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Estimation of multicomponent signals
by using time-frequency representations
with application to knock signal analysis

Igor Djurovíc, Mark Urlaub, Johann F. Böhme, LJubiša Stanković

Abstract–Time-frequency representation based

estimation of multicomponent signal parame-

ters is considered. A new adaptive threshold

combined with a pattern recognition tool is pro-

posed to separate signal components from the

mixture. The proposed algorithm is applied to

knock signal analysis in spark ignition engines.
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Knock of combustions can lead to serious
problems in spark ignition car engines, e.g., en-
vironment pollution, mechanical damages, and
reduced energy efficiency. Careful spark igni-
tion control prevents the engine from frequent
knock. The main issue in knock signal analy-
sis is knock detection, but detailed knowledge
of knock parameters including those of in-
cylinder pressure and structure-borne sound
can also be important. An interesting topic
based on knock signal analysis is the optimal
positioning of piezoelectric devices used for vi-
brations recording. Methods for knock detec-
tion are reviewed in [1]. We will focus on
the analysis of pressure and vibration signals
caused by knock. Resonance frequencies de-
termined by piston position, in-cylinder tem-
perature and velocity of sound in the com-
bustion chamber were investigated by using
the finite element method in [2]. High pass
filtered pressure and vibration signals in the
case of knock can be assumed as multicom-
ponent FM signals. In this paper, parame-
ters of the components will be estimated by
using time-frequency representations (TFR).
An adaptive threshold is applied to the TFR
in order to separate signal components. Sev-
eral other papers also deal with TFR based
methods in knock signal analysis [3], [4]. The
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Wigner distribution (WD) and the S-method
(SM) are used to estimate knock signal para-
meters in [5], [6]. For precise parameter esti-
mation, several combustion processes are av-
eraged and positions of resonance frequencies
are estimated from resulting TFR. An analy-
sis of combustion parameters based on a sin-
gle signal observation is described in [7]. The
so-called “peeling method” for parameter esti-
mation from the multicomponent signal is ap-
plied. But this method can be inaccurate for
signals with varying amplitude or in a noisy
environment or if the distance between com-
ponents is varying. In this paper an adap-
tive threshold is applied for the determination
of the signal component positions in the TF
plane. The fact that TFRs are highly con-
centrated around the instantaneous frequency
(IF) is used for threshold determination. An
additional criterion is applied to remove com-
ponents caused by noise or interferences. Sig-
nal components are separated in the TF plane
by using the modified grass-fire algorithm [8].
The IFs of the signal components are esti-
mated based on the maxima positions or the
moments of the TF component. Other para-
meters as amplitude and initial phase are esti-
mated in a straightforward manner. The algo-
rithm is tested by simulated and real-life sig-
nals. Note that the proposed algorithm does
not assume any knowledge of signal support
regions in advance.
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Consider a multicomponent signal x(t) =∑P
i=1 xi(t) +ν(t) where xi(t) = Ai(t)

exp(jφi(t)), for ti > t (ti is the signal com-
ponent appearance instant). Assume that
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|dAi(t)/dt| � |dφi(t)/dt| for i = 1, . . . , P and
∀t (amplitudes are slow-varying compared to
phases), and φ′i(t) �= φ′j(t) for ∀t (IFs are non-
intersecting functions). The TFR of this signal
can be written as

TFx(t, ω) ≈
P∑

i=1

TFxi(t, ω) +Q(t, ω),

where Q(t, ω) is caused by noise and (cross-
)inter-ferences between signal and noise com-
ponents. Assume that, in the used TFR,
Q(t, ω) can be neglected and that signal com-
ponents are highly concentrated along the IF,
TFxi(t, ω) ≈ 2πA

2
i (t)δ(ω − φ′i(t)). We will use

the SM as the TFR [9]:

SM(t, ω) = |STFT (t, ω)|2+

2�

[
L∑

l=1

STFT (t, ω + l∆ω)×

STFT ∗(t, ω − l∆ω)] ,

where ∆ω is the frequency step and
STFT (t, ω) is the short-time Fourier trans-
form (STFT):

STFT (t, ω) = STFT (n∆t, k∆ω) =

N/2−1∑

m=−N/2

x((n+m)∆t)w(m∆t)×

exp(−jkm∆ω∆t)

where ∆t is sampling rate. The SM can be
highly concentrated on the IFs of the signal
components while avoiding interferences be-
tween signal components for appropriate L.
The selection of parameter L is discussed in
[10].
The first step in our procedure is to recog-

nize the region of the signal components in the
TF plane. This is denoted as R(t, ω), where
R(t, ω) = 1 means that point (t, ω) belongs
to the signal components, while R(t, ω) = 0
means that (t, ω) is outside of signal compo-
nents. The function R(t, ω) known as the
region-of-interest in pattern recognition ter-
minology and indicating the existence of the

signal components is determined based on an
adaptive threshold as

R(t, ω) = 1 if

∑

Atω

TFx(τ , θ)

∑

Btω

TFx(τ , θ)
≥ p

and TFx(τ , θ) ≥ max[qmx(t), rγx], (1)

and = 0 elsewhere, where Atω and Btω are
narrow and wide regions centered around the
considered point (t, ω). In simulations mx(t)
is the maximum of the TFR in the considered
instant mx(t) = maxθ TFx(t, θ), while γx is
the maximum of the TFR in the entire plane
γx = maxτ,θ TFx(τ , θ). Reasons for selection
of criteria in are: (a) If (t, ω) is an IF point
then the ratio between signal energy in the
narrow and the wide regions around the con-
sidered point is high, otherwise, this ratio is
significantly smaller. (b) Some relatively weak
components but with large magnitudes com-
pared to the neighbor points could be recog-
nized as a signal. Two additional criteria are
introduced in (1) to avoid this problem. The
first removes all components with a smaller
amplitude than the preassigned percentage of
the TFR maximum in the considered instant
and the other removes points with a weak
TFR.
Selection of the parameters in (1). Rectan-

gular shaped regions Atω and Btω are con-
sidered: Atω = [t − TA∆t, t + TA∆t] × [ω −
ΩA∆ω, ω +ΩA∆ω] with a size of (2TA + 1)×
(2ΩA+1) TF points and Btω = [t−TB∆t, t+
TB∆t] × [ω − ΩB∆ω, ω + ΩB∆ω] with a size
of (2TB + 1) × (2ΩB + 1) TF points. As-
sume that the TF components are well sep-
arated, i.e., for more than (2ΩB +1)∆ω along
the frequency axis and that the TFR of the
considered signal component is concentrated
in a single point at each instant exactly on
the IF. Let the value on IF be Θ, while the
average value of the TFR outside of the sig-
nal component be ε, and Θ 
 ε. Then the
ratio

∑
Atω

TFx(τ , θ)/
∑
Btω

TFx(τ , θ) is ap-
proximately equal to (2TA + 1)/(2TB + 1) if
(t, ω) is on the IF while it is (2TA + 1)(2ΩA +
1)/(2TB + 1)(2ΩB + 1) if (t, ω) is outside the
IF. Thus, the parameter p should satisfy,

(2TA+1)(2ΩA+1)
(2TB+1)(2ΩB+1)

< p < 2TA+1
2TB+1

.
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Fig. 1. TFRs and component segmentation for the synthetic signal: (a) SPEC; (b) SM; (c) R(t, ω); (d) IF
estimation (dotted lines exact IF; solid line - estimates).

It can be seen that TA ≤ TB and ΩA < ΩB.
The IF of combustion signals in this applica-
tion is relatively slow varying, see Section IV.
Therefore, we selected TA = TB = 20. Results
generally do not vary significantly for different
TA and TB. For signals with fast variations
in the IF, TA and TB should be small. Since
our goal is the separation of close signal com-
ponents, values ΩA and ΩB should be chosen
as small as possible. In simulations, ΩA = 1
and ΩB = 3 are set. Thus, parameter p should
be selected within 3/7 < p < 1. We selected
p close to the lower bound, p = 0.5, since
the considered signals are non-noisy and it is
required to keep relatively weak components.
In higher noise environments the parameter p
should be greater than in this application.

The other criterion in (1) is introduced to
remove TF regions, influenced by noise or by
interferences, satisfying the first criterion. In
order to keep weak signal components, very
small values for q and r should be adopted.
Values q = 1.5% and r = 0.1% are used in
simulations, where similar results are obtained
with any q < 2% and r < 1%.

III. S
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�
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The grass-fire algorithm used in the pattern
recognition [8] for components separation from
a binary image R(t, ω) has been applied. The
search for the first point R(t0, ω0) = 1 (grass

phase) is performed. All points R(τ , θ) = 1
such that there is a path between (τ , θ) and
(t0, ω0) passing through the points that be-
long to R(t, ω) = 1 (fire phase) are assigned
to the particular signal component. The se-
lected component is removed from the binary
image R(t, ω) and the search is repeated for a
new “grass” point. The algorithm stops when
no “grass” points exist anymore. The R(t, ω)
can be written as: R(t, ω) = max

i=1,...,T
Ri(t, ω),

where Ri(t, ω) are regions of detected com-
ponents; T is the number of separated parts
of R(t, ω). Assume that signal regions are
ordered in such a way that region Ri(t, ω)
contains higher energy than Ri+1(t, ω). We
will neglect all components with small en-
ergy compared to the entire signal energy. It
means Ω(t, ω) = max

j>ρ
Rj(t, ω), will not be

considered since signal energy in the region
Rj(t, ω), j > ρ, is small,

∑
Rj(t,ω)

TFx(τ , θ)�∑
∀(t,ω) TFx(τ, θ). Alternative criterion for se-

lecting the number of signal components can
be obtained by using the fact that ρ should
be equal to P if the number of signal com-
ponents is known in advance. For example,
it could be known that a considered engine
produces specific resonance frequencies in the
case of knock. In our simulation all regions
producing less than 1% of the signal energy
are removed from the analysis. The aim of
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Fig. 2. TFRs and component segmentation for knock pressure signal: (a) SPEC; (b) SM; (c) R(t, ω); (d)
Segmented components depicted in various gray scales.
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Fig. 3. IF estimates of signal components with reconstruction of the signal components.

this criterion is similar to the second criterion
in (1) and it can be used to further relaxed
choice of parameter q and r. Signal para-
meters can be estimated from signal regions
Ri(t, ω), i = 1, . . . , ρ as follows: 1. The IF can
be estimated based on the maxima of ω̂i(t) =
argmaxω TFx(t, ω)Ri(t, ω), for t ∈ [tib, tie],
(tib and tie are estimated instants of the knock
component appearance and disappearance).
In order to refine the estimate, the frequency
moment of the TFR could be used, ω̂i(t) =∑
ω ωTFx(t, ω)Ri(t, ω)/

∑
ω TFx(t, ω)Ri(t, ω).

The frequency moment can be used here since
the amount of noise in this application is small.
2. The signal phase (up to ambiguity in the

initial phase) can be estimated as φ̂i(t) =∫ tie
tib

ω̂i(t)dt; 3. The signal can be dechirped

as ŷi(t) = xi(t) exp(−jφ̂i(t)), for t ∈ [tib, tie]
and ŷi(t) = 0 elsewhere. Amplitude and initial

phase (Âi(t), φ̂i(t)) can be extracted by low-
pass filtering of ŷi(t) using a classical setup.
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Fig. 4. Reconstruction of combustion knock signal: original signal - dotted line, reconstructed signal - solid
line. Two zones from upper graph are magnified below.
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� 0.85.

Norm. covariance min max mean <0.85

1200rev/min pres 0.8270 0.9446 0.9080 1

vibr 0.8092 0.9215 0.8787 4

1750rev/min pres 0.8694 0.9501 0.9132 0

vibr 0.8267 0.9319 0.8754 6

2000rev/min pres 0.8191 0.9366 0.8976 2

vibr 0.8303 0.9160 0.8819 4

3000rev/min pres 0.8410 0.9487 0.9078 1

vibr 0.8356 0.9394 0.8992 1

3500rev/min pres 0.8382 0.9548 0.9193 2

vibr 0.8658 0.9457 0.9111 0

IV. E�
�����

Simulated signal. In order to illustrate the
accuracy of the proposed method we consid-
ered sum of five signal components:

x(t) =
∑5

i=1
Aiu(t− t0)×

exp(−αi|t− t0| − jat2/2 + jbit)

where u(t) = 1 for t > 0 and u(t) = 0 else-
where, and Ai = 0.5 + i0.1, αi = 0.6 + 3i,
a = 32π, t0 = 0.1, and bi = (6 − i)32π, i =
1, . . . , 5. The considered interval is t ∈ [0, 1].
The sampling rate is ∆t = 1/512. The spec-
trogram (SPEC) of this signal (SPEC(t, ω) =

|STFT (t, ω)|2) using a Hanning window of
width N = 256 is depicted in Fig.1a. It can
be seen that components are spread in the TF
plane. The SM (L = 1) is better concentrated,
Fig.1b. The proposed algorithm is applied to
the SM (parameters p = 0.5, q = 1.5% and
r = 0.1%) and the region R(t, ω) is depicted
in Fig.1c. The estimated IF of the signal com-
ponents are given in Fig.1d. Exact IFs of the
signal components ωi(t) = at−bi, i = 1, . . . , 5,
are represented with dotted lines. High ac-
curacy can be seen in this case. From this
simulation it can be concluded that the algo-
rithm gives an accurate estimation of the time-
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Fig. 5. TFRs and component segmentation for noisy knock vibration signal: (a) SPEC; (b) SM; (c) R(t, ω);
(d) Segmented components depicted in various colors.

varying signal component parameters.

Knock signals. We consider a knock pres-
sure signal recorded from a VW Passat engine
at 1200 rpm. Note that the signal is high-
pass filtered with a cut-off frequency of 3000
Hz. The sampling rate is ∆t = 10−2 ms and
the signal contains 1280 samples. The SPEC
and the SM with the same window as in the
previous example are shown in Fig.2a,b. Pa-
rameter L in the SM is selected to be small
(L = 1) to avoid interferences between close
signal components. The algorithm with the
same parameters as in the previous example
is applied to the signal and R(t, ω) is depicted
in Fig.2c. The grass-fire algorithm is applied
to the binary image R(t, ω) and components
with small energy (less than 1% of the sig-
nal energy) are removed, Fig.2d. The IF es-
timates are given in Fig.3. Reconstructed sig-
nal components are shown in the same figure.
A signal reconstruction is shown in Fig.4 with
two focused segments, where the original and
the reconstructed signal are given for compar-
ison. The algorithm is tested on 50 pressure
and vibration signals recorded at 1200, 1750,
2000, 3000 and 3500 rpm. Results are sum-
marized in Table 1. As a quality measure of
the algorithm, the correlation coefficient be-
tween the original and the reconstructed sig-
nal is considered. The average of the correla-
tion coefficient is above 0.85 (Table 1). The

worst result (0.8092) is achieved for the 31-st
vibration signal recorded at 1200 rpm. The
TFRs and signal regions are shown in Fig.5.
It can be seen that the signal contains more
noise than the previous one and the algorithm
with parameters selected for a non-noisy sig-
nal case produces numerous components in the
R(t, ω), see Fig.5c. However, after elimination
of the regions producing small energy we ob-
tained accurate estimates of the signal compo-
nents, Fig.5d. Here, a small correlation coef-
ficient means that we eliminated some noise
influenced components by the proposed ap-
proach and that a small correlation coefficient
is expected in this case

V. C��	���
��

An algorithm for adaptive selection of signal
component regions in the TF plane is proposed
and applied to knock signal estimation. The
selection of the algorithm parameters is dis-
cussed. The algorithm is tested on simulated
and real-life signals. The performance of the
algorithm is measured by using the correlation
coefficient between the original and the recon-
structed signal. The experimental results are
promising.
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