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Abstract— The local polynomial Fourier
transform (LPFT), as a high-order general-
ization of the short-time Fourier transform
(STFT), has been developed and used for many
different applications in recent years. This pa-
per attempts to review previous research work
on the following issues of the LPFT. Firstly,
the definition and properties of the LPFT and
its relationships with other transforms are re-
viewed. The LPFT for multicomponent signal
is then presented. The polynomial time fre-
quency transform (PTFT), which is the maxi-
mum likelihood estimator to estimate the pa-
rameters in the LPFT, as well as its properties
and fast algorithms, are discussed. By compar-
ing with the Fourier transform (FT), the STFT
and the Wigner-Ville distribution (WVD), the
LPFT has its superiority in obtaining improved
SNRs, which can be supported by theoretical
analysis and computer simulations. Further-
more, the reassignment method is combined
with the LPFT and the robust LPFT to im-
prove the concentration of the signal represen-
tation in the time-frequency domain. Perfor-
mance obtained by using various LPP-related
methods are compared for signals in different
noise environments, such as the additive white
Gaussian noise (AGWN), impulsive noise, and
the mixture of AGWN and impulsive noise.

I. INTRODUCTION

In many practical applications, such as
radar, sonar, and communications, the signals
under consideration are usually time-varying,
that is, their frequencies are varying with time.
According to the Weierstrass approximation
theorem [1], the phase of an arbitrary time-
varying signal can be well approximated by a
polynomial of sufficient order. This kind of
time-varying signals with polynomial phase,
also known as the polynomial-phase signals
(PPSs), is of significant importance. The PPSs
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have been reported to be used in many dif-
ferent areas, such as biomedical engineering
[10], image processing [11], image and audio
watermarking [12], motion estimation in video
sequence [13], [14], communications [15], [16],
[17], sonar [18] and radar applications [2], [19].
The general form of the (r + 1)th-order PPS is
expressed as

x(n) — A(n)ejZTrZ:n,:o amn™ +77(n), (1)
n=0,1,...,.N—1,

where the amplitude A(n) is a constant or
a real-valued stationary Gaussian process,
am,0 < m < r are the coefficients associated
with the polynomial phase, and n(n) is white
Gaussian noise.

For this kind of time-varying signals, it is
far more useful to characterize them with the
time-frequency representations (TFRs), which
describe how the frequency content of a sig-
nal evolves over the time and help us to ob-
tain more detailed information of the time-
varying signals. There exist many different
TFRs, and they generally falling into two cat-
egories, which are linear TFRs and nonlinear
TFRs [3], [20], [22]. Linear TFRs mainly in-
clude the STFT and the wavelet transform.
Nonlinear TFRs include the WVD, the am-
biguity function (AF), smoothed versions of
the WVD, and the Cohen’s class. Some of the
widely used transforms are expressed as fol-
lows:

o STFT.
STFT(2; £, w) — / 2t + 1) ()T dr, (2)

where h(7) is the window function of finite se-
quence length. For simplicity in the rest of the
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paper, the integral without limits implies that
the integration is from —oo to co.
« WVD.

WVD(z;t,w) =

= / o(t+7/2)a* (t — 7/2)e Tdr,  (3)

which is obtained by performing the FT with
respect to the variable 7.
o AF.

AF(z;0,7) = / alt+5)a"(t - 5)"dt. (4)
which is obtained by performing the Fourier
transform with respect to the variable t.

Each TFR has its individual advantages and
disadvantages. For example, the linear STFT
is simple to implement and free from the cross
terms for multicomponent signals, but it only
provides low resolution for time-varying sig-
nals. In contrast, the WVD provides high
resolution but contains cross terms for mul-
ticomponent signals. The local polynomial
Fourier transform (LPFT), which is a gener-
alized form of the STFT, was presented re-
cently [22]. Since it uses extra parameters to
approximate the instantaneous frequency (IF)
characteristic of the PPSs, the LPFT can pro-
vide much better concentration and resolution
than the STFT. Moreover, due to its linearity,
the LPFT is free from the cross terms that ex-
ist in the WVD. The LPFT has received con-
siderable attention in the past years, and has
been used in a variety of applications, such as
instantaneous frequency (IF) estimation [22],
[23], radar imaging [24], [25], interference sup-
pression in communications [26], [27], and mo-
tion parameter estimation in video sequences
[14].

In this paper, we will first review the pre-
vious research on the LPFT such as its defin-
ition, properties and relationships with other
transforms in Section II. The LPFT for mul-
ticomponent signals is then presented in Sec-
tion III. In Section IV, the PTFT as well as its
properties is introduced and its fast algorithms
are reviewed. Section V gives the theoretical
SNR analysis of the LPFT, and shows that the
LPFT can provide higher SNR, than the FT,

the STFT and the WVD. In Section VI, the
reassignment method is extended to the LPFT
to improve the concentration of the signals
in the time-frequency domain. The reassign-
ment method is also combined with the robust
methods to process signals in impulsive noise.
Furthermore, performances achieved by using
various LPP-related methods are compared
for signals in different noise environments, in
terms of readability, computation complexity,
distribution concentration, and mean squared
error (MSE) of IF estimation. Application ex-
amples of the LPFT are reviewed in Section
VII and potential applications of the LPFT are
also discussed. Finally, conclusions are drawn
in Section VIII.

II. DEFINITION, PROPERTIES, AND
RELATIONSHIPS WITH OTHER
TRANSFORMS

In this section, we will review the definition
and properties of the LPFT, and its relation-
ships with the STFT, the WVD, the AF and
the fractional Fourier transform (FrFT).

A. Definition and properties

To approximate the local polynomial func-
tion, the LPFT introduces polynomial para-
meters including the first-order derivative and
other higher-order derivatives of the IF of the
analyzed signal. The form of the LPFT is as
follows [22]:

LPFT(z;t, ) = LPFT(x; t,w, w1 - - wpr—1)

= /x(t + 7)h(1)e 0 F) dr, (5)

where
O(1, @) = wr +wi1T2/2+ - +wpy_1 ™ /M,

w = (wawh' te 7wM—1)7

and M is the order of the LPFT. The local
polynomial periodogram (LPP) is defined as

LPP(z;t,w) = |[LPFT(z;t, w)|>. (6)

For the LPFT, the corresponding form of
Parseval’s theorem can be written as [28]

1
— [ ILPFT(z:t,@)|?dw =
5= [ ILPPTGit o)
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/ lz(t + 7)h(T)|*dT, (7)
which indicates that the LPFT can be inter-
preted as a time-frequency energy distribu-
tion over the t — w®(t) space, where w°(t) =
[Qt), QW (), -, QM=D()]T is a vector of
the true values of the IF Q(¢) and its deriva-
tives. The energy concentration of LPFT (¢, w)
in wO(t) for the time instant ¢ is illustrated
n [22], [23]. This concentration motivates the
use of the LPFT as an IF estimator, and as-
ymptotic covariance matrix and bias of the es-
timates are studied in [22], [23]. It is shown
that the window bandwidth controls the trade-
off of bias and variance. Therefore, the estima-
tion accuracy depends on the window band-
width and the optimization of bandwidth can
greatly improve the accuracy. Meanwhile in-
creasing the order M can also improve the
accuracy in a useful way given the relevant
choice of the bandwidth [23]. A data-driven
approach based on the intersection of confi-
dence intervals (ICI) was proposed in [29] to
solve the problem of bandwidth selection and
a varying adaptive window size can be selected
to optimize the local accuracy of the estima-
tion. Asymptotic variance and bias analysis
for the discrete-time LPFT is presented in [23],
and the asymptotic behavior includes the long-
time asymptotic with long window length, and
the short-time asymptotic with short window
length. The LPFTs with the symmetric win-
dow and nonsymmetric window are discussed
in [30], [31]. For the LPFT with the symmet-
ric window, the estimators with M = 1 and 2
achieve the equivalent accuracy of the IF esti-
mation, and increasing the order from M = 2
to 3 results in an increase of the variance and a
decrease of the bias. While for the LPFT with
the nonsymmetric window, increasing the or-
der M always results in an increase of the vari-
ance of the IF estimation and a decrease of the
bias. The LPFT estimates with the symmet-
ric window have a great advantage compared
with those with the nonsymmetric window. It
should be noted that when nonsymmetric rec-
tangular window is used, the LPFT estimator
coincides with the maximum likelihood esti-
mator [30], [31].

The principal difference between the LPFT
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and the quadratic and high-order TFRs has
been discussed in [22]. The LPFT is linear
with respect to the signal and uses the poly-
nomial function, (7, w), in the complex expo-
nent (or the transform kernel). On the other
hand, quadratic or higher degree polynomials
of the signal are used in the definition of the
quadratic or high-order TFRs, with the expo-
nential function e 7“7, wherein the argument
of the exponent is linear with respect to vari-
able 7.

Due to its linearity, the LPFT can be in-
versed to reconstruct the original signal by in-
tegrating the LPFT over w, that is

1

B. Relationships with other transforms

The LPFT is related with many other trans-
forms, such as the STFT, the WVD, the AF
and the FrF'T. The relationships will be inves-
tigated as follows.

B.1 STFT

In (5) when M = 1, the LPFT becomes the
STFT. Therefore the LPFT is a generalization
of the STFT.

B.2 WVD

It has been reported in [4] that the STFT is
related to the WVD by:

//WVDST@)

—7,w—0)drdf (9)

[STFT(s;t,w)

xWVD(h;t

where WVD(s; t,w) and WVD(h;t,w) denote
the WVDs of the analyzed signal s(t) and the
window function h(t), respectively.

Similarly, the relationship of the LPFT and
the WVD has been investigated in [32]:

//WVDhT@)

—7,w—wiT — 0)drdb.

|[LPFT(s;t,w)

xWVD(s;t (10)
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B.3 AF

The relationship between the STFT and the
AF was reported as [33],

2= [ [apeon

X AF(h; 0,7)e 7O drdp.

[STFT(s;t,w)

(11)

Following the similar procedure, the rela-
tionship between the LPFT and the AF can

be expressed as:
//AF 87,0 —wiT)

X AF (h; 7, 0)e 7 OtH@T=w1t7) g g

ILPFT(s; t,w)|?

(12)

B4 FrFT

It was shown in [34] that for a linear
frequency modulated (LFM) signal s(t) =

Aed(at+31%) the corresponding second-order
LPFT is

2T

LPFT(s;t,w)| = A, | ———
LPET(s:1,)] = Ay [

{ (w—ay — bit)?
X expq j——mF————

o =) }*H(w), (13)

where % is the convolution in the frequency do-
main and H (w) is the Fourier transform of the
window function h(t). Therefore the second-
order LPFT is concentrated along the IF of
the LFM signal, w = ay + by t, for w; = by.

The FrFT, a generalization of the FT, is an-
other method that can concentrate LFM sig-
nals. Its definition is expressed as [5]

Fa (u) =

1— Z'ZCOt a ej(u2/2) cot «
s

_ f ( )ej(t2/2) cotafjutcscozdu @ # n,
s(t), a = 2nm,
s(=1), = (2n+ 1)r.
(14)

The FT is a special case of the FrFT with the

i —=x
rotation angle o = 7.

For M = 2,w = ucsca and wy = cota in
(5), the FrF'T can be expressed in terms of the
second-order LPFT as

1—jgcota ;.2/9)cota
Fa(u)—\/T J0/2) cot

xLPFT(s;t,w,w1), (15)

therefore the LPFT provides a broad general-
ization of the FrFT [21].

III. THE LPFT FOR MULTICOMPONENT
SIGNALS

Multicomponent PPSs are very common in
a variety of applications, such as radar and mo-
bile communications [9], [37], [38]. To process
the multicomponent signals, two LPFT meth-
ods are presented as follows.

A. Adaptive LPFT

The second-order LPFT with point-wise
chirp rate parameter estimation was proposed
as [24], [34]

LPFT (25t w) =

:/:c(t+T)h*(T)e*ja(t)TQ/Qe*j“”dT, (16)

where «(t) is time-varying chirp parameters,
which can be estimated by

&(t) = argmax H («, t),
a€eA

(17)

where A is a set of values of considered chirp
rate parameters, and H(a,t) is the concentra-
tion measure discussed in [35][36] which is de-
fined as

[ [LPF T, (t,w)[* dw

B t) = T PR, (1, ) [ d) 2

(18)

This particular concentration measure can
achieve very sharp maximum for « close to the
second derivative of the signal phase [35].

For multicomponent signals, the adaptive
LPFT was proposed in [34] with the weighted
coefficients g(«, t) as

> gla, t)LPFT,(t,w). (19)

a€cA

ALPFT(t,w) =
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The weighted coefficients are selected accord-
ing to the considered signal type. If a sig-
nal has numerous components but with sim-
ilar chirp rates, then it is appropriate to set
g(&,t) = 1 to ensure that all components can
be concentrated reasonably, where @&(t) is the
element from A producing the highest con-
centration in the considered instant (17) and
g(a,t) = 0 for a # @&(t). For signals with
numerous components but with several differ-
ent chirp rates, the following steps can be used
[34]):

o set HO(a,t) = H(a,t),i=0;

o determine &' (t) = arg max, HO(a,t), i =
1+ 1; A

o set g(@W(t),t) = 1;

o set HO(a,t) = H-D(a,t) for a ¢ [aV —
A,a® + A, HO (a,t) = 0 elsewhere.

These steps should be repeated for each
chirp rate producing a high concentration mea-
sure, and the procedure can be ended when
there are no more a-producing high values of
HO (a,t).

B. Modified LPFT

For signals with multiple components, an-
other efficient method known as the modified
LPFT (MLPFT) was introduced in [39] for
signals containing p component with sets of
parameters L(t) : [;(t);1 < i < p and window
lengths Q : Q;;1 <i<pas

MLPFT,(t,w) = / o(t+7)e TSl hi(T)

xe IS m=alim-1 ()™ /m) 1o (20)

The parameter sets L(t) : [;(¢t);1<i<p
can be estimated by using the maximum like-
lihood estimator, the PTFT, which will be
introduced in Section IV. For the window
length, it is initially selected to be small
enough to provide acceptable accuracy of
the approximation and the actual length of
the window can be increased according to
the properties of consecutive signal segments.
More details on the application of the LPFT
can be found in [39].

It is shown that for multicomponent signals,
the cross terms using the LPFT have much
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smaller magnitudes compared with that of the
autoterm [39]. The MLPFT generally has
fewer cross terms than the bilinear transforms
and can be approximately viewed as the sum
of the LPFT of each component. The MLPFT
is computed through the following steps:

e use a window function to divide the signal
into a number of segments, and model each
segment as an Mth-order PPS;

o estimate the phase parameters of each seg-
ment using the PTFT;

o compute LPFT with the estimated parame-
ters and selected window length.

The length of overlap between two consecu-
tive segments controls the computation load
as well as the smoothness of the spectrum. It
has been shown in [39] that the LPFT with
no overlap can still yield satisfactory perfor-
mance if the window length is small enough. In
this way, the computational complexity can be
greatly reduced. Furthermore, since the com-
putation complexity of the LPFT increases
with the order of the PPS, processing higher-
order PPSs with lower order LPFT is an-
other way to reduce the computational com-
plexity. It should be noted that for higher-
order PPSs, the second-order LPFT can em-
ploy a small window length to ensure that
each segment within the window can be as-
sumed to be a chirp signal. In this way, the
second-order LPFT, which is particularly suit-
able to process the LFM signals, can also be
used to process higher-order signals with time-
varying frequencies, which has been shown in
[39]. This arrangement may have problems
of unsmoothness of the frequency components
when consecutive segments are connected. Un-
der this circumstance, the length of overlap
between the adjacent segments should be in-
creased to minimize the unsmoothness [39].
Therefore we focus on the second-order LPFT
in this paper unless otherwise indicated.

IV. PTFT AND ITS FAST ALGORITHMS

As stated in Section III, the polynomial pa-
rameters can be estimated by using the PTFT
[40], [41], which is the maximum likelihood es-
timator.The PTFT is a transform which con-
verts a one-dimensional input signal into a
multidimensional output from which the poly-
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nomial coefficients are estimated. In this sec-
tion, the PTFT and its properties will be in-
troduced, and followed by the review on its
fast algorithms.

A. PTFT and its properties

To estimate the parameters of the PPSs de-
fined in (1), the (r + 1)th-order PTFT is de-
fined as [40], [41]

PTFT (ko, k1, k) =

No—1
= D amWWA W (1)
n=0
where Wy = e 727/N_ g(n) is the one-

dimensional (1-D) input sequence of Ny points,
0 < k < N, -1, for ¢« = 0,1,...,7,
and N; is the size of the ¢th dimension of
PTFT(ko,k1,--- ,kr). For simplicity of pre-
sentation, a demodulated sequence is defined
as y@(n) = y(n)W]’f;l”z . W]@TT”T“, then (21)
can be expressed as

No—1
PTFT(k()v kl; e 7kr) = Z y(d) (,nl)v‘/]]{?’(())’n7
n=0

(22)
which means that the PTFT of y(n) is equiv-
alent to the discrete Fourier transform (DFT)
of (¥ (n). Due to the property of DFT, sharp
peaks appear in the PTFT if there exist si-
nusoidal signals in y(%)(n). This occurs when
integer k; for ¢ = 1,---,7 take values sat-
isfying k;/N; =~ a;41. Since the parameters
ai,as, - ,a)p are estimated according to the
defined grids, the performance of PTFT is in-
fluenced by the quantization errors §;, i.e.,
0; = a;y1 — k;/N;, which can be controlled
by the dimension size IV;. The frequency de-
viation due to the quantization errors §; is as-
sumed to be much smaller than the frequency
of the sinusoidal component, which can be ex-
pressed as [40]

M-1

M-1
Z nio;| < Z n'/(2N;)| < Ja1| < 0.5,
=1 =1
(23)
n=0,-,No—1,

since the maximum quantization error §; along
the ¢th dimension is 1/(2N;). Otherwise the
peak may not be easily identified due to the
quantization errors. Therefore we have

M—1 .
N;
2 5 <1
i=1
which means that for 1 <: < M —1, N; > Ng
is required to achieve a satisfactory accuracy
for parameter estimation.

When the above constraint is satisfied the
PTFT of a multicomponent PPS exhibits the
same number of peaks as that of components
in the PPS. From the location coordinates of
the peaks, the parameters of the PPS can be
estimated [40], [41], [86].

In fast algorithms for the PTFT, its sym-
metric property is usually used to reduce the
computational complexity of the PTFT. The

symmetric property of the PTFT can be de-
scribed as [42]

(24)

N N,
PTFT(ko, k1 + a171, ok apt) =
PTET(ko, k1, ..., kr) if > oy is even
_ =1
PTFT(ko + 22, k1, ..., ky) if 3 is odd
i=1
(25)
WheI‘eOSk)o SNQ—].,OSIC,L' SNi/2—1,
and ; = 0 or 1 for ¢ = 1,2,...;r. This

symmetric property indicates that the com-
putation for those PTFT points with indexes
ki = N;/2,..,N; — 1 is not necessary since
they can be replaced by those with indexes
ki = 0,..,N;/2 — 1. For an (r + 1)th-order
PTFT, this property means that the space for
each k; can be reduced by one half. Thus, the
entire PTFT computation space is reduced by
2" times. With the symmetric property, for ex-
ample, the third-order PTF'T can be expressed
as

N N.
PTFT (ko, k1+71 , k2+72) =PTFT(ko, k1, ks)

N N,
PTFT (ko, k1+71 ko) =PTFT(k0+70, k1, k2)

N. N,
PTFT (ko, k1, k2+72) :PTFT(kOJr?O, k1, ko)
(26)
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where k; = 0,...,N;/2 — 1. Tt can be veri-
fied that the total number of PTF'T outputs is
(N()NlNQ)/4 instead of N()NlNQ.

For real-valued sequence, the Hermitian
property of the PTFT is defined as [43]

PTFT(N, — ko, ..., Ny — k)

=PTFT" ko, ..., kr). (27)
This property indicates that for an (r +
1)th-order PTFT, it is not necessary to cal-
culate these transform points with k; =
[N;/2],...,N; — 1, where 0 < i < r, because
they can be obtained from those with indexes
k; =1,...,|N;/2|. Thus, the number of trans-
form outputs to be calculated is decreased

from JTi_oNi to (INi/2] + 1)IIi—o ;2 Nis
where |z| returns an integer smaller than or
equal to z and [z] returns an integer larger
than or equal to x.

For real-valued sequence the symmetric
property of the PTFT also exists, and by ap-
plying the Hermitian property to the symmet-
ric property, the following property can be
achieved

PTFT(No — ko, By N1 — k1, B, N, — k) =

PTFT* (ko, k1, ..., k) if > fB; is integer
i=1

PTFT* (ko + &2, k1, ..., k,) otherwise

(28)
whereO§k0 SN()*LOS ki SNZ/Qfl
fori =1,.,r—1,0 < k. < |N;/4], and
B =1or 1/2 for ¢ = 1,..r. With this prop-
erty, the range of k; can be further reduced
by roughly one-half. By using the symmetric
and Hermitian properties, the total number of

transform outputs to be calculated can be re-
duced to No(TT/Z) Ni)(| N, /4] +1)/27 1, [43].

B. Fast Algorithms of the PTFT

The LPFT is computationally demanding
because it is based on the PTFT estima-
tion which involves calculating a multidimen-
sional function and finding the maximum of
the multidimensional function. Assuming the
input sequence length N is a power of two,
with the help of the fast Fourier transform
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(FFT), the (r + 1)th-order PTFT can reduce
,

its complexity from the order of (] N;)N? to
i=1

-
(IT NVi)Nlog, N, which is still difficult to sup-
I;orl‘c even with high speed processors. Luck-
ily, various fast algorithms [40], [42]-[48] have
been proposed to further reduce the computa-
tional complexity of the PTFT, which will be
reviewed as follows.

To achieve a better computational efficiency,
the fast quadratic phase transform [40] was
proposed for the second-order PTFT. Com-
pared with the FFT version of the PTFT,
the fast quadratic phase transform can re-
duce the computational complexity by a fac-
tor logy N. This work was extended to the
third-order PTF'T by exploiting the symmet-
ric properties of the PTFT [44]. Although the
DFT and PTFT differ in several ways, it shows
that the PTFT can be decomposed into com-
putation stages in a way similar to that for
the FFT. Therefore, the total computational
complexity can be significantly reduced. For
example, the multiplicative complexity is re-
duced by a factor of 1.6log, Ny compared with
the method which directly uses the FFT. Fur-
thermore, the fast algorithm was generalized
to support an arbitrary order PTFT in [43],
based on the decimation-in-time (DIT) decom-
position technique, to reduce the overall com-
putational complexity. For example, the num-
bers of complex multiplications and additions
are reduced by a factor of 2"log, N for the
(r 4+ 1)th-order PTFT of length-N input se-
quence, compared with the algorithm that di-
rectly uses the 1D FFTs.

However, further reduction on computa-
tional complexity was still possible since some
properties of the PTFT are not fully utilized.
Recent work [45], [46] was reported to provide
a significant computational saving for an ar-
bitrary order PTFT. A radix-2 decimation-in-
frequency (DIF) fast algorithm for any order
PTFTs was reported in [45] by using the sym-
metric properties of the PTFT. The first step
of decomposition is to divide the entire compu-
tational task into many smaller ones that have
equal dimensional sizes, and the second step
uses the radix-2 DIF decomposition techniques
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to further decompose these smaller PTFTs.
This algorithm is simple in concept and easy to
implement with significant savings on compu-
tational complexity. A general fast algorithm
for arbitrary order PTFTs is derived based on
the split-radix concept [46]. The algorithm sig-
nificantly reduces the computational complex-
ity with a simple and regular computational
structure which leads to an easy implementa-
tion.

To compare the above fast algorithms, for
the 2nd-order PTFT, Fig. 1 is given to show
the numbers of complex multiplications re-
quired by the one directly using 1D FFTs, the
fast algorithm in [40], the radix-2 DIF fast al-

600

N

800 1000 1200

0

Multiplicative complexity for 3rd-order PTFT.

gorithm in [45] and the split-radix fast algo-
rithm in [46]. For the 3rd-order PTFT, Fig. 2
shows the numbers of complex multiplications
required by the one directly using 1D FFTs,
the fast algorithm in [42], the radix-2 DIF fast
algorithm in [45] and the split-radix fast al-
gorithm in [46]. The comparisons show that
the fast algorithms in [45], [46], which have
further explored the properties of the PTFT,
can significantly reduce the required number of
complex multiplications compared with other
reported algorithms.

It should be noted that these reported fast
algorithms for PTFT [40], [42], [44]-[46] only
support sequence length being a power of two.



224

When the sequence length is not supported
by the available fast algorithms, however, zero
padding techniques have to be employed to
augment the input sequence to the next avail-
able size supported by these fast algorithms.
This mismatch surely wastes the computa-
tional resources and increases the computa-
tional complexity. Therefore fast algorithms
based on various radix numbers for other se-
quence lengths are also highly desired. Based
on radix-3 decomposition techniques, fast al-
gorithms for the PTFT of any order is pre-
sented in [47]. By combining other factors
in the sequence lengths, it can be used to
efficiently support many different sequence
lengths. The fast algorithms are further gen-
eralized for computing the PTFT of length
aPb, where a, b and p are positive integers
[48]. The symmetric properties of the PTFT
are effectively used to minimize the computa-
tional complexity. By assigning values of a, b,
and p, various algorithms, for example, radix-a
and split-radix-2/(2a) are presented to provide
the flexibility supporting PTFTs of various se-
quence lengths. Similarly, fast algorithms for
computing the PTFT that deals with a real-
valued sequence of length aPb are investigated
in [43]. Since the PTFT has a Hermitian prop-
erty for real-valued input sequence, the corre-
sponding fast algorithms can effectively reduce
the computational complexity compared to the
fast algorithms for complex-valued sequences.
For example, when a = 3,4 and 8, the compu-
tational complexities required by the fast algo-
rithms for real-valued sequences are less than
60% of those needed by the fast algorithms for
complex-valued sequences.

V. SNR ANALYSIS OF THE LPFT

In addition to the study of a time-varying
frequency content, another important role of
the TFRs is that they usually increase the
SNR in the time-frequency domain [4]. While
random noise tends to spread evenly into the
entire time-frequency domain, the signal en-
ergy is usually concentrated in a relatively
small region. Consequently, the regional SNR
could be substantially improved in the time-
frequency domain. This feature makes the
TFRs to minimize the effect of noises and pro-
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vide better performance of parameter estima-
tion [4].

Quantitatively analyzing the SNR increase
for TFRs is an important issue in practical ap-
plications. Generally the SNR is defined as the
ratio of the mean power of the signal over the
mean power of the noise, where the mean is
taken over the whole time domain. Suppose
y(€) is a distorted signal

y() = s() +n(Q),

where the variable €2 is in a domain, such as
the time domain, the frequency domain or the
time-frequency domain, s(€2) is the desired sig-
nal and n(€2) is the AWGN with a mean of zero
and a variance of o2. The SNR is expressed as

N
Jy 5%(Q)
No2 ~’

where N is the length of the signal s(€2).

According to this SNR definition, an orthog-
onal transform such as the Fourier transform
does not change the SNR [49]. This is because
of the energy preservation property of orthog-
onal transforms. However, this SNR definition
in (30) is not suitable to judge the possibility
of detecting the narrowband signals in the fre-
quency domain. It is also shown in [49] that
this definition is not proper for time-varying
signals in the time-frequency domain. For the
time-varying signals, we are not interested in
the average signal power but in the peak power
of the signal.

Another definition of SNR, introduced in
[49], is more suitable for signals in the time-
frequency domain as well as in the time
and frequency domains.  Compared with
the general SNR definition, this definition is
transform-domain dependent and directly re-
lates to the bandwidth of the signal [49].

Following the terminology in [49], the 3dB
SNR is defined as the ratio of the 3dB mean
power of the signal over the mean power of the
noise,

(29)

SNR = (30)

J 1s()2dQ
[Blo2

Here |B] is the cardinality of the set 8, with
B ={t:|s(Q)* > 0.5max|s(Q)[?)}, (32)

SNR?8  — (31)
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where the number 0.5 is from the 3dB band-
width definition.

The definition of 3dB SNR is the same as
the definition in communications, where only
the signal in the 3dB bandwidth 8 is consid-
ered. The superscript 3dB is used to represent
the SNRs defined in (31) in the rest of the
section. Following this transform-domain de-
pendent SNR definition in (31), quantitative
analysis on the SNRs achieved by the STFT
[49] and the pseudo-WVD [50] has been re-
ported in the literature. Because the TFRs
concentrate the time-varying signals better
than the FT, the SNR increase in the time-
frequency domain is higher than the one in
the frequency domain due to the increase of
the mean signal power. This property quan-
titatively explains the advantage of the TFRs
over the FT for the ISAR imaging [6], [51].

Compared with the STFT, the local LPFT
can further enhance the concentration the
LFM signals while spreading the noise. In
many different applications [15], [22]-]27],
compared with the FT and the STFT, the
LPFT has shown its capability for improv-
ing the SNR. For example, in radar imag-
ing, the LPFT can achieve more focused and
clearer image than that using the STFT in
cases of fast maneuvering targets [24], [25]. For
nonstationary interference suppression in noise
radar systems, the LPFT is able to achieve
performance improvement in comparison with
that obtained from the systems based on the
STFT [71]. Because the SNR analysis of the
LPFT will help us to quantitatively evaluate
the SNR improvement of the LPFT, here we
will give the main results [32].

A. Review on 3dB SNR analysis of the F'T and
STFT

The 3dB SNR analysis of the FT and STFT
has been presented in [49], [51] and will be
briefly reviewed in this section. The analysis
is based on the LFM signal. As an example,
an LFM signal model with monocomponent is
considered as:

(1) = (1) + (1) = AL D) 4 p(r) (33)

where a; is the initial frequency, b, is the chirp
rate of the signal, A is the signal amplitude,

and 7(t) is the additive white Gaussian noise
with the correlation function defined as

Ry(t,m) = Eln(t)n*(r)] = o?0(t — 7). (34)

A.1 3dB SNR analysis of the FT

Suppose S(f) is the Fourier transform of the
signal s(t), and B is the bandwidth as B =
Af =|b1|T where T is the time interval. The
3dB mean power of S(f) is less than or equal
to [49]

Energy of S(t)
— 5

Since the Fourier transform is an orthogonal
transform which preserves the signal energy,
the 3dB SNR in the Fourier transform is

TA?

N < —.
SNRpr < Bo?

(35)

(36)

Thus the SNR in the frequency domain for the
LFM signal s(t) is
1
SNRpp < —
1]

where SNR; = A2/0? is the SNR of the signal
defined in (33).

SNR;, (37)

A.2 3dB SNR analysis of the STFT
Consider the STFT with a Gaussian window
function

B(t) = (Z)1e-51,

™

a>0 (38)
where « is a parameter controlling the width
of the window.

For the LFM signal defined in (33), the
STFT can be achieved as [49], [51]

|[STFT(s;t,w)| =

242 /7 e(—(w—b]t—anz)

oc+-éb%
172
\Ja+ 5 by

Therefore the 3dB SNR in the STFT domain
is [51]

(39)

1.64/m
SNR¥E.,. = —‘/—SNRt. (40)
o+ Lo?
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The maximum of the SNR3ZZ.,. in terms of
the parameter « in (38), is achieved when

a= b, (41)

and the maximum is

O8VET o\, (42)

Vbl

max(SNR ) =

Thus,
mgx(SNRg%%T) > SNR;

when |b1] < 1.28m, (43)
which shows the condition that the 3dB SNR
in the STFT domain is improved compared
with the SNR;. When the absolute value of
the coefficient by is not too large, the SNR in
the STFT domain is greater than that in the
time domain.

Because the STFT is linear, the above
conclusions can be generalized for the signal
model containing multiple chirp components
with the same mean power defined as

K

> silt) +a(t)

i=1

K
= 3 At EN) )
1=1

y(t) (44)

where K > 1, s;(t) is the ith chirp component,
a; is the initial frequency, b; is the chirp rate of
different signal components and A is the signal
amplitude.

The maximum of the SNR245.. is bounded
as [51]

0.8v/27SNR,
T < max(SNRE)

Vv Max1<i<K |bz| T«

< 0.8v/27SNR;
o \/minlgiSK |bi|7

i.e., it is between the maximum and minimum
of the components in (42).

The SNR analysis for the STFT using rec-
tangular or Gaussian window function for dis-
crete time signals was obtained in [49] in terms

(45)
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of the sampling rate. For a multicomponent
signal with K monocomponents, the SNR in
the discrete STFT domain is

SNR{erete ~ D%%SN& = D%SNRt, (46)
where D is a constant, Tj is the window length,
and N/Tj is the sampling rate. It can be
observed that the SNR improvement in the
STFT domain over the SNR in the time do-
main is in the order of N/K, and the sam-
pling rate plays an important role in the SNR.
analysis.

B. Quantitative 3dB SNR Analysis of the
PWVD

For the WVD defined in (3) the lag variable
7 may practically need to be truncated by a
short window. Therefore the windowed version
of the WVD, which is called the pseudo WVD
(PWVD), defined as

PWVD(s;t,w) =

_ / h(7)s(t +7/2)s" (¢ = 7/2)e T dr, (47)

is often employed.

The SNR analysis of the PWVD is pre-
sented as follows.Based on the definition of the
PWVD in (47), we have

PWVD(y; t,w)

- / W(r)s(t + 7/2)s"(t — 7/2)e 97 dr

+ / ()N (t; 7)e 7 dr. (48)
where
N(t7) =nt+ 50" (t - 3)
st 4 %)n*(t - %) ot + %)s*(t - %).

On the right-hand side of (48), the first term is
the PWVD of the signal and the second term
is the PWVD of the noise and cross terms.
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Using the Gaussian window function de-
fined in (38), the PWVD of s(t) =
Aexp [j(art + %Ltz)] is

PWVD(s;t,w) =

= A2(2)1/4 2m - temebin? (49)
™ @
The maximum of the PWVD(s; ¢, w), achieved

with w = a1 + b1t, is

max PWVD(s; t,w) = Az(g)l/ﬂ / %r' (50)

(t,w) s
Thus the 3dB mean of the PWVD becomes
mean; .,y eg PWVD(s;t,w) =

- 0.8\/§A2(g)1/4. (51)
Since the noise 7(t) is stationary and indepen-
dent of s(t), the mean power of the noise terms
in the PWVD domain is

E{/ h(T)N(t;T)e “Tdr| =

= E[PWVD(n;t,w)] = 0. (52)

Thus from (51) and (52) we have
T
SNRE, | = 0.8\/5(5)1/4SNRt,

which means that the SNR of the PWVD is
controlled by the window parameter a. When
a < 1.6384m, the SNR in the PWVD domain
is greater than that in the time domain.

The 3dB SNR analysis for the PWVD has
been presented in [50] in discrete-time form,
which is expressed by

N

SNR{f*"*"* ~ D—SNR;.

= (53)

By comparing (53) with (46), we can observe
that the SNR increase for the PWVD is in the
order of N/K? while that for the STFT is in
the order of N/K. This is because the PWVD
is a bilinear transform, whereas the STFT is a
linear one. K2 in (53) is due to the cross terms
for multicomponents in the PWVD [50].

C. Quantitative 3dB SNR Analysis of the
LPFT

Since the LPFT is a linear transformation,
the LPFTs of the signal s(¢) and the noise n(t)
can be considered separately.

Using (10), the LPP of the signal is

ILPFT(s;t,w)|? =

—(w=byt—ay )2
eots (wi—b1)?

242 /7

o+ %(wl — b1)2

(54)

The maximum of |[LPFT(s; t,w,w1)|?, achieved
at w = bit + ay, is

2
max |LPFT(s;t,w)|* = 2477 .
(80) o+ é(m —b1)?
(55)

Then,
mean; ,)es|LPFT(s;t,w)|* =

_ 1.6A42/7 (56)

V0ot 2w =)

Since the noise 7)(t) is stationary, its mean en-
ergy can be found in the sample space.

EILPET(; t,w)[? =

= E| /n(t + s)h,(s)efj“’sefj%l52d5|2 = o

Therefore the 3dB SNR in the LPFT domain
is

1.6/7

o+ é(wl — b1)2

SNR34D. . = SNR;

(57)

where SNR; = A%/0? is the SNR of the sig-
nal defined in (33). The maximum of the
SNR345..., in terms of the parameter « in (38),
is achieved when

o = |w1 — b1| (58)
and the maximum is
0.8v/2
max(SNR34B,.) = — V=T _QNR,. (59)
«

Vlwr = b1
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Thus,
max(SNR34%. 1) > SNR;
[0

0.84/21 o1,
Viwr — b1l

which shows the condition that the 3dB SNR
in the LPFT domain is improved compared
with the SNR;.

The above analysis is for analog LFM sig-
nals, but in practical computations, the analog
signals need to be sampled. Thus the sampling
rate plays an important role in achieving the
sufficient resolution. Since the LPFT is a gen-
eralized form of the STFT, the LPFT can be
obtained by using an STFT procedure, i.e., by
sliding the window h(t) over the modulated
signal s(t + 7)exp(—jw;72/2), and then im-
plementing the FFT. Therefore, the SNR of
the discrete LPFT domain can be expressed
as [49)],

when (60)

, Ty N N
SNR{jserete ~ D?O?OSNRt = D=SNR, (61)
where D is a constant, K is the number of
monocomponents in the signal, Tj is the win-
dow length, and N/Tj is the sampling rate.
Let us discuss the relationship among the
SNR, the coefficient |w;,; — b;|, the sampling
rate, and the window length.

For simplicity, let us consider the following
sampled signal

oy =il (Tok/N)?)
s ( N) =e ,
where £ = 0,1,..., N — 1. In (62), it is equiv-
alent that the coefficient |w; — b1| tends to be
zero when the sampling rate N/Tj tends to be
infinity.

For the discrete LPFT of discrete-time sig-
nals in (61), the SNR in the LPFT domain
tends to be infinity when the sampling rate
approaches to infinity. For analog signals,
in (59), the SNR in the LPFT domain be-
comes infinite when the coefficient |wy — by]
approaches to zero. As seen from the consider-
ation on the sampled signal, these two results
are equivalent, i.e., (61) is equivalent to (59)
from the point view of SNR improvement.

(62)

TIME-FREQUENCY SIGNAL ANALYSIS

Because the LPFT is linear, the above
conclusions can be generalized for the signal
model containing multiple chirp components
with the same mean power defined in (44).
The maximum of the SNR3.. is bounded
as

0.8v/2mSNR,

Vmaxi<i< g |wi,; — by

[0

0.8v2mSNR;

T V/mini<i<r |wi; — by

: (63)

where wy ; denotes the chirp rate of LPFT of
the ¢th component.

It is worth nothing that when w; is set to
zero, the LPFT becomes the STFT, and the
quantitative analisys for the LPFT becomes
that for the STFT as given in [51].

D. Comparisons

In this section, the LPFT is compared with
the FT, the STFT and the WVD in SNR
analysis to show that the LPFT can achieve
better SNR performance than the FT, the
STFT and the WVD.

The maximum of the SNR3B_ . achieved
with oo = |w1 — b1|, is
0.8v/2
max(SNR348, ) = — YT _SNR,. (64)

Viwr = b
Because the 3dB SNR in the frequency do-
1
main is SNR3%F < WSNRt [51], we have
1
max(SNR345.,) > SNR3EP
[0
0.8v2m|b
08vemiba| .

Vier =bi]

which shows the condition that the 3dB SNR
in the LPFT domain is improved compared
with the SNR in the Fourier transform domain.

The maximum 3dB SNR in the STFT do-
main was [51]

when (65)

V2
max(SNREFr) = 0.8Y2ESNR,,

N (66)
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where o/ = |b;|, which is optimal to achieve
the maximum of SNR34Z.... From (64) and
(66), we have

max, (SNR?42..) iy by | (67)
max, (SNR3E.) w1 —b
o by
which indicates that as long as | | > 1,
w1 — b1

the maximum of SNR34J. . is larger than
SNRIE. .. When w; = by, the ratio in (67) be-
comes infinity, which means that the method
based on the LPFT can achieve a significantly
higher SNR than that based on the STFT.

The 3dB SNR achieved by the PWVD has
been presented as

’/T
SNR3E, | = 0.8\/5(5)1/4SNRt,
Thus, we have
maxoz(SNR%dP?FT) _ < ™ >1/4 (68)
SNR‘?])JdVgVD |w1 - b1|

which means that as long as |w; — b1| < 7, or
by —m < w; < by + m, a higher SNR34E. .
than SNR¥4P.,,, is obtained. Furthermore,
when w; is estimated correctly, the parame-
ter @ = |wy — by| approaches to zero. Under
this condition, the maximum SNR3%%... ap-
proaches to infinity.

For the signal model containing multiple
chirp components with the same mean power
which i is defined in (44), the maximum of the
SNR35... is bounded as

0.8v/27SNR;

Vmaxi<i< g |wi,i — by

< max(SNR}Bpr)
[e%

- .O.SMSNRt 7 (69)
Vming <i<x [wi,; — by
clearly we have
mgx(SNR‘z‘gBFT) > SNR;
when
max _|wy; — b;| < 1.287. (70)

1<i<K

As shown in [51] that 3dB SNR in the

! —SNR;, we

frequency domain is SNRgdB < ]
i

have

maX(SNRLPFT) > SNRgdB

when

08v2mbi| _

(71)
w1, — by

It is shown that for the multiple chirp signal
model, SNREZZ.. is [51]

/o

SNR
NZhaa

e (SNRS ) — 0.8 27
@
where o = |b;|.
Thus for multiple chirp signals the condition
for

IIéZj,X(SNRidPPFT) > I%@X(SNRZ’%’BFT)
is
3]

> 1.
maxi<i<x |wi,; — b

It can be concluded that as long as w; is
estimated correctly, the use of LPFT indeed
achieves a significant performance improve-
ment compared to those achieved by using the
FT and the STFT.

For signals having multiple components, the
WVD generally has cross terms that often
lead to incorrect interpretation of signal con-
tent. The LPFT, as a linear transform, is free
from the cross terms. Therefore, the LPFT of
signals having multiple components can still
achieve higher 3dB SNR than the WVD.

E. Simulations

In this section, simulation results are pre-
sented to verify the theoretical analysis pre-
sented in the above sections. The simulation
uses the signal y(t) = exp[j(2t + 8¢2)] + n(t)
with a sampling rate 333 Hz and SNR; =
—3dB. Fig. 3 shows that the maximum 3dB
SNR is obtained when w; = 16, which indi-
cates that the 3dB SNR in the time-frequency
domain reaches the maximum value when the
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Fig. 3. The SNR%%DBFT versus wi.

chirp rate of LPFT w; matches the signal chirp
rate b;.

Fig. 4 presents the ratio between SNR345,. .
and SNR34Z | the ratio between SNR345.. and
SNR2¢E.., and the ratio between SNR34Z.,
and SNR¥E respectively. In the figure,
the simulation results (solid curves) closely
match the theoretical results (dashed curves).
More importantly, the figure illustrates that
the maximum gain in SNR is achieved when
the chirp rate w; used by the LPFT matches
the signal chirp rate by, compared with those
achieved by using the FT, the STFT and the
PWVD.

It should be noted that the SNR analy-
sis for the LPFT is based on the LFM sig-
nals. As stated in Section III, for other kind
of time-varying signals such as sinusoidal fre-
quarncy modulated (FM) signals or parabolic
FM signals, we can use the window func-
tion to segment the signals so that each seg-
ment within the window can be assumed to
be the LFM signal. In this way, the LPFT
can be used to process the higher-order time-
varying signals and achieve high SNR improve-
ment. Consider a parabolic FM signal s(t) =
exp[j27 (0.4t — 0.00135¢% +0.00000173t3)] with
SNR; = —3dB. Fig. 5 presents the parabolic
FM signal in different domains. It can be
seen that the LPFT can provide improved
SNR performance than the methods in other
domains such as time domain, frequency do-
main, STFT domain and WVD domain. As
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shown in Fig. 6, for the signals with mul-
tiple chirp components which is defined as
s(t) = exp[j2m(0.000481¢2)] + exp|j27 (0.5t —
0.000481¢%)], the LPFT can also give improved
SNR performance than the methods in other
domains.

It should be noted that this section focuses
on the 3dB SNR analysis of the LPFT com-
pared with that of the FT, STFT and PWVD,
using the 3dB SNR definition in [49]-[51]. The
influence of the noise in the time-frequency do-
main for the STFT and bilinear distributions
from the Cohen’s class can also be presented
in terms of the output SNR, as shown in [52],
[53]. Furthermore, expressions of the bias and
variance for the STFT and bilinear distribu-
tions as IF estimators are discussed in [54],
[55]. These results have been generalized to
the LPFT in [22], [23] and [27], respectively.

VI. THE REASSIGNED LOCAL POLYNOMIAL
PERIODOGRAM

The reassignment method is an effective op-
eration to improve signal concentration in the
time-frequency domain. It has been general-
ized to deal with the bilinear time-frequency
and time-scale distributions [56], the affine
class [57] and S-method [58]. More detailed
information on the reassignment method can
be found in [56], [59], [60].

The LPFT has been combined with the reas-
signment method to improve the resolution in
the time-frequency domain [61], and its defin-
ition and properties have also been discussed.
In this section, we will give a review on the
reassigned LPP, and then the reassignment
method is extended to the robust spectrogram
and LPP to improve the concentration for sig-
nals corrupted by impulsive noises. Further-
more, performance using various LPP-related
methods are compared for signals in different
noise environments.

A. Review on the reassignment method

As introduced in [3], the spectrogram (SP),
WVD, smoothed pseudo-WVD (SPWVD) and
many other bilinear counterparts can be writ-
ten in a general form, known as the Cohen’s
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Fig. 4. (a) is the ratio between SNR345.,. and SNR3¢E, (b) is the ratio between SNR345_ . and SNR3E. .,
and (c) is the ratio between SNR34P_.. and SNR34E. .
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Fig. 5. The representations of the parabolic FM signal in different domains. From top to bottom: time domain,
frequency domain, STFT domain, WVD domain, and LPFT domain. SNR = —3dB.
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Fig. 6.

The representations of a signal with multiple components in different domains. From top to bottom:

time domain, frequency domain, STFT domain, WVD domain, and LPFT domain. SNR = 0dB.

class, expressed as [4]
TFR(z;t,w) =

= 4—71r2//(b(u,Q)WVD(x;t—u,w—Q)dudQ,

(72)
where WVD(z;t,w) is the WVD of a given
signal z(t) and ¢(u, 2) is the distribution ker-
nel which determines the distribution and its
properties. Many members in the Cohen’s
class are able to suppress the cross terms
of the WVD, but with undesirable effects
of broadening the signal components in the
time-frequency domain. In order to minimize
such undesirable effects, a reassigned time-
frequency representation (RTFR) is used to
improve the concentration of the signal com-
ponent by reallocating its energy distribution
in the time-frequency domain. By moving the
attribution point of the average operation to
the gravitational center of the energy contri-
bution, the RTFR is defined as

RTFR(z;t,w') =

://TFR(m;t,w)é(t'*f(x;tvw))

x6(w' — &(z;t,w))dtdw, (73)
where #(z;t,w) and &(z;t,w) are the coordi-
nates of the gravitational center, by way of
analogy to a mass distribution.

For the well known SP, the reassignment op-
erators of its reassigned form, the RSP, are
given by eq. 74 and eq. 75, [59], where Re
and Im indicate the real part and imaginary
part, respectively, and the subscripts h, Th
and Dh indicate that the associated STFTs
use the window h(t), the time ramped window
t - h(t), and the first derivative of the window
dh(t)

dt

, respectively.

B. The Reassigned LPP

We will consider the definitions of the reas-
signment methods based on the second-order
LPP. Since w; can be estimated from the
PTFT, the LPP is a bilinear TFR and the
reassignment method can be extended to the
LPP to obtain performance improvement [62].
Therefore, the RLPP is defined by eq. 76.

The expressions of the reassignment opera-
tors for the RLPP are given in (77) and (78),
and its proof can be referred to [61].
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//u WVD (h;u, Q) WVD (z;t — u,w — Q) dudfQ
t(zit,w) = t—
//WVD (h;u, Q) WVD (z;t — u,w — Q) dudQ2
. STEFTrp(x;t, w)
= t-Re { STFTy(z; t, w) (74)
//Q WVD (h; u, Q) WVD (x;t — u,w — ) dud2
O(zst,w) = w—
//WVD (h;u, Q) WVD (z;t — u,w — Q) dud2

STFTpp(x;t,w)
= I -—————————
W { STFTy(z;t,w) |’

RLPP(z;t', ")

(75)

/ / LPP (2 t,w) 8 (¢ — i(a;t,0)) 6 (o' — & (31, ) dtdwo.  (76)

//uWVD (h;u,—%u—l—ﬁ) WVD (w;t—u,w— %u—Q) dud()

t(z;t,w) =t — 5 5
sy 1 o et SO
//WVD (h, U5 U + Q) WVD (w,t Uw— U Q) dud$?
LPFT LPFT t LPFT it
—t—R Th(ll' l w) h(xa 7(")) —t—R Th(xv 7(")) (77)
|LPFTy (z;t,w)|? LPFTy (z;t,w)
Q —Lu WVD (h u, —Stu + Q)
) { WVD xt uw——ziu—Q) duds
(x5t w) =w— o
//WVD (h,u,—— )WVD( u,w—?u—Q) dud§)
LPFTpp(z;t, w) LPFT) (3¢, w) LPFTpp(z;t, w)
= I = I —_—
W im { ILPET), (z;, w)|? LPFT, (2;1,0) (78)

Because the WVD is always real-valued, the
reassignment operators in (77) and (78) are
also real-valued. It is noted that when wy = 0,
the LPFT becomes the STFT, and the reas-
signment operators of the LPP in (77) and (78)
become those of the RSP as in (74) and (75).

Since the RLPP has similar reassignment
operators as that of the RSP, they share the
same properties, such as nonnegativity, nonbi-
linearity, time and frequency shifts invariance,
time-scaling property, symmetry, energy con-
servation, and perfect localization on chirp and

impulse signals. The properties of the RLPP
can be derived from (77) and (78). Some of
their proofs are presented in [61].

There are two simplified variations of the
RLPP. One is the reassigned LPP along the
frequency direction (RfLPP), defined as:

RILPP(z;t,0') =

:/LPP(x;t,w)é[w'fcb(x;t,w)]dw, (79)
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in which no reassignment is made in the time
direction. The other one is the reassigned LPP
along the time direction (RtLPP), defined as:

RtLPP(z;t',w) =

. / LPP (a4, )3t — f(w:t,w)]dt,  (80)

in which no reassignment is made in the fre-
quency direction.

The RILPP and RtLPP share with the
RLPP on the properties of nonnegativity, non-
bilinearity, time-scaling, energy conservation,
time folding and symmetry. Moreover, the
RfLPP particularly has the properties of fre-
quency shift invariance and perfectly localizing
the chirp components, while the RtLPP has
the properties of time shift invariance and per-
fectly localizing the impulse components. It
means that the RfLPP is responsible for per-
fectly localizing the chirps and the RtLPP is
for perfectly localizing the impulse, as shown
by the simulations in [61]. Simulations for sig-
nals with chirp or/and impulse components,
as well as for other higher-order signals with
multicomponents, can also be referred to [61].

C. The Reassigned Robust LPP

In practice, the signals under consideration
are always embedded in noise. For signals cor-
rupted by AWGN, the required performance
can be achieved with the standard methods,
such as the STFT and the LPFT [39]. How-
ever, in some situations such as in the appli-
cations of communications and imaging, sig-
nals are corrupted by impulsive noise. In this
case, these standard methods have difficulties
in obtaining sufficient signal concentration and
resolution. To minimize the effects of impul-
sive noise, Huber proposed the robust esti-
mation methods to obtain the parameters of
the corrupted signals [7]. The robust STFT
based on median filtering [63] was also intro-
duced recently to achieve significantly better
performance in impulsive noise environments.
Similarly, the robust LPFT was proposed to
produce highly concentrated representations
of time-varying signals in impulsive noise [34].

TIME-FREQUENCY SIGNAL ANALYSIS

C.1 Review on the Robust Methods
The STFT form of a signal z(t) is defined
by the following minimization problem [7]:

STFT(t,w) = arg min J(¢,w; m), (81)

where

J(t,w,m) = Zh(nT)F[e(t,w,n;m)], (82)

n

h(nT) is areal and even window function, F'(e)
is a loss function and e(t,w,n;m) is the error
function given by

e(t,w,n;m) = z(t + nT)e 9" —m, (83)
where T is the sampling period and m is an
estimated expectation of the sample average
of z(t + nT) e~J«nT,

The standard STFT is a solution to (81)
with a loss function F(e) = |e|?. With the loss
function F'(e) = |e| or F(e) = |Re(e)|+|Im(e)],
the robust M-STFT [64] or the robust STFT
with the median filtering [63] can be obtained.
The computation of the robust M-STFT needs
the iterative procedures and therefore gener-
ally requires a heavy computational load [64].
The robust STFT with the median filtering
has a simpler solution because it uses a sorting
procedure [63]. Therefore the robust method
based on median filtering is employed in this
section. The robust STFT is defined as [63]

rSTFT(t,w) =

= median{Re[z(t + nT)h(nT)e7*"T]}

+jmedian{Im[z(t + nT)h(nT)e 7" T]}. (84)
The robust spectrogram is defined as [rSTFT|2.
The robust LPFT of the input x(t) is defined
as [34]:
rLPFT(t, w,wi) =

= median{Re[x(tJrnT)h(nT)e*j“’”TJ—wl(;i]}

(85)
In this case, the robust PTFT is used to es-
timate wj for signals corrupted by impulsive

—jwnT— i1 (nT)” (;T>2]}

Hmedian{lm[z(t+nT)h(nT)e



LOCAL POLYNOMIAL FOURIER TRANSFORM: A REVIEW ON RECENT DEVELOPMENTS... 235

noise. The estimation performances achieved
by using the PTFT and robust PTFT of the
signals in impulsive noise were compared in
[39]. It was shown that the peaks from the
robust PTFT are more easily identified than
from the PTFT. Similarly the robust LPP is
defined as |[rLPFT|.

C.2 Definition of the Reassigned robust SP
and LPP

The reassignment method is extended to the
robust spectrogram and the robust LPP to ob-
tain a good distribution concentration for sig-
nals embedded in impulsive noise. The op-
erators of the reassigned robust spectrogram
(RrSP) are defined as:

rSTFTrp(x;t,w)
86
rSTETy, (z;t,w) , (86)

I‘STFTD}L(I'; t, w)
rSTFTy (z;t,w) |- (87)

t(z;t,w) :t—Re{

w(z;t,w) w+Im{

The reassignment operators of the reas-
signed robust LPP (RrLPP) are defined as:

rLPF Ty (z;t, w) } (8)
rLPFT), (x5 t,w) |’
rLPFTDh(x;t,w)} (89)
rLPFT),(z;t,w) |~

t(z;t,w) :t—Re{

W(z;t,w) :w—i-Im{

The reassigned robust LPP along the fre-
quency direction (RfrLPP) is given by:

RfrLPP(z;t,w') =

= /rLPP(x;t,w)(S[w' — W(z;t, w)]dw.

In general, the use of the robust LPFT in
robust LPP is similar to the use of the robust
STFET in the robust spectrogram. One addi-
tional requirement for the robust LPFT is that
the parameter w; in (85) has to be estimated
from the robust PTFT of each signal segment.

D. Performance Comparisons

Let us compare the performances of those
LPP-related methods discussed above in terms
of the readability of signal components, the
required computational complexity, the ratio
of distribution concentration, and the mean
squared errors (MSEs) of the IF estimation.

The testing signal follows a parabolic FM
law,

z(t) = ej27r(0.5t70.00173t2+0.0000022t3), (90)
which is assumed to be corrupted by impulsive
noise, n(t) = afw(t)+ jws(t)], where a = 0.5,
w1 (t) and ws(t) are independent Gaussian ran-
dom variables with unit variances. The vari-
ance of the impulsive noise is 02 = 30a2 [65],
leading to a SNR of —1.85dB when a = 0.5.
The probability density function of the noise
is g(z) = 1/3/2me1e1/*/2|z|=2/3 which was
used to model many real-life engineering prob-
lems [34] [63]. A Hamming window of 65
points is used in the simulations. Within the
window duration, each signal segment of the
signal can be approximately assumed to be a
chirp.

D.1 Readability

Fig. 7(a) shows the standard spectrogram
of a clean signal z(t) and Fig. 7(b) gives the
standard spectrogram of the signal corrupted
by impulsive noise. The robust spectrogram of
the corrupted signal is given in Figure 7(c) to
show the improvement on signal concentration
compared with that in Fig. 7(b). Finally, Fig-
ure 7(d) gives the reassigned robust spectro-
gram of the signal in the same noise environ-
ment. Although better visual representation
on the signal component is achieved by apply-
ing the reassignment and robust operations to
the spectrogram, further improvements on sig-
nal concentration and resolution in the time-
frequency domain are still desired for practical
applications.

We now consider the LPP-related represen-
tations for the same corrupted signal, as shown
in Fig. 8. The comparison between Fig. 7(b)
and Figure 8(a) shows that the latter achieves
an obvious improvement on signal concentra-
tion, which is expected because the LPP uses
the parameter w; to more accurately describe
the change of the signal frequencies. It is
also observed that in Fig. 8(b) the robust
LPP achieves a substantial improvement on
signal representation in the time-frequency do-
main. Furthermore, Figures 8(c) and (d) show
that the reassignment operations on the robust
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robust spectrogram of a corrupted signal.

LPP are effective to improve the concentration
in the time-frequency domain. The RfrLPP in
Figure 8(d) appears to be more concentrated
than the RrLPP in Fig. 8(c).

Both Fig. 7 and Fig. 8 show that, compared
with the standard methods, the robust SP and
robust LPP using median filtering are effective
to remove the effects of impulsive noise. Then
with the reassignment operations, the concen-
tration of the signal component can be further
improved.

Fig. 9 and Fig. 10 show the represen-
tations based on the SP and LPP, respec-
tively, for signal z(¢) embedded in AWGN
n(t) = 0.75[w1(t) + jwa(t)]. Again, it is seen
that the LPP-related representations achieve
better performances than their spectrogram-
related counterparts. It is also observed that
the RrLPP in Figure 10(b) achieves slightly
degraded representation than the RLPP in

Fig. 10(e). It is because it is not useful for
minimizing the effects of AWGN although the
median filtering used in robust methods is ef-
fective to reduce the effects of impulsive noise.
This observation is consistent with the con-
clusion in [34]. Meanwhile, Fig. 9 and Fig-
ure 10 show that all the reassigned represen-
tations achieve improvement on signal con-
centration compared with their counterparts
without the reassignment. In particular, both
the RfrLPP in Fig. 10 (c) and the RfLPP in
Figure 10(f) achieve sufficiently concentrated
representations.

D.2 Computational complexity

For the spectrogram-related methods that
are used for Fig. 7 and Fig. 9, the max-
imum overlap between adjacent segments is
necessary to achieve good signal representa-
tions. The maximum overlap is accomplished
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Fig. 8. The LPP-related representations of the signal in impulsive noise; (a) LPP, (b) robust LPP, (c) reassigned
robust LPP, and (d) reassigned robust LPP along the frequency direction.

by sliding the window by one data point to
obtain each succeeding signal segment. It was
reported in [39] that even without any over-
lap between adjacent segments, a good ap-
proximation to the signal components can be
achieved by the LPFT as long as the window
is short enough, as demonstrated in Figure 8
and Fig. 10. For the sake of comparison, Fig.
11 gives the LPP and RLPP that are com-
puted with the maximum overlap. Visual in-
spections show that the LPP and RLPP in Fig-
ure 11(a) and (b) are not obviously better than
those without any overlap in Fig. 10 (d) and
(e). However the process without any over-
lap greatly reduces the computational com-
plexity, which is shown later in Table I. In the
LPP without overlap, each segment within the
small window is assumed to be a chirp having
the same parameter wi. When the chirp rates
of the consecutive segments are sufficiently dif-

ferent, smearing in the time-frequency domain
may occur between the segments.

A window of length L is used to segment
the signal, and therefore, each segment needs
an L-point Fourier transform whose compu-
tational complexity, in terms of the number
of complex multiplications, is in the order of
Llog, L. For the spectrogram of an N-point
signal sequence, where N >> L and the max-
imum overlap is used, the computational com-
plexity is in the order of NLlog, L. The LPP
computation for each data segment needs to
estimate the parameter w; by using the PTFT,
which requires a computational complexity in
the order of LL, [45], where L and L; are the
number of points related to w and w1y, or the
dimensional sizes of the PTFEFT, respectively.
According to the result reported in [40], L;
should be larger than L to achieve a satisfac-
tory accuracy. Since the LPP, with an esti-
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Fig. 9. The spectrogram-related representations of a signal in AWGN.

mated wy, is performed in the same way as
the spectrogram, the total numbers of complex
multiplications for the LPP of an N-point se-
quence are in the orders of N L(logy L+ L1) for
the maximum overlap, and N(Llogy, L + L)
for nonoverlap between the segments, respec-
tively.

For the reassigned methods such as the
RLPP and RSP, most of the computational
complexity is for the reassignment process.
Therefore, the RLPP does not need much more
computational complexity than the RSP. Since
the computational complexity of the sorting
procedure, i.e., the quick sorting algorithm
[66], for the robust methods is in the or-
der of Llog, L, the computational complexity
of the robust spectrogram is in the order of
N?Llog, L. Therefore using the robust PTFT
to estimate the parameter wy, the computa-
tional complexity of the robust LPP without
overlap is in the order of NL(N + L;)log, L.

The main computational complexity for the
RrLLPP is for the sorting procedure of the me-
dian filtering. The computational complex-
ity of the RrLPP is about three times of that
needed by the robust LPP since the reassign-
ment computation needs about three times of
that for the sorting procedure compared to the
robust LPP.

The computation times required by various
methods for the specific signal z(t) are listed
in Table I. The signal is corrupted by either
AWGN or impulsive noise when the robust op-
eration is applied in the processing methods.
The computations are under the programming
environment of MATLAB 7.1. The computer
is Pentium 4 with a clock rate of 2.66 GHz
and a RAM size of 512 MBytes. The numer-
ical values in Table I are the average of 50
measurements of the computation times. The
computation times of LPP and RLPP with the
maximum overlap are 38.86 and 41.57 seconds,
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Fig. 10. The LPP-related representations of a signal in AWGN.

respectively, compared with 0.81 and 3.74 sec-
onds for those without any overlap. There-
fore, the computational complexity is signif-
icantly reduced, i.e., achieving about 47 and
10 times of savings in computation time. In
Table I, the computation times for the LPP-
related representations are measured on the
processing without any overlap between the
signal segments, while the computation times

for the spectrogram-related representations in
Table I are measured on the processing with
the maximum overlap to achieve the best pos-
sible performance.

In Table I, the computation time needed by
the LPP is about 5 times of that needed by
the SP. However, it is observed that the robust
methods with median filtering, i.e., robust SP
and robust LPP, or the reassignment methods,
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TABLE 1
COMPARISON ON COMPUTATION TIME REQUIRED BY VARIOUS COMPUTATION METHODS. THE AWGN 18
0.75[w1 (t) 4+ jw2(t)] AND THE IMPULSIVE NOISE 1S 0.5[w$(¢) + jw3 (¢)].

Methods Computation time (s)
spectrogram 0.1641
reassigned spectrogram 3.8730
robust spectrogram 122.9487
reassigned robust spectrogram 370.3964
LPP 0.8087
reassigned LPP 3.7418
reassigned LPP along the frequency direction 2.9340
robust LPP 123.7826
reassigned robust LPP 364.0574
reassigned robust LPP along the frequency direction 252.0833

i.e., RSP and RLPP, require about the same
computation time. It means that as far as the
median filtering or reassignment method is in-
volved, the improvements made by the LPPs
do not require extra computation time com-
pared with the spectrograms with median fil-
tering or reassignment method. Furthermore,
it is also noted that compared to the RLPP
and RrLPP, the RfLPP and RfrLPP can re-
duce the computation times by about 20%
and 30%, respectively. It will be shown in
the following subsections that the RfLPP and
RfrLPP can provide better distribution con-
centrations and smaller MSEs. Therefore by
using these two methods we can achieve signif-
icant performance improvements with savings
in computation time.

D.3 Distribution concentration

Next we will evaluate the performances in
terms of the distribution concentration with
the signal z(t) embedded in impulsive noise
n(t) = afwi(t)® + jw2(t)?], AWGN n(t) =
w1(t) + jwa(t), and mixture of these noises
n(t) = alwi(t)® + jw2(t)’] + [wi(t) + jwa(t)],
where a € [0,1.5]. For each value of SNR or
«, measurements of 100 trials are averaged.
Similar to the concept of the distribution con-
centration used in [58], we define the distribu-
tion concentration as

E
B - 10 1Og10 Fl,
2
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— 10log, average(TFR(t, W)(t,w)eR)

1
average(TFR(t, w)(t,w)¢r) 1)

where region R corresponds to the IF lines of
the signal components, which are determined
by the peak values in the TFRs, F; is the av-
erage energy along the region R, and Fj is the
average energy outside the region R.

For the signal in (90) corrupted by impul-
sive noise, Figures 12(a) and (b) show that, the
robust LPP-related methods with the median
filtering are able to improve the distribution
concentration. However, the median filtering
is not effective to improve the concentration of
the signals corrupted by AWGN. In contrast,
the reassigned LPP-related methods are effec-
tive to improve the concentration for signals
in AWGN or impulsive noise. It also confirms
that both the median filtering and reassign-
ment operation are necessary to achieve the
best distribution concentration for signals in
the mixed noise environment, as shown in Fig.
12(c). Tt is also noted that, the RfrLPP in Fig.
12(a) and the RfLPP in Fig. 12(b) obtain bet-
ter concentrations, which are consistent with
the observations from Figure 8 and Fig. 10,
respectively.

D.4 Mean squared errors (MSEs)

We will compare the MSEs of IF estimation
achieved by using various LPP-related meth-
ods for the signal S(t) embedded in different
noise environments. The IF estimation is ob-
tained according to the curve peak positions in
the time-frequency transforms, defined as [4]

w(t) = argmax TFR(¢, w).

The MSE of the estimator is defined as

where w(t) is the true IF and &(t) is the esti-
mated IF.

In general, median filtering is useful for min-
imizing the MSEs when the signal is in impul-
sive noise environment, as seen in Fig. 13(a) in
which larger MSEs are obtained by the LPPs
without using median filtering. However, the
median filtering has side effects on minimizing
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the MSEs for signals in Gaussian noise envi-
ronments, which can be seen from Fig. 13(b)
that the representations with median filtering
achieve larger MSEs than their counterparts.
Meanwhile the reassignment operations also
have adverse effects on minimizing the MSEs
for signals in AWGN or impulsive noise. This
can be seen obviously from, for example, Fig.
13(a) and Figure 13(b) that the RrLPP and
RLPP achieve much larger MSEs than the ro-
bust LPP and LPP, respectively. However, it
is interesting to see that in Fig. 13(a), the
RfrLPP has almost the same MSEs as the ro-
bust LPP, and in Fig. 13(b), the RfLPP has
almost the same MSEs as the LPP. It means
that the RfLPP and the RfrLPP have little
side effects on minimizing the MSEs in AWGN
and impulsive noise, respectively.

It should be noted that in this simulation,
the testing signal with a parabolic FM law is
given as an example. Similar results can be
achieved with other kind of frequency modu-
lation law such as the LFM signals and the
sinusoidal FM signals.

It is also worth mentioning that in this sec-
tion the impulsive noise is modelled as a[w$ +
jw3]. For impulsive noise belongs to Middle-
ton class A model [67], or the standard Cauchy
distributed complex noise vi(n) + jva(n) [68],
where v1(n) and vy(n) are mutually indepen-
dent with thf standard Cauchy distribution
Fol) = m(1 + x2?)
parisons can also be achieved.

, similar performance com-

VII. APPLICATION EXAMPLES AND
POTENTIAL APPLICATIONS OF THE
LPFT

As presented in Section V, the LPFT can
provide higher SNR improvement compared
with other transforms such as the STFT and
the WVD. Moreover, the LPFT can achieve
higher resolution than the STFT and is free
from the cross terms that exist in the WVD.
The LPFT has been found to be a better tool
to deal with signals having time-varying fre-
quencies and has been employed in a variety of
practical applications. In ISAR imaging, for
example, the LPFT is used to provide more
focused images than the STFT [32]. A brief
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Fig. 14. Illustration of ISAR imaging using time-frequency transform

introduction on this application will be given
as follows.

To construct images of radar targets from
recorded complex data, radar image forma-
tion is often required [6], which is a map-
ping of a three-dimensional (3D) target onto
a two-dimensional (2D) range and cross-range
plane. The conventional radar image forma-
tion is based on the FT. In ISAR, because the
movements of radar targets are usually com-
plicated, motion compensations are generally
needed to obtain focused images by using the
FT. If the motion compensation is not suffi-
cient, the resulting image can still be blurred
when the FT is applied. However, the problem
of using the FT can be circumvented if it is re-
placed by a time-frequency transform (TFT).

Various TFTs, such as the STFT [69], the
WVD [69] and continuous wavelet transform
[70], have been used to mitigate image blur-
ring for improvement on the quality of ISAR
images. Because the LPFT is linear, free from
the cross terms, and can provide higher resolu-
tion for time-varying signal, it is employed as
the TFT to obtain higher resolution images,
as shown in [32].

To generate the image of the target, the
radar transmitter emits a sequence of N pulses
and the range resolution is determined by the
bandwidth of the pulse. For each transmit-
ted pulse, the total number of range cells, M,
is determined by the maximum range covered
and the range resolution. The total number
of pulses, N, for a given imaging integration
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time determines Doppler or cross-range reso-
lution. The radar data sequence is formed as a
complex 2D array G(rp n), (m =0,1,--- , M—
1;m=0,1,---,N—1), where M is the number
of range cells and N is the number of pulses.

Based on the TFTs, Fig. 14 illustrates the
process of radar image formation [6]. Stan-
dard motion compensation is needed before
the image formation. An N x N Doppler-
time distribution is generated by perform-
ing the TFT at each range cell.  Then
the M x N x N range-Doppler-time cube,
Q(Tm, fr,tn) = TFT,G(ry,,n), is formed by
combining the Doppler-time distributions at
the M range cells. By time sampling from
the cube Q(7y,, fn,tn), a range-Doppler image
frame Q(7p,, fn,tn = t;) can be obtained for a
particular time instant ¢;. Each of the IV image
frames represents a full range-Doppler image
with a better resolution at a particular time
instant [6]. In contrast, the imaging formation
based on Fourier transform generates only one
blurred 2D M x N range-Doppler ISAR image
frame from the M x N radar data set. There-
fore, by replacing the Fourier transform with
the TFT, a 2D range-Doppler image becomes
a 3D time-range-Doppler image cube. By tak-
ing time sampling, a temporal sequence of 2D
range-Doppler images can be achieved. The
time-varying properties of the recorded signals
can also be observed from these image frames
at various time instants.

The simulation uses the simulated aircraft
B727 data [6] with SNR; = —5dB. The TFT
shown in Fig. 14 is replaced by the LPFT. It is
assumed that the center frequency of the radar
is 9 GHz and the bandwidth is 150 MHz. The
total number of pulses used to form the image
is 256.

Fig. 15 presents the blurred ISAR image of
B727 data constructed by using the FT, and
Fig. 16 is the blurred ISAR image constructed
by using the STFT. Figure 17 shows the ISAR
images formed by using the LPFT. It is ob-
served that the ISAR achieved by using the
LPFT is much better than that achieved by
using the STFT and the FT since it uses extra
parameters to better characterize the IF of the
analyzed signals.

Besides the application in ISAR imaging,
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Fig. 16.

ISAR image of B727 formed by using the
STFT (64th temporal frame)
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Fig. 17. ISAR image of B727 formed by using the
LPFT (64th temporal frame and no overlapping)
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the LPFT has also been used in various other
applications. The following are some exam-
ples.

e In the ISAR, suitable enhancement tech-
nique for the fast maneuvering radar targets
or targets with fast moving parts is important
to achieve improved ISAR images. The LPFT
has been used for improvement of the ISAR
images in complex reflector geometry cases,
as well as in cases fast maneuvering targets
[24], [25]. The defocused radar images can be
enhanced with a relatively modest calculation
burden. Furthermore, the LPFT has been em-
ployed for nonstationary interference suppres-
sion in noise radar systems [71]. To remove
the nonstationary interference, a time-varying
filter based on the LPFT is developed and per-
formed in the time-frequency domain by using
a binary excision mask.

e The LPFT is used for nonstationary jam-
mer rejection in the spread spectrum commu-
nications to improve interference immunity of
spread spectrum systems and to provide more
reliable signal receiving and decoding perfor-
mance [26], [27]. Corresponding bit error per-
formance was significantly improved compared
with that obtained from the systems based on
the STFT.

e In digital video processing, motion esti-
mation is an important topic. By using
frame projections on coordinate axis and the
p—propagation [14], the video sequences are
mapped to frequency modulated signals. Es-
timations of the phase coeflicients using the
LPFT can provide the estimates of velocity
and acceleration of moving objects.

e A new form of beamformer based on the
LPFT is derived in [72] for source localization
and tracking in highly nonstationary environ-
ment. This technique can be interpreted as
an extension of the conventional beamform-
ing method to nonstationary environment, and
it can resolve closely spaced sources provided
that their velocities are sufficiently different.
e The LPFT can be used as an estimator of
the IF and its derivatives. The technique is
based on fitting a local polynomial approxi-
mation of the frequency which implements a
high-order nonparametric regression. The es-
timator is shown to be strongly consistent and

Gaussian for a polynomial frequency. The cor-
responding asymptotic covariance matrix and
bias of the estimates are studied in [22], [23].
e The concept of the LPFT is also imple-
mented for the polynomial WVD to produce
high signal concentration along the IF [28],
and it is also extended to the L-Wigner dis-
tribution in [73].

Since the LPFT is a generalized form of
the STFT, in the areas in which the STFT
is used, there exists the potential for general-
ization and improvement by using the LPFT.
The following lists some potential applications
of the LPFT.

o To analyze the patterns of time-frequency
structures within a musical passage, despite
of its low resolution, the STFT is usually em-
ployed due to its simplicity. For example, the
STFT has been used to analyze the frequency,
or pitch, and content of the sounds produced
by different musical instruments such as piano,
flute and guitar [74]. The STFT has been used
for analyzing the rhythmic structure of music
and its interaction with melodic structure [75].
Moreover, the STFT has been widely used to
process the music signals [76], [77], [78] and
the music of bird song [8]. It is obvious that
better results can be obtained by using TFRs
which can provide higher resolution with re-
duced or free cross terms, and the LPFT is an
appropriate choice.

e The combination of the WVD and Hough
transform, that is the Wigner-Hough trans-
form (WHT) has been proposed to detect the
LFM signals in noisy environment. However,
the WVD has an inherent noise threshold ef-
fect problem [79] and therefore cannot give
satisfactory representations of the LFM sig-
nals in heavy noises. As shown in Section
V, the LPFT has a much better noise resis-
tance capability than the WVD and is able to
obtain desirable signal representations in the
time-frequency domain even in a very low in-
put SNR environment. Therefore, the LPFT
can be used for the image formation to de-
tect the chirp signals with very low SNRs, fol-
lowed by the Hough transform to detect LFM
signals. The combination of the LPFT and
Hough transform can provide improved per-
formance compared with the WHT especially
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when the signals are in heavy noise environ-
ment.

e In communications, the adaptive wavelet
transform [80], the adaptive STFT [52] and
the WVD [81] have been used for the exci-
sion of the second-order polynomial phase in-
terference (PPI). All these transforms, except
the WVD, do not have optimal concentration
property for the second-order PPI, which is
the linear chirp interference. However, the un-
desirable influence of cross terms prevents the
WYVD from being used for the multicomponent
interference excision. As stated in Section VI,
when the LPFT is combined with the reassign-
ment method, it can provide perfect localiza-
tion for chirp signals. Therefore the reassigned
LPP can be the proper candidate to excise the
second-order PPI in communications.

o To accurately estimate the pitch is impor-
tant for many speech processing applications,
such as speech synthesis, speech enhancement,
and speech coding. In common speech pitch
estimation methods, the STFT is usually em-
ployed with the widely used assumption that
the pitch is constant over a segment of short
duration [82], [83]. However, this assumption
may not apply in reality and leads to inac-
curate pitch estimates. Compared with the
STFT, the LPFT uses extra parameters to ap-
proximate the polynomial phase of the time-
varying signals, and therefore it is more suit-
able to process the time-varying signals such
as the speech signals and can achieve better
performance for the speech analysis.

e Lamb waves are guided ultrasonic waves
that propagate in plates. For ultrasonic non-
destructive evaluation methods used to de-
tect and locate flaws in thin plates and to
determine their elastic stiffness coefficients,
accurate knowledge of the velocity disper-
sion of Lamb modes is important [84], [85].
Lamb mode dispersion is also essential in the
acoustic emission technique for accurately tri-
angulating the location of emissions in thin
plates. The time-frequency analysis such as
the pseudo WVD and reassigned methods of
the spectrogram, the scalogram, the smoothed
WVD, and the Hilbert spectrum have been
employed to characterize the Lamb mode dis-
persion [84], [85]. As an appropriate choice
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to process time-varying signals, the LPFT is
hopefully used in the dispersion analysis of
Lamb waves.

VIII. CONCLUSION

In this paper, the local polynomial Fourier
transform (LPFT) is reviewed, including its
definition, properties, relationships with other
transforms such as the STFT, the WVD, the
AF and the FrFT. The LPFT for multicompo-
nent signals is presented and discussed. The
PTFT and its properties are introduced, and
the fast algorithms for the PTFT are also re-
viewed to achieve better computational effi-
ciency.

To better judge the possibility of detecting
the narrowband signals in the frequency do-
main and the time-varying signal in the time-
frequency domain, the definition of the 3dB
SNR as in communications is employed for the
quantitative SNR analysis of the LPFT. This
3dB SNR definition is transform-domain de-
pendent and directly relates to the bandwidth
of the signal. Therefore it is suitable for sig-
nals in the time-frequency domain as well as in
the time and frequency domains, respectively.
Theoretical comparisons on the 3dB SNR per-
formances achieved by using the LPFT, the
FT, the STFT and the WVD are presented
with simulations to illustrate the advantage of
using the LPFT.

The reassignment method is extended to
the LPP and the robust LPP to get the re-
assigned LPP (RLPP) and the reassigned ro-
bust LPP (RrLPP), respectively. Performance
using various LPP-related methods are com-
pared for signals embedded in additive white
Gaussian noise, impulsive noise, and the mix-
ture of additive white Gaussian noise and im-
pulsive noises. Compared with the counter-
parts without reassignments, the reassigned
methods are useful to improve the distribution
concentration. However, it is not capable of
minimizing the mean squared errors of instan-
taneous frequency estimation. Furthermore,
the reassigned LPP along the frequency direc-
tion (RfLPP) and the reassigned robust LPP
along the frequency direction (RfrLPP) are
preferred because they can achieve good distri-
bution concentrations and small mean square
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errors with reduced computational complexi-
ties.

Finally, application examples using the
LPFT are reviewed and potential applications
of the LPFT in the areas such as musical sig-
nal processing, interference excision in com-
munications, speech pitch and formant analy-
sis, and dispersion analysis of Lamb waves are
discussed to illuminate the future work of the
LPFT applications.
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