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TIME-FREQUENCY SIGNAL ANALYSIS

An Analysis of Some Time-Frequency
and Time-Scale Distributions

LJubisa Stankovié

Abstract— This paper presents an analysis of
the representation of instantaneous frequency
and group delay using time-frequency trans-
forms or distributions of energy density do-
main. The time frequency distributions which
ideally represent the instantaneous frequency
or group delay (ITFD) are defined. Closeness
to the ITFD is chosen as a criterion for com-
parison of various commonly used distributions.
It is shown that the Wigner distribution is the
best among them, with respect to this criterion.
The wavelet and scaled forms of the Wigner dis-
tribution are defined and analyzed. In the sec-
ond part of the paper we extended the analysis
to the multicomponent signals and cross terms
effects. On the basis of that analysis, an effi-
cient method, derived from the analysis of the
Wigner distribution defined in the frequency
domain, is proposed. This method provides
some substantional advantages over the Wigner
distribution. The theory is illustrated on nu-
merical examples.

I. INTRODUCTION

Time-frequency distributions have been in-
tensively studied during the past decade. We
refer to several excellent review papers on
the distributions for time-frequency analysis
[1],[2],[3]. The commonly used energy density
domain (E-domain, [6]) distributions are the
following: Spectrogram (the squared modulus
of the Short Time Fourier Transform), Scalo-
gram (the squared modulus of the Wavelet
transform), Wigner distribution and its vari-
ations - Generalized Wigner Distribution -
GWD [5],[6].

It is desirable that an energetic time-
frequency distribution (TFD) of a signal z(t)
satisfies the following basic properties:

1 o0 o0
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where E, and X(w) denote the energy and
the Fourier transform of xz(t), respectively,
[1],12],[3],[26]. Tt is obvious that if either of
marginal properties (2), (3) is fulfilled, so is
property (1). Note that an infinite number
of distributions satisfying (1), (2) and (3) can
be defined - the Cohen class of distributions
[1]. This class of distributions has been derived
in the quantum mechanics using characteristic
functions approach. That derivation may be
found in [1]. In Appendix A we provided a very
simple proof of the following statement: If we
know only one distribution satisfying (1),(2)
and (3), an infinite number of distributions
which satisfy the same conditions exist.

The relations (1),(2) and (3), do not tell any-
thing about the local distribution of energy, at
a point (w,t). The concept of "time-frequency
energy density at every point in the time-
frequency plane is a priori impossible since the
uncertainty principle does not allow the no-
tion of energy at a specific time and frequency"
21,91

In this paper, we will impose some more spe-
cific requirements than the ones given by (2)
and (3). Those requirements will turn out very
reasonable and meaningful for specific classes
of signals (belonging to the class of asyptotic
signals), both monocomponent and multicom-
ponent.

In Section IT we define the ideal time fre-
quency distribution with respect to the instan-
taneous frequency and group delay. In the
sections that follow the commonly used dis-
tributions of E-domain are compared to the
”ideal” ones. The modifications of the WD,
the wavelet WD and the scaled W D, are pro-
posed and analyzed. The multicomponent sig-
nals and cross terms effects ([10],[11],[24]) are
studied next. A method for cross term reduc-
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tion is proposed.

II. A DEFINITION OF THE IDEAL
TIME-FREQUENCY
DISTRIBUTION

Consider a complex signal x(t) defined by:
z(t) = g(t)e’” (4)

If we want to compare various distribution,
what is the principle aim of this paper, we
have to give an answer to the question: How
does the ideal time-frequency representation
of z(t) look like? Generally, when ¢(¢) and
¢(t) are arbitrary functions the answer is dif-
ficult and depends on our particular expecta-
tion from the time-frequency representation.
Various distributions (Wigner distribution, Ri-
haczek distribution, Page distribution, Choi-
Williams distribution,. ..a complete list may
be found in [2]) have been derived, starting
from the different prepositions.

In this paper, we will restrict ourselves to
the class of signals having constant or slow-
varying g(t) as compared to the variation of
#(t)' . This class of signals is practically
important and, as it will be seen, permits a
relatively simple definition of the ideal time-
frequency representation.

LSignal z(t) satisfying the condition that g(t) is slow-
varying comparing to the variation of ¢(¢) belongs to
the class of asymptotic (sophisticated) signals.

If one may assume that the signal energy is approx-
imately localized in the band [—B/2, B/2] and in the
time interval [—=T'/2,T/2], then the signal is asymptotic
if BT is large (BT >> 1), [18],[7].

The classical definitions of the durations 7" and B
are:

2 Pla())Pdt
o @)t

I PN @)Pdw
T X (@)Pde

For signal x(t) defined by (4) we have:

BRI

(8 ()

It folows that T depends only on g(¢), while B depends
on both g(¢t) and ¢(t). Having ¢(¢t) rapidly varying
function comparing to g(t) (i.e. ¢'(t) >> g'(t)) the
value of B, as well as the product BT can be made
arbitrary large. Thus, the signal z(¢) is an asymptotic
one.

The stationary phase method [18],[7],[19] 2,
applied to the Fourier analysis states that the
value of the Fourier transform X (w):

oo
X(w)= / g(t)e?? eIt gy (5)
is approximately equal to:

2mj/¢" (to)  (6)

provided that g(t) is slow-varying, i.e. that
g'(t) << ¢'(t). The instant ¢y, called the sta-
tionary phase point, is obtained from:

4
dt

X (w) =2 x(tg)e It

[6(t) — wt] = Opmyy & w=¢'(t0)  (7)

Equations (6) and (7) mean that the spectral
component of signal z(t) at a given w is de-
termined by the value of z(t) at the instant
to. This may be interpreted in the following
way: The spectral component corresponding
to the instant ¢ is located at the frequency w
equal to the instantaneous one at the instant
t,w=¢'(t).

The previous analysis leads to the defini-
tion of the Ideal time-frequency distribution
(ITFD) in the form:

ITFDY (w,t) = 2m|g(t)|* 6fw — ¢'(t)]  (8)

where:

wilt) = 2 —

denotes the instantaneous frequency of x(t).
The existence of ¢'(t) is assumed. In other
words, we require that the "Ideal TFD” has
the instantaneous power | g(¢) |* concentrated
at the instantaneous frequency w;(t).

2If the function g(t) is continuous and the derivative
of the function u(t) vanishes at only a single point
t = to in the interval (—oo, 00):

1 (t0) = 0 and 1" (t0) # 0

then, for sufficiently large k,
S .
/ g(t)e?FH® dt
—o0

2 Tk1(t0) g(t) /275 / Tk (to)]

The proof may be found in [7].
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If eqn. (7) has multiple solutions tg, the
results may be easily generalized. Physically,
it means that the energy is concentrated on
the same frequency at more than one instant.
Note, if the condition ¢'(t) < ¢'(t) is not
satisfied, then the instantaneous bandwidth
[28], rather than the instantaneous frequency,
should be considered. However, the analysis
in that case is more cumbersome and will not
be pursued in this paper.

It is apparent that the distribution defined
by (8) satisfies properties (1) and (2). The
property (3) is also fulfilled under certain con-
ditions? .

If the signal x(¢) is real, expressed by
x(t) = g(t)cos(4(t)), then the instantaneous
frequency of z(t) will be defined as [20):

wilt) = S larg (1)

where z(t) is the analytic part (which may be
written in form (4)) defined as:

2(t) = w(t) + jH[2(1)]

with H| | denoting the Hilbert transform op-
erator.

Another class of signals, that will be consid-
ered, is the one whose Fourier transform X (w)
can be written as:

X(w) = G(w)el¥™) (9)

where G (w) is slow-varying comparing to ¢(w).
This signal belongs to the class of asymptotic
signals, as well. All the above cosiderations for
signal (4) are valid for (9) in the dual sense.
The group delay, as a dual notion of the in-
stantaneous frequency, is defined by t,(w) =
—¢'(w). The ”Ideal TFD”, in this case, should

3Note that
[ | 9(t) |2 8w — &' ()t

1 1
=|g(to) I?)| —— |= — | X 2
[900) Pl 7 1= 3= | X(e) |
for ¢'(to) = w and if g(t) is sufficiently smooth. The
substitution of variables ¢’ (t) = u (with ¢ (¢)dt = du)
and equation (6) is used.
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have the spectral energy density | G(w) |? lo-
cated at its group delay:
ITFDy(w,t) =| G(w) [ 6t + ¢' ()] (10)

In the ensuing sections we will compare the
commonly used time-frequency representa-
tions with the ”ideal” ones, defined by (8) and
(10). The measure of quality will be the simi-
larity to ITFD%(w,t) or ITFDL (w,t), depend-
ing on the behavior of the signal x(t).

III. INSTANTANEOUS FREQUENCY
REPRESENTATION

A. Short Time Fourier Transform - STFT

The oldest time-frequency signal representa-
tion is based on the use of Short time Fourier
transform (STFT) (or Running Fourier trans-
form), [2],[3],[7],[8]:

z(r)w* (r — t)e 7T dr

(11)
where w(t) is a window, which is usually a real
and even function.

For the signal x(t) defined by (4), we have:

STFT(w,t) = /

—00

oo

gt+7)eI? Ty (1) eI dr

(12)
Expanding ¢(t + 7) into a Taylor series and
assuming that the variations of g(¢t+7), inside

the window, are not significant, g(t+7)w(7) =
g(t)w(r), we get:

STFT(w,t) = /

— 00

| STFT(w,1) =] g(t) | 50l — &'(1)

s W (W) 5 Fled? GHT07/2712 (13

with: F[]-the Fourier transform (FT) oper-
ator, W(w) = Flw(t)];T1—a variable in the
interval [0, 7];*,—a convolution in w. The
continuity of the functions ¢(t + 7),¢'(t + 7)
and ¢”(t + 7) inside the window w(r) is as-
sumed. This is the condition for the expansion
of ¢(t+7) into a Taylor series up to the second
order term.

From eqn. (13) we see that the squared
modulus of the STFT (spectrogram) is of the
form similar to (8) convolved with the Fourier
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transform of window and higher order terms of
the derivatives of ¢(t), starting with the sec-
ond order term. If the phase ¢(t) is not lin-
ear, then the artifacts are due to the second
order term, thus being rather significant, be-
cause the weighting coefficient for the second
order term, in the Taylor series expansion, is
significant (ag = 1/2!).

If ¢(t) is a linear function then the spec-
trogram is of the form |STFT(w,t)]> =

®)|? W (w—¢'(t )} is evident that |
STFT(w t) |? in thls case behaves as
ITFD? (w,t) if | W(w) |? is close to 276(w).

B. Wawelet Transform - WT

The definition of a continuous wavelet trans-
form is:

WT(a,t) = )dT (14)

T L

where the scale a is used instead of fre-
quency (¢ = wo/w);h(t) is a band-pass sig-
nal [2],[8]. We will choose h(t) in the form
h(t) = w(t)e?“ot which provides a strong for-
mal connection of the WT with the STFT, i.e.:

WT(a,t) =

T L

T—1, i, =t
Ye IwoTa dr

xw™*( (15)

a

where wy is a constant and w(t) is a window
as in (11).

After some modifications following section
3.1, we get:

\/IFIQ

*g W(Q) *g ]:[ej(b (t+aT1)(aT)2/2!]|/0:wo (16)

| WT(a,t) t) || 8]0 — ag’(t)]

Let us, for sake of simplicity assume that the
most significant disturbing term is of the sec-
ond order, while the higher ones can be ne-
glected, i.e. 71 = 0. In this case we have:

\/|7|g

x | 6[0 — g’ (t)] xo W(0)

| WT'(a,t) |

21y
a?¢”(t)

For a?¢”(t) — 0 the function describing the
artifacts tends to 278()* , so we have:

| WT(a,t) P=| all g(t) [’| Wlwo — a¢'(t)]

or

| WT(a,t) =l all g(t) I*| Wla(w ~

. 92
*g e’ 2270 | | /6=us0 (17)

O
(18)
The scalogram (| WT(a,t) |?) is concentrated
around the instantaneous frequency. If a is
increased the concentration in (18) is better,
but at the same time, if ¢” () (or any higher
order derivative) is not zero, then the factor
a’¢” (t) increases, thus making the contribu-
tion of the artifacts significant, eqns.(16), (17).
This means that the scalogram converges to
the ITFDY only if ais large and if, at the same
time, the frequency is a constant (the phase is
linear). When that is not the case, the wavelet
transform will nowhere produce the ideal con-
centration. This may be observed from the
numerical example with the signal of the form
z(t) = Ae?P’ Fig.2d. For a small a the width
of W(0) is 1arge, so the resolution is low, and
for a great a the window w(7/a) is wide, so the
influence of the instantaneous frequencies vari-
ation is very emphasized, thus the resolution
is low again.

C. Generalized Wigner Distribution - GWD

A very often used distribution of E-domain
is the Wigner distribution (WD):

oo

z(t+7/2)x* (t—7/2)e I dr

(19)
whose pseudo generalized form (PGWD) is

WD(w,t) :/

—0o0

PGWD(w,t) = /OO z(t+ (a+1/2)7)
xz*(t+ (a—1/2)71)

w,(T)e ™ “Tdr  (20)

4A posible definition of delta function is [7]:
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where « is a constant and wg(r) =
w(T/2)w*(—=1/2).

For @ = 0 we get the WD (or the pseudo
WD) and for o = 1/2 the Rihaczek distribu-
tion (RD), [1],2].

Expanding ¢(t+ (a+1/2)7) and ¢(t+ (o —
1/2)7) into a Taylor series, about t we get:

1
PGWD(w,t) = o | 9(t) |

x0lw — ¢ ()] #0 Wa(w)
%, f[ej¢”(t)ar2ej¢m(t+7'1)7-3(1+12a2)/24] (21)

It is apparent that PGW D(w,t) is a convolu-
tion of the ITFDY, the F'T of the window and
the F'T of a function of the higher order deriv-
atives of ¢(t).A very interesting case is for the
value @« = 0 (WD), for which the second or-
der term is zero, as well as all the even-order
terms. The lowest disturbing term is of the
third order (the weighting coefficient for the
third order term, in the Taylor series expan-
sion, is ag = 1/3!). In other words, the WD
is closer to the ITFDY than any other GWD
for o # 0.If a signal is linear frequency mod-
ulated, i.e. ¢(t) = at + bt?, then the WD,
for a wide w(t), is identical to the ITFD%. Tt
means that the PWD allows a quadratic phase
variation (inside a window) without artifacts.

As it is known, all time-frequency distrib-
utions satisfying the marginal properties, be-
long to the general Cohen class of distributions

[1]:

CD(t,w):iﬂ/ //x(u+7/2)

—00 —00 —OQ

xa*(u— 7/2)c(0, T)e I ITORI0 gy dr dh
(22)
where ¢(#,7) is a kernel function. The mar-
ginal properties (2) and (3) are satisfied if
¢(6,0) =1 and ¢(0,7) = 1, (see Appendix A).
The question is now whether there exist an-
other distribution, besides the WD, produc-
ing the ideal representation of the signal with
a phase of the form ¢(t) = a + ait + ast®?
Substituting the signal z(t) = ge’ (a+art+azt?)
into eqn. (20) and equating the result with
(8), it turns out that the kernel has to be
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c¢(—2aq7,7) = 1 for all az and 7. Thus
¢(0,7) =1, for all @ and 7. That is just the ker-
nel for the Wigner distribution. This leads to
the conclusion that only the Wigner distribu-
tion, out of the Cohen class, produces the ideal
representation of instantaneous frequency for
linear frequency variation inside the window.
This consideration is done (and it is valid), as-
suming signal independent kernels.

D. Wavelet Wigner Distribution - WWD

We can define the wavelet form of the
Wigner distribution, which will be related to
the WD in the same manner as the WT is
to the STEFT. This definition will have a fre-
quency varying resolution (like the WT') and
the artifacts will appear only if the variation
of phase is of the higher than second order.

PWWD(a,t) — / ot +7/2)
xa*(t — 7/2)ws (7 /a)e T/ dr  (23)

This distribution belongs to the general class
of the Affine smoothed pseudo Wigner distri-
butions® defined in [22], as:

o) = [ nE [t

z(u+7/2)x* (u—7/2)dule” T dr

(24)

5The Affine class of distributions is the one preserv-
ing the time shift and time scaling:

z1(t) = v/l|alz[a(t—to)] = Pr, (w,t) = Pyla(t—to), w/d]

Any time-frequency distribution belonging to the class
of Affine distribution (AD) may be derived from the
Wigner distribution, [21],[22],[2]:

T—1

AD(a, 1) = %//WD(T, (=L, ab)drde

a
where II is an arbitrary function. For scalogram this
function is equal to the Wigner distribution of the vasic
wavelet h(t). The previous formula is a cuonterpart of

the Cohen class of distributions written in the form
(eqn. (A.7)):

CD(w,t) = % / / WD(r,0)II(r — t,0 — w)drdo

The kernel ¢(0,7) in (20) is a two-dimensional Fourier
transform of II(¢, w).
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Taking g((u — t)/a) = 6((u — t)/a) and
h(r/a) = ws(7/a) we get (21). The influence
of smoothing along the frequency axis will be
considered later, in the section dealing with
multicomponent signals.

For the signal defined by (4) we obtained:

PWIWD(a,t) = 5~ | al| g(t) [* 616/ ()a— 6

g W, (0) % ;c[ej¢”’<t+an><m>3/24] Jomwy (25)

Assuming that the terms of the 5th and higher
orders, in the Taylor series of ¢(t + 7), can be
neglected, we have:

PWWD(a,t) = 5 | a]| g(t) [ 5/ (a0l

Tj
Neraoe

If ¢"(t)a®/12 is a small number then
PWWD(a,1) =| a || g(t) [ x W, [ (t)a — w),
which is the shape similar to (18) in the WT.
But the artifacts do not appear in this case if
the phase variation is up to the second order.
For large a (small frequencies) the concentra-
tion is close to the ideal one if the frequency is
constant or linear, Fig.3e. For small a (high
frequencies) the artifacts (mainly depending
on a®¢" (t)/12) are decreased.

W(0)%g 903890 i

/9:w0

E. Scaled Wigner Distribution - LWD

The decrease of artifacts in the WWD, for
small a, leads to the idea of decreasing the ar-
tifacts at all frequencies. We can define such
a distribution which is closer to ITF D% (w,t)
than the WD. One distribution which signif-
icantly reduces the artifacts, independently
from the frequency, is introduced as pseudo
L-Wigner distribution (PLWD):

oo

_ L T
PLWD(w,t)f/_OOx (t+ 2L)

* L _i —jwT
xax*(t 2L)ws(7)e dr (26)

where L is any integer greater than 0.
The PLWD is:

PLWD(w,1) = - | o(t) P 6l — /()]

T

s W, (W) %o Fl?Ft]  (27)
This form has the artifacts of the third and
higher orders (the odd ones), which are divided
by the factor L"~!. For example, for L = 2,
the dominant third term is divided by 4 (which
is equivalent to 12dB). This produces a signif-
icant improvement with respect to the WD.
The PLWD produces a very high concentra-
tion of the generalized power | x(t) |** at the
instantaneous frequency ¢'(t). If the instan-
taneous frequency is linear function of time,
then the WD produces the ideal concentra-
tion. But, if that is not the case, then L > 1
dramatically reduces the distorsion. In other
words, the L-Wigner distribution locally lin-
earizes the instantaneous frequency function.
In Section 5. and Appendix B, it is shown that
the L-Wigner distribution may be efficiently
realized, without need for oversampling, using
recusive formulae.

The properties of the PLWD, equivalent to
the ones of the PWD [2],[3], may be easily de-
rived, [12]. The L-Wigner distribution may
also be derived as a special and optimal case
of the Wigner higher order spectra [23],[29].

IV. GROUP DELAY
REPRESENTATION

Group delay, as a dual notion of the instan-
taneous frequency, can be analyzed from the
definitions of the time-frequency distributions
or transforms in the frequency domain [1],[2].

A. Short Time Fourier Transform

The definition of STFT, (11), in the fre-
quency domain is:

Jwt oo .
STFT(w,t) = 62— X (0 +w)W*(0)e?do
7r
(28)
For the signal x(t) whose Fourier transform
X (w) is of form (9), we have:

—00

| STFT(w,t) |[=] G(w) || 0[t + &' (w)]

spw(t) #g FH eI @O0/ (99

As an example, let us consider x(t) = §(t —
t1) with X(w) = e 7",  We see that |
STFT (w,t) = §(t — t1) % w(t), i.e. the time
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resolution depends only on the width of w(t),
which is exactly what we expected. However,
if the variation of phase ¢(w) is not linear then
the additional artifacts exist.

B. Wawvelet Transform

The definition of a continuous wavelet trans-
form, of form (15), in the frequency domain is,

[2]:

jtwo/a o8
WT(at) = S [ (0
2ry/]a| J-o a
xW*(0)e?%/2dp (30)

For signals defined by (9) we get:
L
Vlal

kpw(t/a) w F [l (N |

| WT(a,t) |= | G(w) |[ 6]t + ¢’ (wo/a)]

(31)

For small a the window w(t/a) is narrow and
the time resolution is high. At the same time
if ¢”(w) is a constant, the artifacts do not de-
pend on a. But if ¢(w) is of the higher than
the second order, then the influence of a to
the artifacts may be significant. An analysis
of wavelet transform, in the case of asymptotic
signals, may be also found in [19].

C. Generalized Wigner Distribution

The frequency domain definition of the
PGWD, eqn.(18b), is:

1 1 [ _ 2w+80
PGWD(w,t) = —— 75| X
GW D(w,t) T i |4ﬂ2/oo i)
" X*<§°i—_42> I BTG« W ()
(32)

For a = 0, i.e. the pseudo Wigner distribution,
we get:

PWD(w, ) = % | G(w) 2 0t + & (@)

s, Wi (w) #¢ f_l[ej‘P“/(w-'r@l)eg/lz] (33)

We see that up to the quadratic phase varia-
tion of ¢(w) the artifacts do not appear. The
time resolution for signals x(t) = 0(t — t1) is
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ideal. If the phase ¢(w) is a quadratic func-
tion then, for a wide w(t), the time resolution
is close to the ideal, as well. Here, this require-
ment for a wide window is not contradictory to
the high frequency resolution, if the frequency
variation is linear.

If @ # 0 and « # 1/2 it can be shown that
even the position of the group delay is biased
if ¢'(w) is not a constant.

The Rihaczek distribution, in the frequency
domain, is:

RD(w, 1) = 2i / X (w)X* (w + 0)e70tdp
Tr —0o0

= G(w) [? 3t + ¢/ ()] e F 1 [e7# (002

(34)
If the phase ¢(w) is linear then the RD and
the WD produce the same resultsfor signals
defined by (9).

D. Wavelet Wigner Distribution - WWD

The WWD in the frequency domain has the
form:

PWWD(a,t) = 4—;/ X0+ g)

XX (0 = £)e dpuso | a | Wi(a0) jomana

For signals defined by (9), we have:
PIWIWD(ew,t) = 5= | G(6) 2| 31t + /(6)]
’/T

xg|a|Ws(af) ¢ F_l[ej‘p”,(“’wl)eg/lz] | Jo=wo/a

(35)
Formal analysis is the same as for the PWD.
If we suppose that the phase is a constant, for
example z(t) = §(t — 1) with ¢'(w) = —t1,
then we have PWW D(a,t) = w(0)d(t — t1).
The time resolution is not dependent upon a.
If ¢'(w) = —ch then

PWWD(a,t) =

5= | GO) 2 IZIW(a(0 +£/0)) joman o

= o= 1 Gw) P2 | W((t — cw)afo)
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We see that the concentration of energy den-
sity is around group delay. There are no ar-
tifacts, except the spread due to the window.
That spread is heavily dependent on a. Here,
again we have that if a increases, the time reso-
lution is better, as in the case of the frequency
resolution.

E. Scaled Wigner Distribution - LWD

The closed form analysis of group delay for
the LWD can not be easily performed. But,
we can conclude from eqn. (24) that if the
signal z(t) is time-limited (i.e. z(t) = 0 for
| t |> T) then the PLWD is also time limited
(PLWD(w,t) =0 for |t |>T). It means that
the PLWD, in the case of short signals, has the
ideal time resolution, (see also [23],[29]).

V. MULTICOMPONENT SIGNALS

The previous analysis will be applied to the
multicomponent signals of the form:

M .
_ Z g (t)ejcbi(t)
i=1

where g;(t) are the slow-varying amplitudes.
The STFT of the signal given by (36) is:

Zg

*wW(w) *, f[ej¢;/(t+r1)'r2/2] (37)

Assuming that ¢;” (¢ 4+ 71) is negligible inside
the window, we have the spectrogram:

ZZ% )03 (£)e#:(0=6, 0]
=1 j=1
Ww = ¢;(0)IW*w —¢5()]  (38)

Suppose that the values of W (w) may be con-
sidered as being zeros for | w |> Wy /2 (where
Wp is the width of W(w) or the width of its
main lobe). In that case we can distinguish
two cases:

1). If min[| ¢}(t) —

and a given ¢, then:

Zgz (W w

(36)

STFT(t,w) (t)e? M 5lw — ¢f(1)]

SPEC(t,w)

@i(t) ] > Wp for all i, j

SPEC(t,w) — (1)) (39)

i.e, the signal energy is concentrated in
the auto terms centered at auto frequencies.
Based on expression (37) we can define the in-
stantaneous frequency of the multicomponent
signal (36) as the set of M instantaneous fre-
quencies {6} (£), dh(t), .., Sy (1)}

This may be interpreted by the analogy to
mechanical motion, in the following way: Sig-
nal z(t) is represented by the vector describing
the trajectory in the complex plane. This tra-
jectory can be treated as the composition of
M, approximately circular, trajectories with
almost constant radii g;(t) and phases ¢,(t).
The instantaneous frequency of each g;(t) is
one of the instantaneous frequencies of the sig-
nal z(t), Fig.1.

2). If, for any [ and k | ¢;(t) — ¢}.(t) |< W,
then between the instantaneous frequencies
#y(t) and @) (t) we have the energy of cross

terms g;(t)e??(®) and gp(t)e?®+®). The spec-
trogram, in this case, has the form:
SPEC(t,w) Zgz Wlo = i(t))

+gi1(t) gk (1)L =ex (2]
*Wlw — @ (0)]W[w —¢,(t)]  (40)
Next, we will consider the PWD, which may
be written using the STFT, as:

oo

PWD(t,w) = / STFT(t,w+6)
™

—0o0

x STET*(t,w — 0)d6 (41)

For signals whose spectrogram is of form (37),
we have:

M M

1 A
_ . * @, (t)—;(t
. E :E :gz(t)gj(t)ej[ ()=, (1)]

i=1 j=1

PWD(t,w) =

< [ Wl 0 g -0 - 6 0)as

(42)
If W(w) = 0 for | w |> Wg/2, then in the
double summation in (40), only the terms for
which:

|w+0—¢i(t) |< Wg/2
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Fig. 1.

and

|w—0—¢}(t) |[< Wg/2 (43)
are different from zeros.
Summing the previous inequalities, we get:

i) = ¢5(t)

|w 5 |< WB/Q

(44)

The pseudo Wigner distribution exists around
the frequencies w = (b;(t—);(b/(ﬁ for all i and j.
It is evident that for ¢ # j, the cross terms ex-
ist even if ¢;(t) and ¢/;(t) are very far apart (in
contrast to the spectrogram). Cross terms are
centered between the i-th and j-th instanta-
neous frequencies. It is extremely interesting
to investigate the location of the components
contributing to the cross terms on the 6 axis,
eqn. (40). From (41) we obtain:

S+

|[<Wsg/2  (49)

The auto terms (for ¢ = j) are obtained by
the integration around # = 0 in the inter-
val | 6 |< Wp/2, while the cross terms are
obtained by integrating along the interval |
0 — [¢3(t) — ¢;(t)]/2 |< Wg/2. This is an in-
teresting conclusion because we can eliminate
the cross terms which are apart more than Wp,
and at the same time perform the complete in-
tegration over the auto terms, using the win-
dow P() in integral (39), which has the width

Polar representation of a multicomponent signal

Wp,P(0) =0 for | 6 |> Wp/2, such that:
Wp < Wp < min|¢;(t) — ¢)(t)] — Wp
l’]

(46)
In that way, we arrived at the method for time
frequency analysis which will preserve the ap-
pealing properties of the Wigner distribution,
but without (or with reduced) cross terms:

o

SM(t,w) = % / P(O)STFT(t,w +0)

% STET*(t,w — 0)dd (47)

This formula® shows very interesting effects
and may be numerically more efficient than the
Wigner distribution calculation itself. That is
shown in [14], (see Appendix B). The cross
terms suppressing was also effectively treated
by the Choi-Williams method [1], with preser-
vation of marginal properties, but in a compu-
tationally extremely intensive way. An analy-
sis of multicomponent signals and cross term
effects may be found in [24], as well.

Similarly, the L-Wigner distribution, (24),
can be understood as a convolution of the
pseudo Wigner distributions. For L = 2 we
get:

1
LWD(t,w) = = PWD(t, 2w) *, PWD(t, 2w)
™
(48)
6Two special cases of SM(t,w) are: 1) If P(0)

w6(0), then SM(t,w) = SPEC(t,w);2) If P(0) = 1,
then SM(t,w) = PWD(t,w).
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The modified pseudo L-Wigner distribution
(MPLWD) for cross terms elimination is:

1 oo
_/ Py
Tr*OO

xPWD(t,w — 0)do

MPLW D(t,w) = (0)PW D(t,w+90)

(49)

where the properties of the window Pr,(6) are
the same as for P(f) in eqn. (44). Convolving,
further, two L-Wigner distributions for L = 2,
we get the L-Wigner distribution for L = 4,
and so on. That way we can achieve the energy
concentration described in (25), at the same
time avoiding the cross terms.

Let us consider the multicomponent signal
of the form:

M
X(w) =) Gi(w)e = (50)
i=1
As in (36), we get:
M M
SPEC(tw) =Y > Gi(t)G;(t)
i=1 j=1
<=2 ft 4 gl )+ ) )]
(51)

If the window w(t) width is T,,, i.e. w(t) =0
for | t |> T\ /2, then we can consider two cases.
First, when the distance between each ¢}(w)
and ¢’ (w) is at least Ty, then only auto terms
exist. In the second case, when some ¢}(w)
and ¢ (w) are closer than T, the cross terms
exist.

Defining the pseudo Wigner distribution in
the frequency domain by:

PWD;(t,w) = / X(w+0/2)

xX*(w—0/2)-W(0/2)W*(—0/2)e’%df (52)

and using the analogy with the case of instan-
taneous frequency, eqns. (36)-(44), we may de-
fine the method for elimination of cross terms
along the time axis. Taking into consideration
that:

oo

PWD;(t,w) = / STFT(t +7/2,0)

—00

XSTFT*(t — 1/2,w)e *Tdr  (53)

and neglecting the artifacts, we get:

PW DL (t,w) ZZG
i=1 j=1
eilei @)=, @)] / wlt +7/2 + ¢ (w)]

xw*[t —7/2 + ¢(w)]dr (54)

The auto terms and cross terms analysis can
be done as in the case of the instantaneous fre-
quency. Cross terms are concentrated around
7 = p;(w) — ¢;(w). Using the window p(r)
they can be eliminated. On the basis of the
above analysis we can define the distribution
in the form:

SMe(t,w) = /

—00

[e )

p(T)STFT(t +7/2,w)

XSTFT*(t — 7/2,w)e 7“dr (55)

which will, under the described conditions,
have only auto terms. The characteristics of
the window p(7), as well as the window p(7) it-
self, may be taken into acount selecting wg (7).

For the multicomponent signals of form (36)
and wavelet transforms, the scalogram is in the
form:

SCAL(t,w)

ZZIalgz )g; (t

=1 j=1
x 10D~ W wo — g (t)]Wwo — ad(t)]
(56)
where the artifacts are neglected. Further
analysis may be easily pursued following the
spectrogram case.
The pseudo WWD can be written in form

of the WT’s convolution:
1
PWWD(a,t) = =WT(a,t,0) g WT(a,t,0)
T
at 0 = 2wy,
where

T(a,t,0) = \/W/ z(t+ar)w* (1)e 07 dr,
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and WT'(a,t,wy) = WT(a,t).
For signals whose scalogram is given by (53)
we have:

WWD(t,w)

ZZIalgz gt

zlJl

x eI16: (1) =a;(1)] / Wlwo + 6 — ag;(t)]

XW*[wo — 0 — ag(t)]df (57)
The SM form of the PWWD is:
SMW (w, 1) = + / P(O)WT(a, 1, w0 +0)
™ —0o0
xWT*(a,t,wo — 6)db (58)

If P(A) = md(0), then the SMW is equal to
the scalogram. Using P(f) with an appropri-
ate width, we can keep the properties of the
PWWD, avoiding the expected cross terms.

For computational realization, the SMW
can be understood as a convolution of the
WT’s that are calculated using different ba-
sis wavelet functions h;(t) = w(t)e/“it, hav-
ing frequencies w; in the vicinity of and at wy.
The window P(f) may be dependent on a..
Namely, if a is a small number, then the arti-
facts are reduced in the WT itself, eqn. (17),
thus removing the need for the convolution and
additional WT calculations.

The analysis of the group delay in the
wavelet transforms is formally identical with
the one in the case of STFT.

VI. ANALYSIS OF THE ALIASING
EFFECTS

The aliasing effects are interesting in the
WD, [15],[16]. Because of the quadratic na-
ture of the W D, the signal has to be oversam-
pled by factor 2 with respect to the sampling
interval defined in sampling theorem. Another
way to avoid aliasing in the WD is by use of
an analytic signal [4],[5]. Here we will show
that the aliasing components, appearing in the
W D, may be eliminated in the same way as the
cross terms.

Consider the discrete signal x4(t), obtained
by sampling a continuous signal z(t).
oo
Z Tx(nT)d(t — nT)

n=—oo

za(t) = (59)

TIME-FREQUENCY SIGNAL ANALYSIS

where T represents the sampling interval.

The Fourier transform of x4(t) is a peri-
odic function along frequency axis, with period
wp = 2m/T, and has the form [7]:

Xi(w) = i X(w + kwp) (60)

k=—oc0

We see that the formal analysis is the same as
for multicomponent signals.

The STFT for the sampled signal (56) is of
the form:

STFTy(n,w) = g(t)e’?®

X Y W+ kwy — ¢ (8)]je=nr

k=—o0

(61)

where we have neglected the distortions due to
higher-order derivatives of the phase function.

Combining the previous relation with (37),
the Wigner distribution of discretized signal is
obtained:

W Dgy(n,w) =

Ly oy

klz—oo ko=—o00

X /W[w + 0+ krw, — ¢'(1)]

¢ )]} rd0  (62)

Using similar procedure as in the cross terms
analysis, it may be seen that the integrand in
(59) is nonzero if the following holds:

XW*w — 6 + kow,, —

_WB/2_(IC1_]€2)% << WB/2—(]€1—]<22)%
(63)
It is obvious that auto terms (k1 = ko) ap-
pear as a consequence of integration around
the origin in the 6 coordinate system. The
closest aliasing components along 6 axis are
those for k1 — ko = +1. Obviously, they may
be eliminated by using a window P(#), which
is equal to zero along the 6 axis, for the values
of 0 outside the interval | 6 |< w,/2 — Wg/2.
Observe that this condition is usually signifi-
cantly relaxed, as compared to the condition
for eliminating cross terms, eqn. (45). Thus,
removal of cross terms by the SM usually guar-
antees the elimination of the aliasing compo-
nents.
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Fig. 2. Signal z(t)

Fig. 3. Time-frequency representation of the linear frequency modulated signal with two Gaussian chirp pulses:
a) Spectrogram; b) Pseudo Wigner Distribution; ¢) Modified pseudo Wigner distribution - SM; d) Scalogram;
e) Modified pseudo Wavelet Wigner distribution -SMW; with: The Hanning window w(¢) whose width is
T = 0.25; The rectangular window P(0) of the width W = 128m; In the scalogram and in the SMW
wo = 647.
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Fig. 4. Time-frequency representation of linear and sinusoidal frequency modulated signals: a) Spectrogram,
b) Pseudo Wigner Distribution, ¢) Modified pseudo Wigner distribution - SM; d) Modified L-Wigner distri-
bution (MPLWD) with L = 2;e) Modified L-Wigner distribution with L = 4; With: The Hanning window
w(t) whose width is T' = 2; Window P(6) is rectangular whose width is W = 6.57(N = 64, Ld = 3).

The complete above analysis may be ex-
tended to the case of multidimensional sig-
nals. Some results dealing with the multidi-
mensional case are reported in [27].

VII. NUMERICAL EXAMPLE

Let us consider a signal z(t), that is the sum
of a linearly frequency modulated signal and

two Gaussian chirp pulses:
:L‘(t) _ Alej51t2 + A2e*az(t*t12)2€j52t2
+Age—es(t=113)" giBat’ (64)
with: Al = 1,A2 = A3 = 4,042 = 3 —
150,58, = 700,8, = 190,85 = 2225,t12 =
0.8,t13 = 0.25.

The first component of z(¢) is of the form de-
scribed by eqn.(4), while the second and third
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ones are of form (9), Fig.2.

The spectrogram of z(t) is shown in Fig. 3a.
The concentration of energy is improved by the
PWD, Fig 3b. But, because of the quadratic
nature of the WD, the cross terms are very
emphatic. The cross terms in the WD can
be decreased or completely removed if the sig-
nal components do not overlap in the time-
frequency plane using the SM Fig. 3c.

In Fig. 3d, the scalogram of x(¢) is shown.
The modified version of the PWWD (SMW)
is given on Fig 3e.

As a second example, we consider a sum of
the sinusoidal frequency modulated signal and
linearly frequency modulated signal:

a(t) = e—33:5m(t=2.5)% | j{6sin[L5m(t+1)]—12mt}

(65)
We calculated the STFT (Fig. 4a) and the
PWD (Fig. 4b) using a Hanning window, as
well as the SM (Fig. 4c¢) and modified pseudo
L-Wigner distribution (for L = 2 and L = 4,
Figs. 4d and 4e) with the same number of
samples. The improvement of energy density
concentration around the instantaneous fre-
quency, as well as the cross terms reduction
(removal) using the modified pseudo L-Wigner
distributions is clearly shown in Fig.4. For the
details on the numerical implementation see
Appendix B.

VIII. CONCLUSION

The comparison of commonly used energy
time-frequency distributions with the distribu-
tions having the ideal instantaneous frequency
or group delay representation is accomplished.
It is shown that the WD is the best among
them. A wavelet and scaled definition of the
WD are introduced. The analysis of cross
terms in the case of the multicomponent sig-
nals is performed and the method for their re-
moval is presented. The results are demon-
strated on the numerical examples with the
frequency modulated signals.
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X. APPENDIX A

A Simple Derivation of the
Cohen Class of Distriburions

Let P,(t,w) be an arbitrary two-dimensional
function. Its inverse Fourier transform will be
denoted by M(0,7). The Fourier transform
pair, taking into account physical properties
of the particular variables, is given by:

1 [ .
M(7,0) = %/ Py (w, t)e?0 97 duodt

—00

Po(t,w) = o— / / M(6,7)e 7" dodr

(66)
The property described by eqn. (1) is satisfied
if M(0,0) = E,, and the marginal properties
(2) and (3) are fulfilled if and only if:

M(6,0) = € /OO [/Oo Py (w, t)dw]e dt

27T — 0o — 00
- / | z(t) |? %t (67)

M0, 7) = /OO [/0o Po(w, £)dt] 7 duo

Qﬂ- —0o0 —0o0
= LT xw peeran (69)
2r J_
From the previous relations and the

uniqueness of the one-dimensional and two-
dimensional Fourier transform we can make
the following conclusions:

1° The general form of a time-frequency dis-
tribution Py (t,w) is:

1 oo oo . .
Py(t,w) = 5~ / / M (8, 7)e 9 3% dfdr

(69)
where M (0, 7) is an arbitrary function for all
(0,7) except on the lines § = 0 and 7 = 0
where it has to have the values defined by (A2)
and (A3) in order to satisfy the marginals (2)
and (3). If only the unbiased energy condition
is sufficient, then M (0, 7) is an arbitrary func-
tion elsewhere except at the point (0,0) where
M(0,0) = E,.

2° If we know only one distribution P, (¢, w)
with the inverse two-dimensional Fourier



86

transform M (0, 7), satisfying the marginal
properties, then a general function Pj4(t,w)
having inverse Fourier transform M (6, 7) mul-
tiplied by an arbitrary function ¢(6, 7):

Mg(977—) = M(@,T)C(G,’T) (70)
satisfied marginals as well, if ¢(6,0) =
¢(0,7) = 1. This way one may construct an in-
finite number of time-frequency distributions,

knowing just one of them. The general distri-
bution, combining (70),(69) and (66), is:

v [ [ e

X Py (s, u)e05 v =300 gy dsdfdr  (71)

Note: Taking the Wigner distribution, (19),
as a basis P;(s,u) in (71) the Cohen class of
distributions (20) is obtained.

4° The general distribution P,4(t,w) pre-
serves very important properties of time and
frequency shifts. If the particular distribution
P,(t,w) in (71) is time and frequency shifted,
i.e. the basis is Pys(t,w) = Py (t — tg,w — wo),
then the general distribution is time and fre-
quency shifted as well, Ppgs(t,w) = Ppy(t —
to,w — wp). This directly follows from (71).

XI. APPENDIX B
Discrete Signals

The discrete form of the spectrogram, whose
STFT is given by (12), is:

DSPEC(n,k) =| DSTFT(n, k) |*

N/2

:|Z

i=—N/2+1

w(i)z(n + )&l Tk 2

N—-1

=| Z xn(i)VVJi\;€ |2

=0

(72)

The meaning of x,,(¢) and Wy in (72) is obvi-
ous.

The discrete pseudo W D in the time domain
(eq.(20) with a = 0) is:

N
DPWD(n,k) =2 Z w(m)w(—m)
m=—N+1

TIME-FREQUENCY SIGNAL ANALYSIS

2mk

xx(n+m)x*(n — m)Wyy (73)

where the discrete signal and window in (73)
are sampled with 1/2 of the sampling interval
assumed in (72).

The discretization of the SM (eqn.(39)) pro-
duces:

Ld
DSM(n,k)= Y Pd(i)

i1=—Ld
xDSTFT(n,k +i)DSTFT*(n,k —i) (74)

where 2Ld + 1 is the width of discrete win-
dow Pd(i). We see that if Pd(i) = §(¢) then
DSM(n,k) = DSPEC(n, k). Noting that:

DSTFT(n,k + i) DSTFT*(n,k — i)

+DSTFT(n,k — i) DSTFT*(n, k + i)

= 2Real{ DSTFT(n,k+i)DSTFT*(n,k—1)}

(75)
and assuming Pd(i) is a rectangular window,
we have:

DSM(n, k) = DSPEC(n, k)+

Ld
2> " Real{DSTFT(n,k + i)
i=1

x DSTFT*(n,k — i)} (76)

For the WD calculation the sampling inter-
val has to be less than one half of the sam-
pling interval specified by the sampling theo-
rem, [17]. In the frequency domain this means
that the calculation of the convolution can be
performed using the FFT after an appropri-
ate zero padding. For the DSM zero padding
in the frequency domain (i.e. oversampling
in time domain) is not necessary, because the
aliasing components will be removed in the
same way as the cross terms. If we assume
that DSTFT(n,k) = DSTFT(n,k + N), the
aliasing may occur only in the marginal in-
tervals whose width is equal to the width of
Pd(i). But, this is not a necessary assump-
tion, because eqn. (76) allow a direct cal-
culation. The terms containing the values of
DSTFT(n,k=+1) outside the basic period, can
simply be omitted. The worst case, the last
marginal values of the DSM, will be always
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equal to the values of the spectrogram at these
points.

The alternative, commonly used, way to
avoid oversampling for the WD is in using the
analytic signal.

To calculate the DSM we need to calculate
the Fourier Transform at the time instant n.
This can be done by a recursive formula, from
the previous values of the Fourier Transform
at the time instant n — 1, [7]:

DSTFT(n+ 1,k) = [2,(N) — 2,(0)

+DSTFT(n, k))eI ¥k
or substituting z,(N) and z,(0), we get:

DSTFT(n+ 1,k) =[z(n+ N/2+1)

—2(n—N/2+1))(=1)* + DSTFT(n, k)e! ¥+

(77)
The initial Fourier Transform calculation has
to be performed using the FFT routine. All
the subsequent calculations can be done recur-
sivelly according to eqn. (77).

Equation (77) gives the Fourier coefficients
when the rectangular window w(n) is applied.
If we use, for example, the Hanning window,
then the coefficients should be modified by:

DSTFTy(n, k) = %{DSTFT(n, k)

1
+5[DSTFT(n, k1) + DSTFT(n, k+ 1)]}
(78)
Accordind to eqn.(46) we may calculate 2L-
Wigner distribution from L-Wigner distribu-
tion:

DM Py WD(n, k) = DMPL,W D?(n, k)

Ld
+2) " DMPLWD(n, k + i)
=1

x DMP,W D(n, k — i)}

This way, the resulting L-Wigner distribution
is cross-terms free if the STFT is cross-terms
free (what is the case if the signal components
do not overlap in the time-frequency plane)
and if, at the same time, the conditions for
cross-terms elimination (43a) is satisfied in

each iteration. Note, if (43a) can not be sat-
isfied for some %, j and ¢ then the cross terms
will appear at the instant ¢, between the i-th
and j-th signal component.

The details of the numerical realization de-
scribed in this appendix may be found in
[14,29)].
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