
n |x(n)|

1/p. The same def-
inition applied to a two-dimensional function
ρx(n, k) 	= 0 only for (n, k) ∈ Dx, gives

ND = lim
p→∞

∑
n

∑
k
|ρx(n, k)|

1/p (5)

where ND is the number of points within Dx.
In reality, there is no a sharp edge between
ρx(n, k) 	= 0 and ρx(n, k) = 0, so the value
of (5) could, for very large p, be sensitive to
small values of ρx(n, k). The robustness may
be achieved by using lower order forms, for
example with p = 2. Therefore, the concen-
tration can be measured with the function of
the form

Mp
p = (

∑
n

∑
k
|ρx(n, k)|

1/p)p, (6)

with
∑
n

∑
k ρx(n, k) = 1 and p > 1.

After we have presented several possible
forms for measuring the concentration of
TFDs, we can summarize a procedure for
constructing a TFD measure based on
one-dimensional classical signal analysis defi-
nitions, or definitions from either probability,
quantum mechanics, or information theory:
i) In the classical signal analysis definitions,

consider the signal power |x(t)|2 (spectral en-

ergy density |X(f)|2) as the probability den-
sity function in time (frequency)). This idea
comes from quantum mechanics, where the ab-
solute square of the wave function is the posi-
tion’s probability density function.
ii) Assume that the TFD ρx(t, f) can be

treated as a joint two-dimensional probability
density function.
iii ) According to these assumptions, rein-

troduce one-dimensional definition into joint
two-dimensional time-frequency domain.
iv) Additional modifications, interpreta-

tions, constraints, and normalizations are
needed in order to get forms that can be used
in time-frequency analysis. For example, sev-
eral possible forms of the Rényi entropy mea-
sure in time-frequency domain have been pro-
posed and used in various problems.

Example: Consider the classic Leipnik en-
tropy measure [8], and Zakai’s entropy

parameter δt = −
∫
∞

−∞
|x(t)|2 ln |x(t)|2 dt of

signal x(t) [8]. According to the procedure for
constructing a time-frequency form, based on
a classical signal processing relation, we get

δt = −

∫
∞

−∞

|x(t)|2 ln |x(t)|2 dt

→ −

∫
∞

−∞

∫
∞

−∞

ρx(t, f) ln ρx(t, f)dtdf (7)

This is exactly the well known Shannon en-
tropy. It has already been discussed in [2]
with respect to its (non)applicability in time-
frequency problems. In a similar way, a log-
arithm of the general Zakai’s signal duration
(uncertainty)

Zα= log2 T2α =
1

1−α
log2

∫
∞

−∞

(
|x(t)|2

)α
dt

(
∫
∞

−∞
|x(t)|2 dt)α

,

according to the proposed procedure, trans-
forms into the Rényi entropy measure,

Zα →
1

1−α
log2

∫
∞

−∞

∫
∞

−∞

ραx(t, f)dtdf = Rα

where |x(t)|2 has been replaced by ρx(t, f),
and the unit signal energy is assumed.

Remark: In the probability theory all re-
sults are derived for the probability values pi,
assuming that

∑
i pi = 1 and pi ≥ 0. The

same assumptions are made in classical sig-
nal analysis for the signal power. Since a
general TFD commonly does not satisfy both∫
∞

−∞

∫
∞

−∞
ρx(t, f) = 1 and ρx(t, f) ≥ 0, the

obtained measures of TFD concentration may
just formally look like the original entropies or
classical signal analysis forms, while they can
have different behavior and properties.3

3Quantum mechanics forms can also be used for
the definition of highly concentrated signal represen-
tations. One of them is the ”pseudo quantum” sig-
nal representation [6] in the form of SDx(t, ℘) =∫
∞

−∞
x[L](t + τ/(2L))x∗[L](t − τ/(2L))e−j℘τdτ , with

x[L](t) = A(t) exp(jLφ(t)) for x(t) = A(t) exp(jφ(t)).
For example, for x(t) = A exp(−at2/2+jbt2/2+jct) we

get SDx(t, ℘) = A2 exp(−at2)
√
4π/(a/L2) exp(−(℘−
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B. Numerical Examples

Consider the spectrogram

Swx (n, k) = |F
w
x (n, k)|

2
/E

where Fwx (n, k) = DFTm→k{w(m)x(n +m)}
is the short-time Fourier transform (STFT); E
is the energy of the lag window w(m). Among
several spectrograms, calculated with different
window lengths or forms, the best one accord-
ing to the one of proposed concentration mea-
sures, denoted by M[ρx(n, k)], will be that
which minimizes (or maximizes, depending on
the used measure form):

w+ = argmin
w
{M [Swx (n, k)]} . (8)

Let us illustrate this by an example. Consider
the signal

x(t) = cos(50 cos(πt) + 10πt2 + 70πt)

+cos(25πt2 + 180πt) (9)

sampled at ∆t = 1/256, within −1 ≤ t <
1. The Hanning window w(m) with differ-
ent lengths is used in the spectrogram calcu-
lation. Here, we have used the measure (6)
with p = 2, although for this signal all pre-
sented measures would produce similar results
[7]. Note that the presented measures would
significantly differ if, for example, the second
component were pure sinusoid cos(180πt) in-
stead of cos(25πt2 + 180πt).
For wide lag windows, signal nonstationar-

ity makes the spectrogram very spread in the
time-frequency plane, having relatively large
measure M [Swx (n, k)] = M2

2 , Figs.1(a), 1(b).
For narrow lag windows its Fourier transform
is very wide, causing spread distributions and
large M2

2 , Figs.1(d), 1(e). Obviously, between
these two extreme situations there is a window
that produces an acceptable trade-off between
the signal nonstationarity and small window
length effects. The measure M2

2 is calculated
for a set of spectrograms with N = 32 up to

bt−c)2/(a/L2)). For a/L2 → 0 it results in SD(t, ℘) =
2πA2 exp(−at2)δ(℘ − bt − c), what is just an ideally
concentrated distribution along the instantaneous fre-
quency. For a large a, if L2 is large enough so that
a/L2 → 0, we get the distribution highly concentrated
in a very small region around the point (t, ℘) = (0, c).

N = 256 window length, Fig.1(f). The mini-
mal measure value, meaning the best concen-
trated spectrogram according to this measure,
is achieved for N = 88, Fig.1(f). The spectro-
gram with N = 88 is shown in Fig.1(c).
The same procedure will be used for deter-

mination of the optimal number of terms L,
in a transition from the spectrogram to the
pseudo WD, according to the recursive form
of the S-method (SM) [Article 6.2]:

SMx(n, k;L) = SMx(n, k;L− 1)

+2
{Fx(n, k + L)F
∗

x (n, k − L)} (10)

where SMx(n, k; 0) = |Fwx (n, k)|
2, and both

k + L and k − L are within the basic fre-
quency period. Note that SM(n, k;N/2) is
equal to the pseudoWD. The optimal distribu-
tion SM+

x (n, k;L), on our way from L = 0 (the
spectrogram) toward L = N/2 (the pseudo
WD), is the one calculated with L producing
the minimal value of M [SMx(n, k;L)],

L+ = argmin
L
{M [SMx(n, k;L)]} . (11)

Here, instead of |SMx(n, k;L)| , a nonnegative
part of SMx(n, k;L) will be used. Distribu-
tions SMx(n, k;L) should be properly scaled
in order to satisfy unbiased energy condition.
The same signal is used for the illustration of
the SM. Since this method is based on the
WD, the best results will be achieved with
a wide lag window in the STFT calculation,
N = 256. The spectrogram (L = 0) is
shown in Fig.1(g). By increasing L the SM
improves concentration of the spectrogram to-
ward the pseudo WD quality, meaning lower
measure {M [SMx(n, k;L)]} = M2

2 , Fig.1(h),
1(i). After L has reached the value equal to the
distance between the auto-terms, cross-terms
start to appear, increasing M2

2 , Fig.1(j),1(k).
Minimal M2

2 means a trade-off between the
auto-terms concentration and the cross-terms
appearances, Fig.1(k). The SM with L corre-
sponding to minimal M2

2 is shown in Fig.1(l).

The concentration measure is illustrated on
time-frequency analysis of a pressure signal in
the BMW engine with speed 2000 [rev/min],
Fig.2, [Article 15.2].
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Fig. 1. a)-e) Spectrogram for various window lengths, and f) its measure M [Swx (n, k)] =M
2
2 . The lowest M2

2
is achieved for N = 88, being the best window length choice according to this measure. g)-k) The S-method
for various values of parameter L, and l) its measure M [SMx(n, k;L)] = M2

2 . The lowest M2
2 is obtained

for L = 9.

Fig. 2. Concentration measure illustration on time-frequency analysis of a car engine pressure signal. Signal,
and its S-method based time-frequency representations are given. Time is rescaled into corresponding
crank-angle. The best choice according to this measure was L = 3.
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C. Parameter Optimization

Parameter optimization may be done by a
straightforward computation of a distribution
measure M[ρx(n, k)], for various parameter
values. The best choice according to this crite-
rion (optimal distribution with respect to this
measure) is the distribution which produces
the minimal value ofM[ρx(n, k)]. In the cases
when one has to consider a wide region of pos-
sible parameter values for the distribution cal-
culation (like for example window lengths in
spectrogram), this approach can be numeri-
cally inefficient. Then, some more sophisti-
cated optimization procedures, like the one us-
ing the steepest descent approach described in
[5], can be used. Its simplified version will be
presented here [7].
The gradient of a measureM[ρx(n, k)], with

respect to a distribution’s generalized opti-
mization parameter denoted by ξ, is

∂M[ρx(n, k)]

∂ξ
=
∂M[ρx(n, k)]

∂ρx(n, k)

∂ρx(n, k)

∂ξ
.

Iterations, starting from a very low concen-
trated distribution toward the maximally con-
centrated one, i.e., toward the measure mini-
mum, can be done according to

ξm+1 = ξm − µ∂M[ρx(n, k)]/∂ξ (12)

where µ is the step, which should be chosen in
the same way as the step in the other adaptive
algorithms. The step should not be too small
(since the convergence would be too slow), and
not too large (to miss the minimum, or cause
the divergence).
In discrete implementations, the gradient

∂M[ρx(n, k)]/∂ξ can be approximated based
onM[ρx(n, k; ξm)] calculated with ξm and its
previous value ξm−1

ξm+1 = ξm

−µ
M[ρx(n, k; ξm)]−M[ρx(n, k; ξm−1)]

ξm − ξm−1
.

(13)
Example: The optimization procedure will

be illustrated on the signal x(t), its spectro-
gram, and the measure form Example 2. The
optimal window length is obtained in few iter-
ations by using (13), starting from the very

narrow window. Values of ξ0 = N = 16 and
ξ1 = N = 20 in the initial and first iteration,
are assumed. The next value of ξm+1 ≡ N
is calculated according to (13). During the
iterations we get ξm = 16, 20, 76, and 90.
The algorithm is stopped at ξm = 90, when∣∣ξm+1 − ξm

∣∣ < 2, since even number of sam-
ples are used in the realization. Note that
the obtained optimal value is within ±2 of
the value obtained by direct calculation. The
value of parameter µ = 1/3 has been used in
all examples.

D. Summary

Measurement of time-frequency distribu-
tions concentration, with application to an au-
tomatic optimization of distribution parame-
ters, is presented. It is based on the forms bor-
rowed from the classical signal analysis, proba-
bility, or information theory, with appropriate
interpretations and adjustments.
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