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On Rotated Time-Frequency Kernels
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Abstract– The principal axes of the time-

frequency representation of a signal are defined

as those mutually orthogonal directions in the

time-frequency plane for which the width of the

signal’s fractional power spectrum is minimum

or maximum. The time-frequency kernels used

in the Cohen class of time-frequency represen-

tations are then rotated in the time-frequency

plane, in order to align the kernels’ preferred

axes to the signal’s principal axes. It is shown

that the resulting time-frequency representa-

tions show a better reduction of cross-terms

without too severely degrading the autoterms

than the corresponding original time-frequency

representations.
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To represent a signal in a time-frequency
plane, many time-frequency representations
are used nowadays, each with its own ad-
vantages and disadvantages. The well-
known Wigner distribution (WD) of a multi-
component signal, for instance, shows highly
concentrated autoterms, but suffers from
cross-terms, which may even hide some of
the autoterms. Many other distributions have
been proposed to optimally represent the sig-
nal in a time-frequency plane, with signifi-
cantly reduced cross-terms but without a too
severe degrading of the autoterms. Such dis-
tributions may result from a weighting of the
WD by an appropriate time-frequency kernel,
leading to Cohen’s class of time-frequency dis-
tributions.
In this latter, we use kernels from the Cohen

class, but we rotate these kernels in the time-
frequency plane through an angle that is deter-
mined by the characteristics of the signal. In
particular, we consider the signal’s fractional
power spectrum — the squared modulus of the
fractional Fourier transform — and find its prin-
cipal axes, determined by those two orthogo-
nal directions for which the width of the frac-
tional power spectrum is minimum or maxi-
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mum, respectively. We then show that if a
kernel’s preferred axes are aligned to these two
directions, the resulting time-frequency distri-
bution shows a much better performance with
respect to the autoterms concentration and
the cross-terms reduction than the distribu-
tion that would have resulted if the original
nonaligned kernel would have been used. The
more dominantly the time-frequency content
of the signal is located along one principal axis,
the better the improvement of the resulting
time-frequency representation will be.
The proposed procedure is demonstrated on

a multicomponent signal, using some of the
well-known Cohen-class kernels.
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Let us start with the WD Wx(t, f) of a time
signal x(t), defined as

Wx(t, f) =
∫ ∞

−∞

x(t+ τ/2)x∗(t− τ/2) exp(−j2πfτ)dτ.

(1)
It is well known that the WD of a multicom-
ponent signal suffers from cross-terms. There-
fore, a weighted version of the WD is often
used as a time-frequency representation of the
signal, where the weighting kernel Φ(t, f) is
chosen such that the cross-terms are reduced
without degrading the autoterms too severely.
This leads to the Cohen class of time-frequency
representations [1]

Cx(t, f)

=

∫ ∞

−∞

∫ ∞

−∞

Φ(to, fo)Wx(t− to, f − fo)dtodfo.

(2)
Many kernels have been proposed during the
past decades [2].
In designing a kernel Φ(t, f), it is ad-

vantageous to go from the Wigner do-
main to the ambiguity domain by means
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of a Fourier/inverse Fourier transformation
(FIFT). In that case, the FIFT C̄x(τ , ν) of the
time-frequency representation Cx(t, f),

C̄x(τ, ν)

=

∫ ∞

−∞

∫ ∞

−∞

Cx(t, f) exp[−j2π(νt− fτ)]dtdf

(3)
is related to the FIFT Φ̄(τ, ν) of the ker-
nel Φ(t, f) and the ambiguity function (AF)
Ax(τ, ν)

Ax(τ , ν)

=

∫ ∞

−∞

x(t+ τ/2)x∗(t− τ/2) exp(−j2πνt)dt

(4)
by a simple product relation

C̄x(τ , ν) = Φ̄(τ , ν)Ax(τ , ν). (5)

We remark that the AF is the FIFT of the WD

Ax(τ , ν)

=

∫ ∞

−∞

∫ ∞

−∞

Wx(t, f) exp[−j2π(νt− fτ)]dtdf

(6)
and that the moments of the WD are related
to the derivatives of the AF as

∫ ∞

−∞

∫ ∞

−∞

Wx(t, f)t
nfmdtdf

=
(−1)n

(j2π)m+n
∂m+nAx(τ, ν)

∂τm∂νn

∣∣∣∣
τ=ν=0

. (7)

As examples of time-frequency kernels for
some well-known time-frequency distributions,
we mention [2]
• Wigner

1

• Born-Jordan

sin(πτν)/(πτν)

• Zhao-Atlas-Marks (cone)

g(τ)|τ | sin(πτν)/(πτν)

• Butterworth

1/[1 + (τ/τo)
2M(ν/νo)

2N ]

• Choi-Williams (exponential)

exp[−(2πτν)2/σ]

• generalized exponential

exp[−(τ/τo)2M(ν/νo)2N ]

where the Choi-Williams kernel is a special
case of the generalized exponential kernel with
M = N = 1 and σ = (2πτ0ν0)

2.
In many cases, the kernel Φ(t, f) [and

Φ̄(τ, ν)] shows a preferred behaviour in the
time and/or the frequency direction. The de-
gree of cross-term reduction (and degrading
of the autoterms) then depends on the way
in which the WD is oriented in the time-
frequency plane. If the orientation is along the
time and/or the frequency direction, the kernel
may act as expected; in the case of a different
orientation, the effect of the kernel is not op-
timal [3]. We suggest, therefore, to rotate the
kernel in such a way that its preferred axes co-
incide with the principal axes of the WD (and
the AF). Note that, although the rotated dis-
tributions may not satisfy the common mar-
ginal properties, they satisfy generalized ones
[4].

III. F��	�
���� F���

� T��������

To find the principal axes of the WD (and
the AF), we introduce the fractional Fourier
transform (FT) Xα(u) of the signal x(t), de-
fined by [5]

Xα(u) =

∫ ∞

−∞

Kα(t, u)x(t)dt (8)

where the kernel Kα(t, u) is given by

Kα(t, u)

=
exp(j 1

2
α)√

j sinα
exp

(
jπ
(t2 + u2) cosα− 2ut

sinα

)
.

(9)
Note in particular that X0(u) = x(u) and
Xπ(u) = x(−u), and Xπ/2(u) corresponds to
a normal FT.
It is well known (e.g., see [5], [6], or [7]) that

the fractional FT corresponds to a rotation of
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Fig. 1. Wigner distribution of the signal x(t).

the WD in the (t, f) plane, as well as to a
rotation of the AF in the (τ , ν) plane

WXα
(t, f)

=Wx(t cosα− f sinα, t sinα+ f cosα) (10)

AXα
(τ , ν)

= Ax(τ cosα− ν sinα, τ sinα+ ν cosα). (11)

If we introduce the fractional power spectra
|Xα(t)|2 as the squared moduli of the corre-
sponding fractional FTs, we have the following
relations between these fractional power spec-
tra on the one hand and the WD and the AF
on the other:

|Xα(t)|2 =
∫ ∞

−∞

WXα
(t, f)df (12)

|Xα(t)|2 =
∫ ∞

−∞

AXα
(0, ν) exp(j2πνt)dν.

(13)

IV. M��
��� �� ��
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����
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We now introduce the moments of the frac-
tional power spectra [8]. For the zero-order
moment E =

∫∞
−∞

|Xα(t)|2dt we have

E =

∫ ∞

−∞

∫ ∞

−∞

WXα
(t, f)dtdf = AXα

(0, 0)

(see (12) and (13), and also (7) with m = n =
0). Note that the zero-order moment repre-
sents the signal’s energy and that — in accor-
dance with Parseval’s theorem for a unitary
transformation — it does not depend on α.

For the (normalized) first-order moments
mα, with mαE =

∫∞
−∞

|Xα(t)|2tdt, we may
proceed along the same lines, now chosing
m = 0 and n = 1 in (7). Note that the
first-order moments are related to the centers
of gravity of the fractional power spectra and
that they satisfy the relationship

mα =m0 cosα+mπ/2 sinα.

For the (normalized) second-order moments
wα, with wαE =

∫∞
−∞

|Xα(t)|2t2dt, we have

wαE =

∫ ∞

−∞

∫ ∞

−∞

WXα
(t, f)t2dtdf

=
1

(2πj)2
∂2AXα

(0, ν)

∂ν2

∣∣∣∣
ν=0

(14)

(see (7) with m = 0 and n = 2). We also
introduce the mixed second-order moments of
the WD and the mixed second-order deriva-
tive of the AF, while defining the (normalized)
mixed second-order moments µα (see (7) with
m = n = 1)

µαE =
1

4πj

×
∫ ∞

−∞

[
∂Xα(t)

∂t
X∗

α(t)−Xα(t)
∂X∗

α(t)

∂t

]
tdt

=

∫ ∞

−∞

∫ ∞

−∞

WXα
(t, f)tfdtdf

=
−1

(2πj)2
∂2AXα

(τ , ν)

∂τ∂ν

∣∣∣∣
τ=0,ν=0

. (15)

We remark that instead of the second-order
moments wα and µα, we could as well consider
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Fig. 2. Butterworth distribution of the signal x(t) (a) without alignment and (b) with alignment of the kernel.

the central second-order moments wα−m2
α and

µα−mαmα+π/2, which lead to similar expres-
sions as the ones that we find for the normal
moments. Note that the central second-order
moments are related to the effective widths of
the fractional power spectra.
The second-order moments satisfy the rela-

tionships

wα = w0 cos
2 α+wπ/2 sin

2 α+µ0 sin 2α (16)

µα = −(1/2)(w0 −wπ/2) sin 2α+ µ0 cos 2α.
(17)

In general, all second-order moments wα and
µα can be obtained from any three second-
order moments wα taken for three different
angles α from the region [0, π); we have,
for instance, µ0 = wπ/4 − (1/2)(w0 + wπ/2).
This implies that the corresponding three frac-
tional power spectra define all second-order
moments.
From (16) we conclude that the sum of the

moments wα +wα+π/2 does not depend on α

wα +wα+π/2 = w0 +wπ/2 (18)

and from (17) we conclude that

µα + µα+π/2 = 0. (19)

From (16) it is easy to see that the first
derivative of wα with respect to the angle α
equals zero for α = αe, where αe satisfies the

relationship

tan 2αe =
2µ0

w0 −wπ/2
=
2wπ/4 − (w0 +wπ/2)

w0 −wπ/2
.

(20)
From the invariance relationship (18) we con-
clude that αe determines the domain with the
smallest wα, while αe ± π/2 corresponds to
the domain with the largest wα or vice versa.
Moreover, from (17), (19), and (20) we also
conclude that µαe = µαe±π/2 = 0.
We now identify the direction αe with one of

the principal axes, and the direction αe ± π/2
with the other one. If Φ(t, f) denotes the time-
frequency kernel that we use, the rotated ver-
sion reads Φ(t cosα+f sinα,−t sinα+f cosα),
and the general Cohen-class time-frequency
represenation takes the form

Cx(t, f) =

∫ ∞

−∞

∫ ∞

−∞

Wx(t− to, f − fo)×

Φ(to cosα+fo sinα,−to sinα+fo cosα)dtodfo.
(21)

Note that we can also write

CXα
(t, f)

=

∫ ∞

−∞

∫ ∞

−∞

WXα
(t−to, f−fo)Φ(to, fo)dtodfo.

(22)

V. E ����
�

As an example, consider the signal

x(t) = exp[−(3t)8]
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Fig. 3. Generalized exponential distribution of the signal x(t) (a) without alignment and (b) with alignment of
the kernel.

×{exp[j(192πt2 − 8 cos(4πt)/π)]

+ exp[j(64πt2 + 8cos(4πt)/π)]}. (23)

The values of the normalized central moments
are w0 = 1, wπ/2 = 1.38, and wπ/4 = 0.07.
From (20), we get αe = 41◦ or αe = −49◦.
The second-order moment in the direction 41◦

is smaller than in any other direction: w41◦ =
0.057, while the second-order moment in the
orthogonal direction is the largest: w−49◦ =
2.01.
The WD of this signal has been depicted

in Fig. 1. In Figs. 2-4, we have depicted
the time-frequency representations that result
from weighting this WD with several kernels,
without and with alignment of the kernels to
the principal axes (41◦ and−49◦, respectively)
of the WD:
• Fig. 2: Butterworth, with M = 1 and N =
3;
• Fig. 3: generalized exponential, with M = 1
and N = 3;
• Fig. 4: Zhao-Atlas-Marks (cone), with
g(τ) = cos2(πτ).
The kernel parameters have been chosen

such that for the signal under consideration
the corresponding distributions show optimal
results.
According to (21) and (22), the three time-

frequency distributions from the Cohen class
are realized as a weighted WD, where the
weighting kernel Φ(t, f) is the FIFT of Φ̄(τ , ν).

A region −1/2 ≤ τ < 1/2, −128π ≤ 2πν <
128π in the ambiguity domain is considered.
This corresponds to the time interval T = 1
and the sampling interval ∆t = 1/128. In dis-
cretization, 128 samples are taken along each
ambiguity axis, and the two-dimensional in-
verse FIFT of the Φ̄(τ , ν)-samples is calcu-
lated. The matrix Φ(n, k) obtained in this way
is convolved with the WD, according to (21)
and (22) (original and rotated, respectively).
The size of the obtained Cohen-class distribu-
tion is kept the same as the size of the WD, us-
ing the command conv2(WD,Kernel,’same’) in
Matlab. The parameters τo, νo, M , and N for
the Butterworth and the generalized exponen-
tial distribution are τo = 0.05, 2πνo = 25.6π,
M = 1, and N = 3, while the window g(τ) in
the Zhao-Atlas-Marks distribution is a Han-
ning window: g(τ) = cos4(πτ).

We conclude that the performance with re-
spect to the autoterms concentration and the
cross-terms reduction is better for the aligned
kernels than for the nonaligned ones.

Note that we have chosen kernels whose
time-behaviour is significantly different from
the frequency-behaviour; kernels that depend
on the product τν only — such as the ones that
lead to the Born-Jordan, the Choi-Williams
(exponential), or the reduced interference dis-
tribution, for instance — do not show a clear
improvement in cross-term reduction when
they are rotated. Such kernels could be used,
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Fig. 4. Zhao-Atlas-Marks (cone kernel) distribution of the signal x(t) (a) without alignment and (b) with
alignment of the kernel.

of course, after having been modified by an ad-
ditional narrowing window in the τ direction;
cf. the Zhao-Atlas-Mark (cone) kernel, which
differs from the Born-Jordan kernel by the ad-
ditional window g(τ)|τ |.
We finally remark that we have consid-

ered the rotation of standard kernels. The
same effect can be achieved by using standard
kernels with an additional ambiguity domain
axis corresponding to the determined princi-
pal axis, and generalized-marginal distribu-
tions [4]. Since, in this way, we introduce an
additional rotated axis, the obtained results
are very similar with the ones presented in this
letter. These results will be presented in one
of our next papers.

VI. C��	���
��

The fractional power spectrum — i.e., the
squared modulus of the fractional FT of a sig-
nal — is considered, and the signal’s principal
axes are defined as the two orthogonal direc-
tions for which the fractional power spectrum
has a minimum or maximum width. A Cohen-
class kernel that is used to smooth the WD
is then rotated in the time-frequency plane
and oriented such that its preferred axes are
aligned to these two directions. It is shown
that the resulting time-frequency distribution
yields a better cross-term reduction (without
a too severe degrading of the autoterms) than
the corresponding original distribution.
The better the signal is located along one

principal axis, the better the improvement of
the resulting time-frequency distribution will
be. In the case that there is no clear princi-
pal direction, or there is more than one such
direction, the procedure described might not
yield a clear improvement. The case of mul-
tiple principal directions will be a subject for
future work.
The method of aligning kernels to the sig-

nal’s principal axes can be applied to rather
arbitrary time-frequency representations. In
a forthcoming paper, we will demonstrate its
effect on the weighting of the WD using the
generalized [9] S-method [10], in which case
the kernels in the ambiguity domain and the
Wigner domain are given by

Φ̄(τ , ν)

=

∫ ∞

−∞

Aγ(−τ + θ sinα,−ν + θ cosα)z(θ)dθ

(24)
Φ(t, f)

=Wγ(−t,−f)Z(−[t cosα− f sinα]) (25)

respectively where Z(f) is the FT of z(t).
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