
TIME-FREQUENCY SIGNAL ANALYSIS 117

Signal Reconstruction from Two Close
Fractional Fourier Power Spectra
Tatiana Alieva, Martin J. Bastiaans, and LJubiša Stanković

Abstract– Based on the definition of the in-
stantaneous frequency (signal phase derivative)
as a local moment of the Wigner distribu-
tion, we derive the relationship between the
instantaneous frequency and the derivative of
the squared modulus of the fractional Fourier
transform (fractional Fourier transform power
spectrum) with respect to the angle parameter.
We show that the angle derivative of the frac-
tional power spectrum can be found from the
knowledge of two close fractional power spec-
tra. It permits us to find the instantaneous fre-
quency and to solve the phase retrieval problem
up to a constant phase term, if only two close
fractional power spectra are known. The pro-
posed technique is noniterative and noninter-
ferometric. Efficiency of the method is demon-
strated on several examples including mono-
component, multicomponent, and noisy signals.
It is shown that the proposed method works
well for signal-to-noise ratios (SNRs) higher
than about 3 dB. The appropriate angular dif-
ference of the fractional power spectra used for
phase retrieval depends on the complexity of
the signal and can usually reach several degrees.

Other applications of the angular derivative
of the fractional power spectra for signal analy-
sis are discussed briefly.

The proposed technique can be applied for
phase retrieval in optics, where only the frac-
tional power spectra associated with intensity
distributions can be easily measured.

I. I������	�
��

Phase retrieval and instantaneous frequency
estimation from the distributions associated
with the instantaneous power of the signal,
its Fourier power spectrum, or, more gener-
ally, its fractional power spectra, are impor-
tant problems in signal processing, radio loca-
tion, optics, quantum mechanics, etc. In spite
of the existence of several successful iterative
algorithms for phase reconstruction from the
squared modulus of the signal and its power
spectrum, or its Fresnel spectrum, that were
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proposed recently [1]-[4], the development of
noniterative procedures remains an attractive
research topic.

Fractional power spectra, which are the
squared moduli of the fractional Fourier trans-
form (FT) [5], are now a popular tool in optics
and signal processing [5]-[13]. As it is known,
they are equal to the projections of the Wigner
distribution of the signal under consideration
[13], [14]. Thus, by using a tomographic ap-
proach and the inverse Radon transform, the
Wigner distribution — and therefore the signal
itself, up to a constant phase term — can be
reconstructed if all its projections are known
[6], [9]. The method is based on the rotation
in the time-frequency plane of the Wigner dis-
tribution under fractional FT. It demands the
measurements of the fractional FT spectra in
the wide angular region [0, π), which is some-
times impossible or very cost consuming [6].

A different approach for phase retrieval,
based on the so-called transport-of-intensity
equation in optics, was proposed by Teague
[15] and then further developed in [16]-[18].
It was shown that the longitudinal derivative
of the Fresnel spectrum is proportional to the
transversal derivative of the product of the in-
stantaneous power and the instantaneous fre-
quency of the signal.

In this paper, we show that a relationship
similar to the transport-of-intensity equation
for Fresnel diffraction also holds for the frac-
tional FT system. We derive that the in-
stantaneous frequency, or the first derivative
of the signal’s phase, at any fractional do-
main is determined by the convolution of the
angular derivative of the corresponding frac-
tional power spectrum and the signum func-
tion. Based on this, we propose a new method
for the reconstruction of the signal’s phase
from only two close fractional FT spectra,
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i.e., only two Wigner distribution projections.
Some preliminary results on this topic were
published in [20], [21]. This approach signif-
icantly reduces the need for projections mea-
surements and calculations. Moreover, it is
direct and does not use iterative procedures.
Note that the Gerchberg-Saxton algorithm ap-
plied in the fractional Fourier domain for phase
retrieval from two fractional FT power spectra
for angles α and α+∆α becomes unstable and
does not converge if ∆α < 15◦ [1], while our
method works especially for small ∆α.

We show that this technique can also be
applied for signal reconstruction from certain
projections of other time-frequency distribu-
tions from the Cohen class [19]. The appli-
cation of angular derivative of the fractional
power spectrum for signal/image processing is
discussed.

The efficiency of the proposed method is
illustrated on several examples. In particu-
lar, the reconstruction of monocomponent and
multicomponent PM signals from several pairs
of close fractional FT power spectra is consid-
ered. The influence of noise and angle differ-
ence to the estimation of angular derivative of
the fractional power spectrum, and to the re-
construction quality is investigated. Note that
the noise robustness was not considered in [1]-
[4]. These papers were devoted to the recursive
algorithms for phase retrieval from the frac-
tional FT power spectra. Signal reconstruc-
tion from fractional power spectra taken in the
fractional Fourier domain, where the instanta-
neous power of a signal significantly changes,
is considered. We discuss the reconstruction
of the signal with zero-amplitude region.

The paper is organized as follows. In Sec-
tion II, we present a review of the definition
of the fractional FT, as well as the relation-
ship between the fractional FT power spectra
and the ambiguity function of a signal. In Sec-
tion III the connection between the instanta-
neous frequency in a fractional domain and the
angular derivative of the fractional FT power
spectra is established. Similar relationships
between the projections of Cohen’s class dis-
tributions and the instantaneous frequency are
briefly discussed. Some practical issues with
respect to phase retrieval from two close frac-

tional FT power spectra are discussed in Sec-
tion IV. Useful relationships for signal/image
analysis, including the derivatives of fractional
spectra, are given in Section V. In Section VI
we discuss the discrete version of the proposed
phase retrieval method. Section VII is devoted
to the demonstration of its efficiency on sev-
eral examples. The advantages of the new al-
gorithm and its possible applications are dis-
cussed in the Conclusions.

II. F��	�
���
 P���� S��	��� ���

A��
��
�� F��	�
��

The fractional FT of a function x(t) can be
written in the form [5]

Rα[x(t)](u) = Xα(u) =

∞∫

−∞

K(α, t, u)x(t)dt,

(1)
where the kernel K(α, t, u) , which is a gener-
alized function, is given by

K(α, t, u) =
ej

1
2α√

j sinα
ejπ

(t2+u2) cosα−2ut
sinα . (2)

Thus, for α = 0 and α = π the kernel
K(α, t, u) reduces to the Dirac delta functions
δ(x − u) and δ(x + u), respectively; therefore
X0(u) = x(u) and Xπ(u) = x(−u). The frac-
tional FT can be considered as a generalization
of the ordinary FT: For the parameter values
α = 1

2π and α = −1
2π, the transforms Xπ/2(u)

and X−π/2(u) correspond to the ordinary for-
ward and inverse FT, respectively. The frac-
tional FT is additive in the parameter α and
periodic with a period 2π. Due to the fact that
the fractional FT corresponds to a rotation of
the Wigner distribution [19]

Wx(t, f) =

∞∫

−∞

x(t+ 1
2τ)x

∗(t− 1
2τ)e

−j2πfτdτ,

and the ambiguity function

Ax(τ , ν) =

∞∫

−∞

x(t+ 1
2τ)x

∗(t− 1
2τ)e

−j2πντdt,

of the function x(t), the parameter α can be
interpreted as a rotation angle in the phase
plane.
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It is well known that the fractional power
spectra |Xα(u)|2, i.e., the squared moduli of
the fractional FT, are equal to the projections
of the Wigner distribution Wx(t, f) of the sig-
nal x(t)

|Xα(u)|2 =
∞∫

−∞

∞∫

−∞

Wx(t, f)δ(t cosα+ f sinα− u)dfdt

=

∞∫

−∞

Wx(u cosα− f sinα, u sinα+f cosα)df.

(3)
The set of fractional power spectra in the an-
gular region [0, π) is also called the Radon-
Wigner transform. The implementation of the
inverse Radon transform permits the recon-
struction of the Wigner distribution from this
set.
Since the ambiguity function Ax(τ, ν) is the

two-dimensional (2-D) FT of the Wigner dis-
tributionWx(t, f), the values of the ambiguity
function along the line defined by α are — ac-
cording to the Radon transform properties —
equal to the FT of the Wigner distribution
projection for the same α [7], [9]:

Ax(R sinα,−R cosα) =
∞∫

−∞

|Xα(u)|2 exp(j2πRu)du. (4)

We can also say that the fractional power spec-
trum |Xα(u)|2 is the FT with respect to the ra-
dius variable R of the ambiguity function rep-
resented in polar coordinates.

III. W
���� D
���
���
�� P����	�
���

��� I������������ F������	
��

In this section we, derive that the well-
known expression for the instantaneous fre-
quency f0(t) at the time moment t [19]

f0(t) =

∫∞
−∞

fWx(t, f)df∫∞
−∞

Wx(t, f)df

=
1

2πj

1

|x(t)|2

∞∫

−∞

∂Ax(τ, ν)

∂τ

∣∣∣∣
τ=0

ej2πtνdν (5)

can be written in terms of the fractional power
spectra. Indeed, using the relationship [20]

∂Ax(τ , ν)

∂τ

∣∣∣∣
τ=0

=

−1
ν

∞∫

−∞

∂ |Xα(u)|2
∂α

∣∣∣∣∣
α=0

e−j2πνudu, (6)

and taking into account that f0(t) assumes real
values, we get

f0(t) =
−1

2π |X0(t)|2

∞∫

−∞

∞∫

−∞

∂ |Xα(u)|2
∂α

∣∣∣∣∣
α=0

× sin(2πν(t− u))
ν

dudν.

Supposing that the derivative of the fractional
power spectra is a continuous function of u,
we change the order of integration. Then we
obtain that

f0(t) =
−1

2 |X0(t)|2

×
∞∫

−∞

∂ |Xα(u)|2
∂α

∣∣∣∣∣
α=0

sgn(t− u)du, (7)

where sgn(t) is the signum function:

sgn(t) = 2
π

∞∫

0

sin(νt)

ν
dν =






1 for t > 0,
0 for t = 0,

−1 for t < 0.
(8)

We thus get for the signal x(t) = |X0(t)|
× exp[jϕ0(t)], that its phase derivative ϕ′0(t) =
dϕ0(t)/dt = 2πf0(t) is determined by the in-
tensity |X0(t)|2 and the convolution of the
signum function with the angular derivative of
the fractional power spectrum ∂|Xα(u)|2/∂α
at the angle α = 0.
Note that for a real-valued signal, the an-

gular derivative of its fractional power spec-
tra equals zero for α = 0. This is in accor-
dance with the fact that the fractional FT
of a real-valued signal x(t) satisfies the sym-
metry relation X−α(u) = X∗

α(u), and thus

|X−α(u)|2 = |Xα(u)|2.
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Because of the properties of the fractional
FT, (7) can easily be generalized for an arbi-
trary angle α �= 0 [20]

fβ(r) =
−1

2 |Xβ(r)|2

×
∞∫

−∞

∂ |Xα(u)|2
∂α

∣∣∣∣∣
α=β

sgn(r − u)du, (9)

where |Xβ(r)|2 and fβ(r) are the instanta-
neous power and the instantaneous frequency
of the signal in the fractional FT domain cor-
responding to the angle β. We notice that in
general the reconstruction of the instantaneous
frequency has sense if the amplitude is non
zero. Therefore, in general, we suppose that
|Xβ(r)|2 does not take zero values. Neverthe-
less, as we will show in Section VII (Example
2) the instantaneous frequency can be success-
fully reconstructed in the intervals limited by
the zero-crossings of the amplitude.
The instantaneous frequency of the signal

x(r) = X0(r) can also be found from close
projections pcα(u) of other time-frequency dis-
tributions from the Cohen class [19] Cx(t, f)
satisfying the generalized marginal property.
A Cohen class distribution is a 2-D FT of
the generalized ambiguity function Acx(τ, ν) =
Ax(τ, ν)c(τ , ν), where the choice of the func-
tion c(τ , ν) depends on the particular applica-
tion. According to the Radon transform prop-
erties, we then get [cf. (4)]

Ax(R sinα,−R cosα)c(R sinα,−R cosα)

=

∞∫

−∞

pcα(u) exp(j2πRu)du, (10)

where

pcα(u) =

∞∫

−∞

∞∫

−∞

Cx(t, f)δ(t cosα+ f sinα− u)dfdt,

cf. (3). For distributions satisfying the general-
ized marginal property c(R sinβ,−R cosβ) =
1 for a certain angle β, we get pcβ(u) =

|Xβ(u)|2. Hence, for these Cohen class dis-
tributions, we can expect that [cf. (9)]

fβ(r) =
−1

2 pcβ(r)

∞∫

−∞

∂pcα(u)

∂α

∣∣∣∣
α=β

sgn(r−u)du.

(11)
A special and important member of the Co-

hen class is the pseudo Wigner distribution,
which, as well as the Wigner distribution itself,
is often used in numerical implementations.
For this distribution, we have c(τ , ν) = w(τ),
where w(τ) = w∗(−τ) is an appropriately cho-
sen window function with w(0) = 1. For β →
0 we get c(R sinβ,−R cosβ) → c(0,−R) =
w(0) = 1. Therefore, this lag window does not
significantly influence the quality of the signal
reconstruction as long as β is small.

IV. P���� R���
� �
 F��� T�� C
���

F��	�
���
 FT P���� S��	���

In general, the complex-valued fractional
FT Xβ(r) = |Xβ(r)| exp[jϕβ(r)], and, in
particular, the signal x(t) = X0(t), can be
completely reconstructed (except for a con-
stant phase shift) from its intensity distribu-
tion |Xβ(r)|2 and its instantaneous frequency
fβ(r). Since dϕβ(r)/dt = 2πfβ(r), the phase

ϕβ(r) = 2π
r∫

C

fβ(ρ)dρ can be reconstructed up

to a constant term. Constant C produces a
phase uncertainty. Since the instantaneous fre-
quency is determined by the angular deriva-
tive of the fractional power spectra (see (7)
and (9)), this implies that only two fractional
power spectra for close angles suffice to solve
the signal retrieval problem, up to the constant
phase term. Indeed, as it follows from the Tay-
lor expansion of the fractional power spectrum
in the region where the linear approximation
with respect to the parameter α is valid, we
can represent its angular derivative as

∂ |Xα(u)|2
∂α

∣∣∣∣∣
α=β

≈

≈ lim
α→0

|Xβ+α(u)|2 − |Xβ−α(u)|2
2α

. (12)

The accuracy of this approximation is
O(α2∂3 |Xα(u)|2 / ∂α3

∣∣
α=β

). Moreover, from
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the knowledge of two fractional power spec-
tra |Xβ+α(u)|2 and |Xβ−α(u)|2, the fractional
power spectrum |Xβ(u)|2 can be found as

|Xβ(u)|2 = 1
2

(
|Xβ+α(u)|2 + |Xβ−α(u)|2

)

+ O

(
α2 ∂2 |Xα(u)|2 /∂α2

∣∣∣
α=β

)
. (13)

Because x(t) is related to Xβ(r) through the
inverse fractional FT, we can conclude that the
signal phase can be reconstructed up to a con-
stant term — in a noniterative way — from any
two fractional power spectra taken for close
angles. The choice of the appropriate angular
difference α depends on the complexity of the
signal.
Beside the general importance of the non-

iterative and noninterferometric phase recon-
struction from the intensity information only,
this technique can be applied to the filter-
ing operation. It has been shown that, in
some cases, filtering is more effective in the
fractional FT domain than in the Fourier do-
main [23]. Thus, for example, filtering of the
linear-PM signal exp(jπct2) can be success-
fully performed in the fractional domain for
which the angle parameter α satisfies the con-
dition cosα+c sinα = 0 [5]; see Case 1 of Sec-
tion V. Another example [23] is related to the
signal—noise separation in a certain fractional
domain.
Often, for example in optics, only informa-

tion about the fractional FT spectra is avail-
able. Before applying the proposed signal re-
construction technique, an appropriate filter-
ing (modification) of the corresponding frac-
tional FT spectra can be carried out. Cer-
tainly, after this operation, the fractional FT
spectra have to remain positive valued. The
simplest modifications of two close fractional
FT spectra are related to the elimination of
the undesirable peaks associated with concen-
tration of linear-PM components or of noise-
only regions.

V. S
���
 A��
��
� ��� F��	�
���
 FT

P���� S��	��� D��
 ��
 ��

In this section, we briefly discuss other prob-
lems that can be solved from the analysis of the

derivatives of the fractional FT power spec-
trum. This topic becomes especially impor-
tant if the signal itself is not known, and only
its close fractional FT power spectra (Wigner
distribution projections) are available. Such a
situation occurs in optics, for example, where
only intensity distributions related to the frac-
tional power spectra can easily be measured.
As we have seen, the instantaneous fre-

quency (or normalized first derivative of the
phase) of a signal in the fractional β domain
is related to the angular derivative of the frac-
tional power spectrum by (9). Then, by using
the relationship (d/dr) sgn(r) = 2 δ(r), we ob-
tain the expression for the second derivative of
the phase

d2ϕβ(r)

dr2
= − 2

|Xβ(r)|
∂|Xβ(r)|
∂r

dϕβ(r)

dr

− 2π

|Xβ(r)|2
∂ |Xα(r)|2

∂α

∣∣∣∣∣
α=β

(14)

which can be written in a more compact form

∂ |Xα(r)|2
∂α

∣∣∣∣∣
α=β

= − 1

2π

d

dr

[
|Xβ(r)|2

dϕβ(r)

dr

]
.

(15)
Note that (14) and (15) can be obtained
by a direct differentiation of the fractional
power spectrum or from the nonstationary
Schrödinger equation for a harmonic oscillator,
whose propagator is the fractional FT kernel.
This result resembles the so-called transport-
of-intensity equation, which deals with the
Fresnel transformation [15]-[17]. This is not
surprising, since both the fractional FT and
the Fresnel transform belong to the class of
canonical integral transforms, and the proper-
ties of any member of this class are related as
well.
Although, in this paper we consider one-

dimensional signals, the main results can be
extended to the multi-dimensional case. In
particular the application of the 2-D, anamor-
phic fractional FT allows one to obtain in-
formation about the partial derivatives of the
phase. Thus, (15) can be generalized as

∂
∣∣Xα1,0(r1, r2)

∣∣2

∂α1

∣∣∣∣∣
α1=β1
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= − 1

2π

∂

∂r1

[
|Xβ1,0(r1, r2)|2

∂ϕβ1,0(r1, r2)

∂r1

]
.

(16)
Below, we assume that at the fractional

(β = 0)-domain, some a priori knowledge
about the signal behavior is available. In par-
ticular, phase- and amplitude-modulated sig-
nals will be considered.
Case 1) Phase-Modulated Signal — Polyno-

mial Phase Estimation: For phase-modulated
signals x(r) = A exp[jϕ(r)],where |x(r)| = A
is a constant, (14) reduces to

d2ϕ(r)

dr2
= − 2π

|A|2
∂ |Xα(r)|2

∂α

∣∣∣∣∣
α=0

, (17)

and the n-th derivative of the phase for n ≥ 2
can be written as

dnϕ(r)

drn
= − 2π

|A|2
∂n−2

∂rn−2
∂ |Xα(r)|2

∂α

∣∣∣∣∣
α=0

(18)

In many applications, such as radar, sonar,
and communications, polynomial phase signals

ϕ(r) =
N∑

n=0

anr
n, (19)

with constant or slowly varying amplitude A
are used as a model. Then, the angular deriv-
ative of the fractional FT spectra can also be
represented as a polynomial function

∂ |Xα(r)|2
∂α

∣∣∣∣∣
α=0

= −|A|
2

2π

N∑

n=2

n(n− 1)anrn−2.

(20)
In this case, the coefficients an for n ≥ 2 can be
found as the best fitting to the angular deriv-
ative of the fractional power spectrum or as

an = −
1

n!

2π

|A|2
∂n−2

∂rn−2
∂ |Xα(r)|2

∂α

∣∣∣∣∣
α=0,r=0

,

(21)
where the first method is more noise robust.
This result can easily be checked for the
quadratic chirp signal x(t) = exp

(
jπct2

)
, for

which the fractional power spectrum |Xα(r)|2
takes the form |cosα+ c sinα|−1, cf. [5]; note
that|Xα(r)|2 is independent of r. Finally,

we obtain∂ |Xα(r)|2 /∂α
∣∣∣
α=0

= −c, and thus,
a2 = πc.
Although this method does not permit to

reconstruct the coefficients a0 and a1 in the
decomposition (19), it can be useful for the
estimation of the higher order coefficients be-
couse of its relative simplicity. Otherwise, the
full algorithm, which is described in Sections
III and IV, has to be applied.
Case 2) Phase-Modulated Signal — Edge De-

tection: The application of high-resolution
phase spatial light modulators in optics, which
permits the phase of the optical field ϕ(r) to
be proportional to an image g(r), makes opti-
cal image processing more flexible. One of the
important problems of image analysis is the lo-
calization of its edges. In spite of the fact that
in digital image processing the diverse algo-
rithms for edge detection are successfully im-
plemented, not all of them are appropriated
for optical image processing. Similar to the
method proposed in [22], which is based on
Fresnel diffraction, the positions of the edges
can be found as the zero-crossings of the angu-
lar derivative of the fractional power spectrum.
Indeed, for the 2-D, phase-modulated signal
f(r) = A exp[jϕ(r)] = A exp[jkg(r)], where k
controls the depth of the phase modulation,
(17) can be generalized as

	2ϕ(r) = k	2 g(r) = − 2π

|A|2
∂ |Xα(r)|2

∂α

∣∣∣∣∣
α=0

,

(22)
where 	2 stands for the Laplacian opera-
tor. The zero-crossings of the fractional power
spectra, ∂|Xα(r)|2/∂α|α=0 = 0, thus corre-
spond to the zero-crossings of 	2g(r) and,
therefore, determine the positions of the im-
age edges.
Case 3) Amplitude-Modulated Signals — Ex-

tremum Point Detection: Let us consider a 2-
D signal x(r) = A(r) exp(j2πkr), where k is a
constant vector andA(r) > 0. This type of sig-
nals in particular arises after propagation of a
plane wave through an amplitude screen with
transmittance function A(r). In this case, it
follows from (15) that the angular derivative of
the fractional power spectrum is proportional
to the positional derivative of the signal’s in-
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tensity

∂ |Xα,0(r)|2
∂α

∣∣∣∣∣
α=0

= −k1
d|A(r)|2
dr1

, (23)

and its zero-crossings thus correspond to the
extremum points of |A(r)|2 and A(r). We
believe that this relationship can be helpful
for modeling of early vision systems where
the scratch of the image, i.e., the maxima of
A(r), can be obtained from the knowledge of
two close defocussed images associated with
|Xα1,α2(r)|2.

VI. D
�	���
#��
�� �$ ��� A
���
���

In this section, we will discuss the dis-
crete version of the phase retrieval technique
proposed in Section III. We suppose that
two fractional power spectra |Xβ−α(nT )|2 and
|Xβ+α(nT )|2 (corresponding to two Wigner
distribution projections) at the close angles
β − α and β + α , where α is small (for ex-
ample α 
 10), are known for a set of equidis-
tant sensor points. The fractional power spec-
tra |Xβ−α(nT )|2 and |Xβ+α(nT )|2 can be ob-
tained in several ways:
i) measured in experiments (a simple optical
setup for the measurements of the fractional
power spectra was described in [24]);
ii) calculated as the squared moduli of the cor-
responding fractional FT of x(t);
iii) calculated as the Radon transform of the
Wigner distribution of x(t) for two angles β±
α.
The discrete version of (9) for the estima-

tion of the instantaneous frequency in the frac-
tional β domain can then be written in the
form

f̂β(nT ) = −
1

2α

T

2 |Xβ(nT )|2

=
[
|Xβ+α(nT )|2 − |Xβ−α(nT )|2

]
∗n sgn(nT ),

(24)
where T is the discretization step, and ∗n de-
notes a discrete-time convolution. In order
to avoid a separate estimation of |Xβ(nT )|2,
the denominator 2|Xβ(nT )|2 can, at least for
small α, be approximated by |Xβ+α(nT )|2 +
|Xβ−α(nT )|2.

The reconstructed signal at the fractional β
domain can, up to the constant phase term, be
found as

X̂β(nT ) =

|Xβ(nT )| exp
[

j
n∑

m=−M

2πf̂β(mT )T

]

, (25)

where N is chosen such that fβ(nT ) = 0 for
n < −M . In the case when two fractional
FT spectra are taken around the angle β = 0,
X̂0(nT ) = x̂(nT ) corresponds to the recon-
structed version of the original signal. For
β �= 0, a subsequent discrete version of the
fractional FT for the angle −β has to be ap-
plied to X̂β(nT ) in order to reconstruct the
original signal. Several algorithms for calcula-
tion of the fractional FT have been proposed
in [25]-[27].
In what follows, we will illustrate in sev-

eral numerical examples how the signal, up to
a constant phase term, can be reconstructed
from two close fractional power spectra only,
i.e., from two Wigner distribution projections.
In order to emphasize the quality of the re-
construction, we will also show the pseudo
Wigner distribution of the original and the re-
constructed signal. The pseudo Wigner distri-
bution is calculated according to its definition

Wx̂(n, k) = 2T
N−1∑

m=−N

x̂[(n+m)T ]x̂∗[(n−m)T ]

× w(mT ) exp(−j2πmk/N), (26)

where w(nT ) is an appropriately chosen win-
dow function, and the value of N is chosen
such that x̂(nT ) 
 0 for |n| ≥ N .
Note that by choosing an appropriate win-

dow function, the signal reconstruction can
also be achieved from two close projections of
the pseudo Wigner distribution as long as the
angle β is small; see Section III.

VII. E&���
��

In this section we demonstrate the efficiency
of the proposed algorithm on various exam-
ples.
Example 1— Monocomponent Signal With

Monotonic Instantaneous Frequency: We start
with the reconstruction of a monocomponent
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signal, whose instantaneous frequency is a
monotonic function. A signal of the form

x(t) = e−(2.25t)
8 × ej

∫
t

−∞
[360 arctan (20t)+256π]dt

(27)

is considered inside the time interval |t| ≤ 1/2,
with T = 1/1024. Its pseudo Wigner distrib-
ution is calculated, by using a Hanning win-
dow w(t) having a width Tw = 1/8. After
the Wigner distribution has been obtained,
we assume that only two of its projections,
for angles α = −1◦ and α = 1◦, sampled
at 2N = 1024 points are known. Note that
these two fractional power spectra |Xα(nT )|2
and |X−α(nT )|2 (α = 1◦), can be measured in
an optical system. In our case, these two pro-
jections are simulated by using the MATLAB
Radon function, taking the pseudoWigner dis-
tribution matrix as the argument. The de-
scribed procedure [cf. (24)] is then used for the
reconstruction of the signal’s instantaneous
frequency, its phase, and the signal itself [(25)],
from these two projections only.
The original pseudo Wigner distribution is

given in Fig. 1(a). Its Radon-Wigner trans-
form |Xα(nT )|2 for angles α ∈ [0◦, 180◦) [cf.
(3)] is presented in Fig. 1(b). The differ-

ence of the two projections, (|Xα(nT )|2 −
|X−α(nT )|2)/2α for α = 1◦ is shown in
Fig. 1(c). The reconstructed instantaneous
frequency and the reconstructed phase are
given in Fig. 1(d) and (e), respectively, by a
dash-dot line, whereas the original, exact val-
ues are represented by solid lines. We can see
that the agreement between the reconstructed
and the original instantaneous frequency is
very high. The phase has a constant shift, as
expected. In order to demonstrate the quality
of the signal reconstruction, the reconstructed
pseudo Wigner distribution calculated accord-
ing to (26) is given in Fig. 1(f).
Example 2 — Monocomponent Signal With

Nonmonotonic Instantaneous Frequency: Next,
we consider a signal with a nonmonotonic in-
stantaneous frequency

x(t) = e−(2.25t)
8{1− e−(20t)20}ej

∫
t

−∞
ωi(t)dt

ωi(t) = 256π + 128π sgn(cos(8πt+ π/4))

×
√
|cos(8πt+ π/4)|. (28)

The peculiarity of this signal is that it has a
region with almost zero amplitude. The dis-
cretization parameters are the same as in Ex-
ample 1. Fig. 2 shows the original pseudo
Wigner distribution, its Radon transform, the
difference of two projections, and the recon-
structed instantaneous frequency, phase, and
pseudo Wigner distribution. As in the previ-
ous example, a high-quality reconstruction of
the instantaneous frequency and phase, out-
side the zero amplitude region, is observed.
Certainly, the phase reconstruction inside the
region of zero amplitude has no sense. Since
this signal can be considered as the concatena-
tion of two different parts, the reconstructed
phase of both parts is in good agreement
with the original one, up to different constant
terms.
Example 3 — Multicomponent Signal: The

reconstruction of a multicomponent signal,

x(t) = e−(2.25t)
8

×{ej
∫
t

−∞
ω1(t)dt + 0.5e

j
∫
t

−∞
ω2(t)dt}

ω1(t) = 128π sin(4tπ) + 256π

ω2(t) = 512π |t|+ 128π, (29)

is considered in this example. Note that the
instantaneous frequency of this signal shows
a rather complex form. Nevertheless, for this
multicomponent signal we are still able to ob-
tain a satisfactory reconstruction of the phase
and the pseudo Wigner distribution, using
only two close fractional power spectra (see
Fig. 3). The discretization parameters are the
same as in Example 1 (β = 0, α = 1◦).
Example 4 — Reconstruction of a Mono-

component Signal From Projections Around a
Nonzero Angle: In this example, we consider
the reconstruction of a signal that is similar to
that in Example 1

x(t) = e−(3.5t)
8 × ej

∫
t

−∞
15π sinh−1(100t)dt (30)

but from two close projections around the an-
gle where the instantaneous power of the sig-
nal changes significantly. Now we use a wide
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Fig. 1. Monocomponent signal with monotonic instantaneous frequency and its reconstruction from two close
fractional power spectra. (a) Original pseudo Wigner distribution. (b) Projections of the pseudo Wigner
distribution (Radon-Wigner transform). (c) Derivative approximation: difference of two close projections
calculated at 1◦ and −1◦, and divided by the angle step. (d) Reconstructed (dash-dot) and original (solid
line) instantaneous frequency of the signal. (e) Reconstructed (dash-dot) and original (solid line) phase of
the signal. (f) Reconstructed pseudo Wigner distribution.

lag window function, extending over the en-
tire considered time interval Tw = 1, corre-
sponding to 2N = 256 points. This win-
dow produces a distribution which is close to
the pure Wigner distribution, without the at-
tribute pseudo. The signal discretization pa-
rameters and the window size in this exam-
ple are such that the number of points along
the time and the frequency axes is the same;
i.e., the Wigner distribution in discrete form
is a square matrix. We now reconstruct the
signal in the fractional domain for the angle
β = −45◦, with α = 1◦, which implies that the
reconstructed signal is the fractional Fourier
transform of the original signal for β = −45◦.
The original signal can easily be obtained as
an inverse fractional FT for the same angle.
Comparing Fig. 4(a) and (d), one can observe

a high quality of the signal reconstruction. In-
deed, Fig. 4(d) is the rotated version of the
WD reconstructed from two close projections
around the angle β = −45◦.

Example 5 — Influence of the Angle Differ-
ence on the Reconstruction Quality: The sig-
nal from the previous example is used for the
numerical illustration of the influence of angle
difference α in (24). The reconstructions are
performed from the projections around β = 0◦

for three values of α: α = 1◦, α = 10◦, and
α = 20◦ (see Fig. 5). We can see that near the
end points, a deviation in the reconstructed
distribution and the instantaneous frequency
exists for α = 10◦ and that this deviation is
very emphatic for α = 20◦. The accuracy of
reconstruction also depends on the complex-
ity of the fractional amplitude |Xβ±α(nT )|2 in
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Fig. 2. Monocomponent signal with nonmonotonic instantaneous frequency and zero-amplitude in its central
part and its reconstruction from two close fractional power spectra. (a) Original pseudo Wigner distribution.
(b) Projections of the pseudo Wigner distribution (Radon-Wigner transform). (c) Derivative approximation:
difference of two close projections calculated at 1◦ and −1◦ and divided by the angle step. (d) Reconstructed
(dash-dot) and original (solid line) instantaneous frequency of the signal. (e) Reconstructed phase of the
signal. (f) Reconstructed pseudo Wigner distribution.

(24). From this illustration, and other similar
numerical experiments with various signals, we
have concluded that the values of α in the or-
der of 1◦, up to few degrees, produce satisfac-
tory numerical results.
Example 6 — Noisy Signal: The reconstruc-

tion algorithm is tested for noisy cases as well.
The signal from Example 1, contaminated by
Gaussian, complex-valued, white noise ν(t)

x(t) = exp[−(2.25t)8]

×{Aej
∫
t

−∞
[360 arctan (20t)+256π]dt + ν(t)}, (31)

is considered. Various values of the local SNR
= 20 log(A/σν) have been used in simulations.
Fig. 6 presents the reconstruction result for
a SNR=10 dB. Small deviations of the re-
constructed distribution can be seen in this
case. From numerous calculations, we have

concluded that the reconstruction threshold is
at about SNR = 3 dB. Below this value, the
degradation of the reconstructed distribution
is significant. Nevertheless, it seems that for
signal reconstruction in a very high noise, the
knowledge of several pairs of close projections
would improve the results. In that case we can
calculate the differences of the fractional power
spectra for several small angles and then av-
erage them. Furthermore, using other discrete
differentiators that are different from the sim-
ple one given by a mere difference would also
improve noisy case results. However, since the
original algorithm produces a satisfactory re-
construction, even for as low a SNR as a few
decibels, we have not implemented this varia-
tion of the algorithm, for now.

Note that the original noisy distribution,
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Fig. 3. Multicomponent signal and its reconstruction from two close fractional power spectra. (a) Original
pseudo Wigner distribution. (b) Projections of the pseudo Wigner distribution (Radon-Wigner transform).
(c) Derivative approximation: difference of two close projections calculated at 1◦ and −1◦ and divided by
the angle step. (d) Reconstructed pseudo Wigner distribution.

Fig. 4. Monocomponent signal with monotonic instantaneous frequency and its reconstruction from two close
fractional power spectra around the angle β = −45◦. (a) Original Wigner distribution. (b) Derivative
approximation: difference of two close projections calculated at 1◦ and −1◦ and divided by the angle step.
(c) Reconstructed instantaneous frequency of the signal. f) Reconstructed Wigner distribution.
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Fig. 5. Monocomponent signal with monotonic instantaneous frequency and its reconstruction from two close
fractional power spectra for various angle differences in the derivative approximation. Reconstructed in-
stantaneous frequency and reconstructed Wigner distribution for (a) α = 1◦. (b) α = 10◦. (c) α = 20◦.

Fig. 6(a), and the reconstructed distribution,
Fig. 6(f) differ slightly. The noise in the orig-
inal distribution is additive, whereas the re-
constructed distribution is obtained from the
estimated noisy instantaneous frequency and
reconstructed noisy amplitude. Due to ex-
tremely fast variations of the noise, some mis-
matching between the variations in the am-
plitude and the instantaneous frequency can
exist, and cause slightly different behavior of
these distributions. It is exhibited more and
more for lower SNR values, and bellow about
3 dB, the algorithm stops to produce satisfac-
tory results.

VIII. C��	
��
���

In this paper, we have established the re-
lation between the angular derivative of the
fractional power spectra and the instantaneous
frequency, and we have proposed a method of
phase reconstruction from only two close pro-

jections of the Wigner distribution. The nu-
merical simulations show that the discussed
phase retrieval algorithm produces good re-
sults for several types of signals. The recon-
struction technique works well for a signal-to-
noise ratio as low as about 3 dB. The main
advantages of the proposed method are that it
is noniterative and demands a minimum num-
ber of initial data — only two close fractional
FT power spectra — which are related to eas-
ily measurable power distributions. In optics
and quantum mechanics, for instance, the frac-
tional FT spectrum corresponds to the inten-
sity distribution and the probability distribu-
tion, respectively.

We have also briefly discussed the possible
applications of the angular derivatives of the
fractional FT power spectra for signal process-
ing, time-varying filtering, edge detection, etc.
It becomes especially attractive if only the
fractional spectra of a signal are known.
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Fig. 6. Noisy signal (SNR = 10 dB) and its reconstruction from two close fractional power spectra. (a) Original
Wigner distribution. (b) Projections of the Wigner distribution (Radon-Wigner transform). (c) Derivative
approximation: difference of two close projections calculated at 1◦ and −1◦, and divided by the angle step.
(d) Reconstructed (dash-dot) and original (solid line) instantaneous frequency of the signal. (e) Recon-
structed (dash-dot) and original (solid line) phase of the signal. (f) Reconstructed Wigner distribution.

R�$����	��

[1] Z. Zalevsky, D. Mendlovic, and R. G. Dorsch,
“Gerchberg-Saxton algorithm applied in the frac-
tional Fourier or the Fresnel domain,” Opt. Lett.,
vol. 21, pp. 842-844, 1996.

[2] H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay,
The Fractional Fourier Transform, Wiley, 2001.

[3] W. X. Cong, N. X. Chen, and B. Y. Gu, “Recur-
sive algorithm for phase retrieval in the fractional
Fourier-transform domain,” Appl. Opt., vol. 37,
pp. 6906-6910, 1998.

[4] W. X. Cong, N. X. Chen, and B. Y. Gu, “Phase
retrieval in the Fresnel transform system - a re-
cursive algorithm,” J. Opt. Soc. Am. A, vol. 16,
pp. 1827-1830, 1999.

[5] L. B. Almeida, “The fractional Fourier trans-
form and time-frequency representations,” IEEE
Trans. Signal Process., vol. 42, pp. 3084-3091,
1994.

[6] M. G. Raymer, M. Beck, and D. F. McAlister,
“Complex wave-field reconstruction using phase-
space tomography,” Phys. Rev. Lett., vol. 72,
pp. 1137-1140, 1994.

[7] J. Tu and S. Tamura, “Analytic relation for re-
covering the mutual intensity by means of inten-

sity information,” J. Opt. Soc. Am. A, vol. 15,
pp. 202-206, 1998.

[8] H. M. Ozaktas, N. Erkaya, and M. A. Kutay, “Ef-
fect of fractional Fourier transformation on time-
frequency distributions belonging to the Cohen
class,” IEEE Signal Process. Lett., vol. 3, pp. 40-
41, 1996.

[9] X.-G. Xia, Y. Owechko, B. H. Soffer, and R. M.
Matic, “Generalized-marginal time-frequency dis-
tributions,” Proc. IEEE-SP International Sympo-
sium on Time-Frequency and Time-Scale Analy-
sis, pp. 509-512, 1996.

[10] O. Akay and G. F. Boudreaux-Bartels, “Joint
fractional representations,” Proc. IEEE-SP In-
ternational Symposium on Time-Frequency and
Time-Scale Analysis, pp. 417-420, 1998.

[11] B. Ristic and B. Boashash, “Kernel design for
time-frequency signal analysis using the Radon
transform,” IEEE Trans. Signal Process., vol. 41,
pp. 1996-2008, 1993.

[12] J. C. Wood and D. T. Barry, “Tomographic
time-frequency analysis and its application to-
ward time-varying filtering and adaptive kernel
design for multicomponent linear-FM signals,”
IEEE Trans. Signal Process., vol. 42, pp. 2094-



130 TIME-FREQUENCY SIGNAL ANALYSIS

2104, 1994.
[13] J. C. Wood and D. T. Barry, “Radon transforma-

tion of time-frequency distributions for analysis
of multicomponent signals,” IEEE Trans. Signal
Process., vol. 42, pp. 3166-3177, 1994.

[14] A. W. Lohmann and B. H. Soffer, “Relation-
ships between the Radon-Wigner and fractional
Fourier transforms,” J. Opt. Soc.Am. A, vol. 11,
pp. 1798-1801, 1994.

[15] M. R. Teague, “Deterministic phase retrieval:
a Green function solution,” J. Opt. Soc. Am.,
vol. 73, pp. 1434-1441, 1983.

[16] N. Streibl, “Phase imaging by the transport equa-
tion of intensity,” Opt. Commun., vol. 49, pp. 6-
10, 1984.

[17] K. Ichikawa, A. W. Lohmann, and M. Takeda,
“Phase retrieval based on the Fourier trans-
port method: experiments,” Appl. Opt., vol. 27,
pp. 3433-3436, 1988.

[18] T. E. Gureev, A. Roberts, and K. A. Nu-
gent, “Partially coherent fields, the transport-
of-intensity equation, and phase uniqueness,” J.
Opt. Soc. Am. A, vol. 12, pp. 1942-1946, 1995.

[19] F. Boudreaux-Bartels, “Mixed time-frequency
signal transformations,” in The Transforms and
Applications Handbook, ed. A. D. Poularikas,
CRC Press, Alabama, pp. 887-962, 1996.

[20] T. Alieva and M. J. Bastiaans, “On frac-
tional Fourier transform moments,” IEEE Signal
Process. Lett., vol. 7, pp. 320-323, 2000.

[21] T. Alieva, M. J. Bastiaans and LJ. Stankovíc,
“Wigner distribution reconstruction from two
projections,” in Proceeding of the IEEE Work-
shop on Statistical Signal Processing, Singapore,
pp.325-328, 6-8th August 2001.

[22] M.A. Vorontsov, “Parallel image processing based
on an evolution equation with anisotropic gain:
integrated optoelectronic architectures,” J. Opt.
Soc. Am. A, vol. 16, pp. 1623-1637, 1999.

[23] A. Kutay, H. M. Ozaktas, O. Ankan, and L.
Onural, “Optimal filtering in fractional Fourier
domains,” IEEE Trans. Signal Process., vol. 45,
pp. 1129-1143, 1997.

[24] A. W. Lohmann, “Image rotation, Wigner rota-
tion, and the fractional Fourier transform,” J.
Opt. Soc. Am. A, vol. 10, pp. 2181-2186, 1993.

[25] H. M. Ozaktas, O. Ankan, M. A. Kutay, and G.
Bozdagi, “Digital computation of the fractional
Fourier transform,” IEEE Trans. Signal Process.,
vol. 44, pp. 2141 -2150, 1996.

[26] S. C. Pei, M. H. Yeh, and C. C. Tseng, “Discrete
fractional Fourier transform based on orthogo-
nal projections,” IEEE Trans. Signal Process.,
vol. 47, pp. 1335 -1348, 1999.

[27] C. Candan, M. A. Kutay, and H. M. Ozaktas,
“The discrete fractional Fourier transform,” IEEE
Trans. Signal Process., vol. 48, pp. 1329 -1337,
2000.


