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TIME-FREQUENCY SIGNAL ANALYSIS

Quadratic and Higher Order
Time-Frequency Analysis Based on the
STET

LJubisa Stankovié

The oldest, simplest, and most commonly
used tool for time-frequency (TF) analysis of
a signal z(t) is the spectrogram, defined as a
squared magnitude of the short time Fourier
transform (STFT) [1]

E.(t,f) = /oo x(t +T)w(7)e*j2”f7d7, (1)

—0o0

where w(7) is a real-valued even lag window.
Implementations (hardware and software) of
this transform are already widely present in
practice. The STFT is linear and very simple
for realization. However, it has some serious
drawbacks. The most important one lies in
its low concentration in the TF plane, when
highly nonstationary signals are analyzed. In
order to improve TF representation, various
quadratic distributions have been introduced.
The most important member of this class is
the pseudo Wigner distribution (WD)

Wx(tvf) -

/Oo w(%)w(—g)x(tJr g)x*(t—

—0o0

g)e*jZ”deT.

(2)
The WD itself has a drawback. Namely, in
the case of multicomponent signals, x(t) =
Zle xp(t), it produces emphatic cross-terms
that can completely mask the auto-terms
and make this distribution useless for analy-
sis. This is why many other quadratic re-
duced interference distributions have been
introduced (Choi-Williams, Zao-Atlas-Marks,
Born-Jordan, Butterworth, Zhang-Sato...) [1],
[Article 6.4]. The cross-terms reduction in
these distributions is based on a kind of
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the Wigner distribution smoothing, which in-
herently leads to the auto-terms degradation
[11]. In contrast to these TF representations,
which are focused on the preservation of mar-
ginal properties and the cross-terms reduc-
tion, the S-method (SM), which is the topic
of this article, is derived with the primary
goal to preserve the auto-terms quality as in
the WD, while avoiding (reducing) the cross-
terms. The software and hardware realiza-
tion of this method is very efficient, since it
is completely based on the STFT. The SM
can, in a straightforward manner, be extended
to the cross-terms free (reduced) realization
of the higher order TF representations, time-
scale representations, and multidimensional
space/spatial-frequency representations.

A. STFT Based Realization of the Quadratic
Representations
A.1 Basic S-Method Form

Relation between the STFT and the WD,
[6],

wit.p=2

—00

o

F.(t, f+0)F;(t, f—0)do (3)

has led to the definition of a TF representa-
tion, referred to as the S-method (SM),

SMx(tvf) -

2 / PO)E(t, f +0)F2 (L, f — 0)d6.  (4)
The special cases of the SM are two most im-
portant TF distributions: 1) For P(6) =1 the
WD follows, SM,(t, f) = W,(¢, f), and 2) For
P(6) = §(0)/2, the spectrogram SM,(t, f) =
|F,(t, f)]? = Su(t, f) is obtained. By changing
the width of window P(6), denoted by 2Lp
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(P(@) = 0for| @ |> Lp), between these two
extreme cases we can get a gradual transition
from the spectrogram to the WD. The best
choice of Lp would be the value when P(6)
is wide enough to enable complete integration
over the auto terms, but narrower than the
distance between the auto-terms, in order to
avoid the cross terms, Fig.1. Then, the SM
produces the sum of the WDs of individual sig-
nal components, avoiding cross-terms.

Proposition: Consider the signal z(t) =
25:1 xp(t), where x,(t) are monocomponent
signals. Assume that the STFT of each com-
ponent lies inside the region D(t,f), p =

2, ..., P. Denote the length of the p-th region
along f, for a given ¢, by 2B, (t), and its central
frequency by fop(t). The SM of x(t) produces
the sum of the WDs W, (¢, f) of each signal
component z(t),

SM,(t, f) = Z W, (t, f), (5)
if the regions D,(t, f), p = 1,2,..., P, do not
overlap, D,(t, f) N Dy(t, f) = 0 for p # ¢
(meaning cross-terms free spectrogram), and
if the width of the rectangular window P(0),
for a point (¢, f), is defined by Lp(t, f) =
By(t) = | — fop(#)| for (t, f) € Dy(t, f), and 0
elsewhere.

Proof: Consider a point (¢, f) inside a region
D,(t, f). The integration interval in (4), for
the p-th signal component is symmetrical with
respect to @ = 0. It is defined by the smallest
absolute value of 6 for which f+46 or f—0 falls
outside D,(t, f), i.e., |f +0 — fop(t)| > Bp(t)
or |f — 0 fop(D)] > By(t). For f > fop(t)
and positive @, the integration limit is reached
first in | f + 0 — fop(t)] > B,(t) for § = B,(t)—
(f = fop(t)). For f < fop(t) and positive 6, the
limit is reached first in | f — 8 — fop(¢)| > Bp(t)
for 0 = Bp(t) — (fop(t) — f). Thus, having
in mind the interval symmetry, an integration
limit which produces the same value of inte-
gral (4) as the value of (3), over the region
D,(t, f), is given by Lp(t, f) in the Proposi-
tion. Therefore for (¢, f) € Dy(t, f) we have
SMy(t, f) = Wq,(t, f). Since Lp(t, f) = 0 for
(t,f) & Dp(t, f) =1,2,...,P.

Note: Any Window P(6) with constant
width Lp > maxq p{Lp(t, f)} produces
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SMy(t,f) = S0 W, (t.f), if the re-
gions D,(t,f), p = 1,2,..,P, are at least
2Lp apart along the frequency axis, i.e.,
| fop(t) = fog(t)] > Bp(t) + By(t) + 2Lp, for
each p, ¢ and t. This is the SM with constant
window width (4). If two components overlap
for some time instants t, then the cross-term
will appear, but only between these two compo-
nents and for that time instants.

The SM belongs to the general class of
quadratic TF distributions, whose inner prod-
uct form reads

px(t7f) :/Oo /Oo é(tl,tg)[gj(t+t1)e*j27rft1]

X [(t+t2)e 2] dty dt,. (6)

If the inner product kernel G’(tb to) is fac-
torized in the Hankel form G(t1,t2) =
2w(t1)p(t1 + t2)w(tz), then by substituting its
value into (6), with P(—f) = F_.¢{p(t)}, we
get (4). Note that the Toeplitz factorization
of the kernel G(t1,t2) = 2w(t1)p(t1 — t2)w(ta)
results in the smoothed spectrogram. The
smoothed spectrogram composes two STFTs
in the same direction, resulting in the distri-
bution spread, in contrast to the SM, where
two STFTs are composed in counterdirection,
resulting in the concentration improvement,
Fig.1, [5], [Article 9.1].

The SM kernel in Doppler-lag domain is
given by c¢(v,7) = P(v/2) *, Ayw(v, T), where
Ay (v,7) is the ambiguity function of w(r),
and *, denotes a convolution in v. Generally,
this kernel is not a separable function.

A.2 Other Forms of the S-Method in Quadratic
Representations

Time direction form of the SM is

SMx(taf) =

o0
2 / P(r)Ey(t47, )L (t—r, f)e ™7 dr. (7)
—00

It results from the same analysis as (4),
based on the frequency domain windowed
WD, W, (t, f) = [ W (0/2)W(-0/2)X(f +
G/Q)X*(f 9/2)exp(327rt9)d9

Fractional domain form: The frequency
and time direction forms of the SM can be gen-
eralized to any direction in the time-frequency



1828 TIME-FREQUENCY SIGNAL ANALYSIS
P 7 Falt0)
<— /
a o
Jot Jo2
F(t:6)
S 5
A A “
— - W.(t.f) £ P(O)=1
foz for i—z forall @
SM.(t.f) 4
S, (t.f) * E ¢ £
P(6)=58(6)/2 2 2
2 2
3 3
‘ f01 f02 f01 fOQ f01 f02
Fig. 1. Illustration of the SM calculation including two special cases: the WD and the spectrogram

plane. Consider the fractional FT of x(t), de-
noted by X“(u) [Articles 4.8, 5.9]. Its STFT
is

F;"(u,,v)/OO X (ut7)h(T) exp(—j2moT)dT.

(8)
where h(7) is the lag window. The SM in the
fractional domain, is defined by

*/
It can be easily realized based on the signal’s
fractional FT and (8).

Using the STFT rotational property,
F2(u,0) exp(—jmuv) = FO(t, f) exp(—jmtf)
with 4 = tcosa + fsina, v —tsina +
f cosa, [12], we can rewrite (9) as

SM(u,v) =

PO)F(u,v+ 0)E2* (u,v — 0)do, (9)

SM(t, f) =
2/ P(O)F2(t—0sina, f40 cos a)

X FO* (t4+0 sin cr, f—0 cos o)l 405 eqg - (10)

For o = 0 it gives (4), while (7) follows for « =
—m /2. For the derivation of (10) the lag win-
dow h(7) is formally assumed as (W (—7))*.
Optimal direction for the fractional SM calcu-
lation can be obtained based on the fractional
moments analysis in [Article 4.8]. It has been
used in [12].

Affine SM form: Continuous wavelet
transform (WT) is defined by Ds(t, f)

[z @ ((r = O f/ fo)dr/\/Ifo/fl.  As i
[3] we used frequency instead of scale a
fo/f. Consider h(t) in the form h(t)
w(t) exp(j2m fot) which provides a strong for-
mal connection of the WT with the STFT. The
pseudo affine Wigner distribution is defined by

[e e}

W;(t,f):/_ w(zif0 )w(lef0 )
xa(t+ )t (t = e P> dr. (1)

The affine SM form reads:

SM(t, f) =

2 [ POD.t,Fi b DL £ fo-0)db, (12)
where D,(t, f; fo + 0) is the WT calculated
with h(t) = w(t) exp(j2n(fo + 0)t). If P(9) =
5(6)/2, then SMZ(t, f) is equal to the scalo-
gram of z(t), while for P(f) = 1 it produces
Wa(t, f) defined by (11). This form of the SM
has been extended to other time-scale repre-
sentations in [3].

B. Discrete Realization of the Basic S-Method
Form
Discrete SM, for a rectangular window P(6),
follows from (4)
2
Tw

SM,(n, k) (| Fu(n, k)

12Re(Y" " Fuln, ki) (nk—)}] (13)
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where: F,(n,k) = DFT;_ {z(n + ))w(i)At},
At is the sampling interval, T,, = NAt is the
width of w(r), and 2L p+1 is the width of P(0)
in the discrete domain. For notation simplicity
we will assume normalized 2/T,, = 1. Recur-
sive relation for the SM calculation is

;9A4¢(n,k;L[ﬁ ::Sﬂdg(n,k;L;>471)
+2Re{Fy;(n,k+ Lp)F;(n,k—Lp)} (14)

where  SM,(n,k;0) = |Fy(n.k)|°, and
SMi(n,k; Lp) denotes SM,(n, k) in (13) cal-
culated with Lp. In this way we start from the
spectrogram, and gradually make the transi-
tion toward the WD. The calculation in (13)
and (14) needn’t be done for each point (n, k)
separately. It can be performed for the whole
matrix of the SM and the STFT. This can sig-
nificantly save time in some matrix based cal-
culation tools. In the SM calculation: 1) There
is no need for analytic signal calculation since
the cross-terms between negative and posi-
tive frequency components are removed in the
same way as are the other cross-terms [10]. 2)
If we take that F,(n,k) = 0 outside the basic
period, i.e., when k < —N/2 or k > N/2 — 1,
then there is no aliasing when the STFT is
alias-free (in this way we can calculate the
alias-free WD by taking Lp = N/2 in (13)).

For the SM realization we have to imple-
ment the STFT first, based either on the FFT
routines or recursive approaches suitable for
hardware realizations [6], [10]. After we get
the STFT we have to “correct” the obtained
values, according to (13), by adding few terms
2Re{F.(n,k+i)Ff(n,k—1i)} to the SPEC
values.

There are two possibilities to implement the
summation in (13):
1) With a signal independent Lp. Theoreti-
cally, in order to get the WD for each individ-
ual component, the length Lp should be such
that 2Lp is equal to the width of the widest
auto-term. This will guarantee cross-terms
free distribution for all components which are
at least 2Lp samples apart. For components
and time instants where this condition is not
satisfied, the cross-terms will appear, but still
in a reduced form (see also [Article 7.3]).
2) With a signal dependent Lp = Lp(n,k)
where the summation, for each point (n,k),
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lasts until the absolute square value of
F.(n,k+i) or F,(n,k—i) is smaller than an as-
sumed reference level R. If a zero value may be
expected within a single auto-term, then the
summation lasts until two subsequent zero val-
ues of F(n,k+1) or Fy(n,k—1) are detected.
The reference level is defined as a few percent
of the spectrogram’s maximal value at a con-
sidered instant n, R, = maxy{S.(n,k)}/Q?,
where () is a constant. Index n is added to
show that the reference level R is time depen-
dent. Note that if Q2 — oo, the WD will be
obtained, while @? = 1 results in the spec-
trogram. A choice of an appropriate value for
design parameter Q? will be discussed in Fz-
ample 2.

Ezample 1: Consider a real-valued multi-
component signal

z(t) = cos(1200(t + 0.1)?)

em301/3)% ¢05(1200(¢+1/2)2)
o 6(1-2/9)? cos(1200(t—1/3)%) +cos(960mt)

within the interval [0,1], sampled at At =
1/1024. This sampling rate is very close to
the Nyquist rate for this signal, that is 1/960.
The Hanning window of the width T, = 1/4
is used. The spectrogram is shown in Fig.2(a).
Its “corrected” version (the SM), according
to (13), with five terms, Lp = 5, is shown
in Fig.2(c). The auto-terms are concentrated
almost as in the WD, Fig.2(b). The Choi-
Williams distribution (CWD), whose kernel
reads c(v,7) = exp(—(v7)?), is shown in
Fig.2(d). Normalized values —\/7N/2 <
2mv| < \/ANJ2, —\/TN2 < |7] < \/7N]2,
and 128 samples within that interval, are used.
If the analytic part of z(t) were used, simi-
lar results would be obtained, see [Article 9.1,
Fig.1].

Ezample 2: The adaptive SM realization
will be illustrated on a three-component real
signal, with a nonlinear FM component,

z(t) = et cos(25mt) + cos(120t3 + 457t)

+1.5¢25¢ cos(407t? + 1507t)

with the sampling interval At = 1/256. The
signal is considered within the time interval
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Fig. 2. Time-frequency representation of a real-valued multicomponent signal: a) Spectrogram, b) Pseudo

Wigner distribution, ¢) S-method with five ”correcting terms 7, Lp = 5, d) Choi-Williams distribution, as
the representative of reduced interference distributions.

[-1,1]. The Hanning window of the width
T, = 1 is used. The spectrogram is presented
in Fig.3(a), while the SM with the constant
Lp = 3 is shown in Fig.3(b). The concen-
tration improvement with respect to the case
Lp = 0, Fig.3(a), is evident. Further in-
crease of L p would improve concentration, but
it would also cause that some cross-terms ap-
pear. Some small changes are already notice-
able between the components with quadratic
and constant IF. An improved concentration,
without cross-terms, can be achieved by using
the variable window width Lp. The regions
D;(n,k), determining the summation limit
Lp(n, k) for each point (n, k), are obtained by
imposing the reference level R,, corresponding
to Q% = 50. They are defined as: D;(n, k) =1
when S, (n,k) > R, = max;{S.(n,k)}/Q?,
and D;(n, k) = 0 elsewhere, Fig.3(c). White
regions mean that the value of spectrogram is
below 2% of its maximal value at that time
instant n, meaning that the concentration im-
provement is not performed at these points.
The signal dependent SM is given in Fig.3(d).

The method sensitivity, with respect to the
value of Q?, is low.

C. STFT Based Realization of Higher Order
Representations

In order to improve distribution concentra-
tion in the case of nonlinear FM signals, the
higher order time-varying spectra have been
defined (Wigner higher order spectra, Multi-
time Wigner distributions). For practical re-
alizations the most interesting are the ver-
sions of these spectra reduced to the two-
dimensional TF plane [4]. Here, we will
present the L-Wigner distribution (LWD) and
the fourth order polynomial Wigner-Ville dis-
tribution (PWVD).

C.1 The L-Wigner Distribution

The L-Wigner Distribution (LWD) is de-
fined by [8], [10]

LDyt f) =
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Fig. 3. Time-frequency analysis of a multicomponent signal: a) Spectrogram, b) The S-method with a constant
window, with Lp = 3, ¢) Regions of support for the S-method with a variable window width calculation,
corresponding to @2 = 50, d) The S-method with the variable window width calculated using regions in c).

* «Liy T N L T\ _—jonfr
/_oowL(T)x (t QL)x (t+ 2L)e dr.
(15)

For L =1 it reduces to the WD.
The LWD is a windowed slice of the multi-
time Wigner distributions:

Wf(th 7tl€7f) =

o0 K - L—1 -
/ T tit K+1) [[o (-t K+1)
o =l i=1

K
X H x(t; — K: 1)ej%deT7
i=L

along the line t; =ty = ... =ty_1 = —t, tp, =
tr+1 = ... = txg = t, where the auto-terms in
WE(ty,...,tk, f) are located, for L = (K+1)/2

(8].

Similarly, starting from the Wigner higher
order spectra, dual to Wf(tl,tg, vty f), we
get a distribution dual to (15),

LWLt f) =

[ wiexi e gpxt-g;

)e 20 de.
(16)
studied in details in [7]. Tts realization is for-
mally the same as for the time domain LWD.
For a frequency modulated signal z(t) =

exp(jo(t)), the LWD produces [10]
LWL(t, f) = Wr(f — ¢'(t)/2n)
*fFT{e(j(¢(3)(t+‘l'1)+¢>(3)(t—Tz))/(48L2))},

where 71, 7o are the values of 7 within the lag
window wr (1), and Wi (f) = Fr_p{wr(7)}.
For L — oo, the LWD tends to a distribu-
tion completely concentrated along the IF | i.e.,
LWL(t, f) — Wi (f — &/ (1) /27).

The relationship between LWsy (¢, f) and
LWy(t, f) is of form (3),

LWayr(t, f) =

2 / T LWL f+ 0 LWL (L, f — 6)d6

— 0o
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The realization of cross-terms and alias free
version of the LWD may be efficiently done
in the discrete domain, by using the SM form
(13), as:

LWop(n, k) = LW?(n, k)

Lp
+2 Zizl LW (n,k+49) LW (n,k —1), (17)

with LWi(n, k) = Wy(n, k), and Wy (n, k) cal-
culated according to (13). Form (17) is very
convenient for software and hardware realiza-
tions since the same blocks, connected in cas-
cade, can provide a simple and efficient sys-
tem for higher order TF analysis, based on the
STFT in the initial step, and the signal sam-
pled at the Nyquist rate. Numerical examples
and illustrations of the LWD can be found in
(7110,

C.2 Polynomial Wigner-Ville Distribution

Modification of the presented method for
the realization of the PWVD is straightfor-
ward. The fourth order PWVD can be written
in a frequency scaled form [2]

PWx(t,f):%L 2+ Pa(e- )

wa* (t + A%)x(t - A%)eﬁ%—’?w, (18)

where A = 0.85/1.35 and f’ = f/2.7. Note
that PW,(t, ') = 5= LWal(t, f))xp WL, f),
where WA (L, f') = FT{z*(t + AZ)z(t — AZ)}
is the scaled and reversed version of the WD.
The cross-terms free realization of the WD
and LWD is already presented. In the dis-
crete implementation of the above relation, the
only remaining problem is the evaluation of
WA(t, ) on the discrete set of points on fre-
quency axis, f' = —kAf'. Since WA(t, f) is,
by definition, a scaled and reversed version of
Wi (t, '), its values at f' = —kAf’ are the
values of W, (¢, f') at f' = kAf’/A. However,
these points do not correspond to any sample
location along the frequency axis grid. Thus,
the interpolation has to be done (one way of
doing it is in an appropriate zero padding of
the signal). A discrete form of convolution
(18), including rectangular window P(6) and
the above considerations, is

PW,(n, k) =

TIME-FREQUENCY SIGNAL ANALYSIS

Z:L LWa(n, k +)Wa(n, k +i/A) (19)

where 2L p + 1 is the width of P(0) in the dis-
crete domain, while W, (n, k 414/A) is the WD
approximation. We can simply use W, (n,k+
i/A) = SMy(n,k + [i/A]) where [i/4] is the
nearest integer to i/A, or use the linear inter-
polation of the SM values at two nearest inte-
gers. The terms in (19), when k—+i or k+[i/A]
is outside the basic period, are considered as
being zero in order to avoid aliasing.

Ezample 3: Consider real-valued multicom-
ponent signal

x(t) = cos(20sin(nt) + 307t)

-+ sin(20 cos(mt) + 1007t)

within —1 <t < 1, with At = 1/128. In the
realization, a Hanning window of the width
T, = 2 is used. Based on the STFT (using its
positive frequencies), the cross-terms free WD
is obtained from (13) with Lp = 15, and de-
noted by SM, Fig.4(a). Then the LWD, with
L = 2, is calculated according to (17). Tt is
combined with the linearly interpolated SM
value into the PWVD (19), shown in Fig.4(b).
For the precise implementation of [i/A] the lag
window has been zero-padded by a factor of 2.

D. Summary

The STFT based realization of quadratic TF
representations, having the auto-terms close or
the same to the ones in the WD, but without
(or with reduced) cross-terms, is presented.
For this realization the S-method is used. The
method is generalized, in an order recursive
form, for the realization of higher order TF
representations. Applications of the presented
method on, for example, time-scale representa-
tions [3], and multidimensional space/spatial-
frequency analysis [14], are straightforward.
Hardware realization of the S-method is also
simple and direct [10].
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