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S-Method with Application to the
Analysis of HF Radar Signals in

Sea-Clutter
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Abstract– This paper presents a new ap-
proach to the time-frequency signal analysis
and synthesis, using the eigenvalue decompo-
sition method. It is based on the S-method,
the time-frequency representation that can pro-
duce a distribution equal or close to a sum
of the Wigner distributions of individual sig-
nal components. The new time-frequency sig-
nal decomposition method is evaluated on the
simulated and experimental High-Frequency
Surface-Wave Radar (HFSWR) data. Results
demonstrate that it provides an effective way
for analyzing and detecting maneuvering air
targets with significant velocity changes, in-
cluding target signal separation from the heavy
clutter. The analysis shows that this method
can provide additional insight into the interpre-
tation and processing of radar signals, with re-
spect to the traditional Fourier transform based
methods currently used by the HFSWRs. The
proposed method could also be used in other
signal processing applications.

I. I������	�
��

Signals are commonly analyzed in either
time or frequency domain. However, some
signals exhibit significant time variations of
the frequency content. In these cases time-
frequency representations could be used, since
they combine time and frequency domain
analyses to yield a more revealing picture of
the temporal localization of signals spectral
components [5], [14], [22], [23]. The oldest
and the most widely used time-frequency rep-
resentation is the short-time Fourier transform
(STFT). In order to improve its concentration,
various quadratic representations have been
introduced [3], [6], [12]. The most prominent
member of this class of representations is the
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Wigner distribution (WD). Inversion proper-
ties of the Wigner distribution and synthesis
of a signal from a given time-frequency repre-
sentation have been studied in [4], [8], [9], [11],
[13].

The S-method is a time-frequency represen-
tation introduced with a goal to be equal (or
close) to a sum of the Wigner distributions of
individual signal components [17]. It has also
been used as a model in the implementation of
time-scale representations, time-varying spec-
tra estimation, detection and realization of
higher order representations in [2], [10], [15],
[16], [18]. In this paper, the S-method is
used to introduce a new method for decom-
position of multicomponent signals by using
eigenvalues and eigenvectors of an appropri-
ately formed matrix.

The proposed decomposition method is ap-
plied in analysis of HFSWR radar signals.
Conventionally, targets are detected from
radar signals by the Fourier transform or
Doppler processing method. However, per-
formance of the Fourier method degrades if
the target highly accelerates, resulting in a
smeared spectrum. The degree of smearing
becomes higher when the number of pulses is
increased for a given acceleration or when the
acceleration is increased for a given number of
pulses [24]. If the smearing is too high, the
Fourier method could even fail to detect the
target. The case of highly accelerating tar-
gets corresponds to the analysis of signals with
fast time variations of the frequency content.
Therefore, these kinds of signals should be an-
alyzed by the time-frequency representations
rather than by the Fourier transform. Time-
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frequency based decomposition could also pro-
vide extraction of individual signal compo-
nents. It will be efficient in separating the tar-
get signal from an undesirable clutter. This
property is of a particular significance in the
HFSWR signals where, beside the target sig-
nal, there is a clutter that is primarily due to
scattering from the surface waves.

The results obtained by applying time-
frequency analysis based decomposition method
show that one can improve readability perfor-
mance of the HFSWR, as well as add new
insight, over what can be achieved by con-
ventional methods currently used by the HF-
SWRs.

This paper is organized as follows. After
an introduction, inversion of the Wigner dis-
tribution is presented in Section II. A review
of the S-method definition and its basic prop-
erties is given in Section III. This represen-
tation is used for defining a new decomposi-
tion method of multicomponent signals in Sec-
tion IV. Next, the signal decomposition is dis-
cussed from the point of view of a target sig-
nal in a strong sea clutter. Real data analy-
sis, presented in Section V, proves efficiency
of the proposed method, and illustrates im-
provements in readability and detection of the
target signal. Finally the Appendix provides
a high resolution form of the S-method.
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A discrete form of the Wigner distribution
is defined by

WD(n, k) =

=

N/2∑

m=−N/2

f(n+m)f∗(n−m)e−j 2π
N+1

2mk, (1)

where we assume that the signal f(n) is time
limited within |n| ≤ N/2 and omit a constant
multiplication factor of 2. Inversion relation
for the Wigner distribution reads

f(n+m)f∗(n−m) =

= 1
N+1

N/2∑

k=−N/2

WD(n, k)ej
2π
N+1

m(2k).

After substitutions n1 = n+m and n2 = n−m
we get

f(n1)f
∗(n2) =

1
N+1×

×
N/2∑

k=−N/2

WD(
n1 + n2
2

, k)ej
2π
N+1

k(n1−n2).

(2)
For cases when (n1+n2)/2 is not an integer, an
appropriate interpolation is performed in order
to calculateWD((n1+n2)/2, k) .

1 Introducing
the notation,

R(n1, n2) =
1

N+1×

×
N/2∑

k=−N/2

WD(
n1 + n2
2

, k)ej
2π
N+1

k(n1−n2),

(3)
we get

R(n1, n2) = f(n1)f
∗(n2). (4)

Matrix form of (4) reads

R = f(n)f∗(n), (5)

where: f(n) is a column vector whose elements
are the signal values, f∗(n) is a row vector
(Hermitian transpose of f(n)) and R is a ma-
trix with the elements R(n1, n2), defined by
(3).

As for any square matrix, the eigenvalue de-
composition of R reads

R = QΛQT =
N+1∑

i=1

λiui(n)u
∗
i (n), (6)

where λi are eigenvalues and ui(n) are eigen-
vectors of R. By comparing (5) and (6), it fol-
lows that the matrix with elements of form (3)
can be decomposed by using only one non-zero

1For better understanding of the calculation proce-
dure note that relation (2) is a discrete counterpart
of the Wigner distribution inversion in analog domain,
that reads:

f(t1)f
∗(t2) =

1

2π

∫
∞

−∞

WD((t1+t2)/2, ω)e
jω(t1−t2)dω.

By discretizing angular frequency ω = k∆ω and time
t1 = n1∆t, t2 = n2∆t, with appropriate definition of
discrete values, assuming ∆t = 1, we easily obtain (2).
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eigenvalue. Note that the energy of eigenvec-
tors is equal to 1, by definition ‖u1(n)‖2 =
1. By comparing (5) and (6), having in
mind that there is only one non-zero eigen-
value, we have f(n)f∗(n) = λ1u1(n)u

∗
1(n) =

(
√
λ1u1(n))(

√
λ1u1(n))

∗ or

λ1 =
∥∥∥
√
λ1u1(n)

∥∥∥
2

= ‖f(n)‖2 =

=

N/2∑

n=−N/2

f2(n) = Ef ,

resulting in

λi = Efδ(i− 1), (7)

where δ(i) denotes Kronecker symbol. Eigen-
vector u1(n) is equal to the signal vector
f(n)up to the constant amplitude and phase
factor. Therefore, an eigenvalue decomposi-
tion of the matrix, formed according to (3),
can be used to check if an arbitrary 2D func-
tion D(n, k) is a valid Wigner distribution.

The same relations can be used in signal
synthesis. We start from a given function
D(n, k), calculate (3) and perform eigenvalue
decomposition (6). The first (largest) eigen-
value and corresponding eigenvector produce
a signal such that its Wigner distribution is
the closest possible Wigner distribution (in the
LMS sense) to the given arbitrary function
D(n, k), [11].

Now, this property, along with the S-
method, will be used for the signal decompo-
sition into its components

III. S-�
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Note that a definition of the STFT is

STFT (n, k) =

N/2∑

m=−N/2

f(n+m)e−j
2π
N+1

mk.

(8)
Its relationship with (1), as derived in [17], is

WD(n, k) = 1
N+1×

×
N/2∑

l=−N/2

STFT (n, k + l)STFT ∗(n, k − l).

This relation has led to the S-method defini-
tion [17], [21]:

SM(n, k) = 1
N+1×

×
L∑

l=−L

STFT (n, k + l)STFT ∗(n, k − l) (9)

or
SM(n, k) =

=

N/2∑

l=−N/2

P (l)STFT (n, k+ l)STFT ∗(n, k− l)

(10)
with the window function P (l) = 1/(N+1) for
|l| ≤ L and P (l) = 0 elsewhere. The S-method
can produce the representation of a multicom-
ponent signal such that the distribution of each
component is its Wigner distribution, avoiding
cross-terms.
Proposition: Consider a multicomponent sig-
nal

f(n) =
M∑

i=1

fi(n),

where fi(n) are monocomponent signals. As-
sume that the STFT of each component lies
inside the region Di(n, k), i = 1, 2, ...,M . De-
note the length of i-th region along k, for a
given n, by 2Bi(n), and its central frequency
by k0i(n). The S-method of f(n) is equal to
the sum of the individual Wigner distributions,
WDi(n, k), i = 1, 2, ...,M, of each signal’s
component,

SM(n, k) =
M∑

i=1

WDi(n, k), (11)

if the regions Di(n, k), i = 1, 2, ...,M, do not
overlap, Di(n, k) ∩ Dj(n, k) = ∅ for i 	= j,
and the number of terms L in (9), for a point
(n, k), is defined by:

L(n, k) =

=

{
Bi(n)− |k − k0i(n)| for (n, k) ∈ Di(n, k)
0 elsewhere .

(12)
Proof is very similar to the one provided for

the continuous S-method case. It can be found
in [19].
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Note 1 : Real M-component signals may be
considered as 2M-component complex signals
with each region Di(n, k) being associated
with the region Di+M(n,−k). Thus, there is
no need for removing negative frequency com-
ponents in real signals [20].
Note 2 : Any window in (9) with a con-
stant number of terms L ≥ maxn,k{L(n, k)}
produces SM(n, k) =

M∑

i=1
WDi(n, k), if the

regions Di(n, k), i = 1, 2, ..,M , are at
least 2L apart along the frequency axis, i.e.,
|k0i(n)− k0j(n)| > Bi(n) + Bj(n) + 2L, for
each i, j and n.

This is the S-method with constant
value of L, as it was originally introduced in
[17], [18]. The signal dependent method (12)
would be more accurate, but also more com-
plex. Constant number of terms L is used
here in numerical realization since it is much
simpler for implementation, producing satis-
factory and robust results.

IV. D
	�����
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For each signal component fi(n) we could
write its inversion formula, corresponding to
(2), as

fi(n1)f
∗
i (n2) =

1
N+1

N/2∑

k=−N/2

WDi(
n1 + n2
2

, k)ej
2π
N+1

k(n1−n2)

i = 1, 2, ...,M,

if we knew the Wigner distribution WDi(n, k)
of this component. By summing the above re-
lations for i = 1, 2, ...,M we get

M∑

i=1

fi(n1)f
∗
i (n2) =

1
N+1×

×
N/2∑

k=−N/2

M∑

i=1

WDi(
n1 + n2
2

, k)ej
2π
N+1

k(n1−n2).

Having in mind (11), for the signals that sat-
isfying the presented conditions, this relation
reduces to:

M∑

i=1

fi(n1)f
∗
i (n2) =

1
N+1×

×
N/2∑

k=−N/2

SM(
n1 + n2
2

, k)ej
2π
N+1

k(n1−n2).

(13)
By denoting

RSM (n1, n2) =
1

N+1×

×
N/2∑

k=−N/2

SM(
n1 + n2
2

, k)ej
2π
N+1

k(n1−n2)

(14)
and using the eigenvalue decomposition of ma-
trix RSM , with the elements RSM (n1, n2), we
get

RSM =
N+1∑

i=1

λiui(n)u
∗
i (n).

As in the case of Wigner distribution, we can
conclude that λi = Efi , i = 1, 2, ...,M and
λi = 0 for i =M + 1, ..., N , i.e.,

λi =
M∑

l=1

Eflδ(i− l). (15)

The eigenvectors ui(n) will be equal to the
signal components fi(n), up to the phase and
amplitude constants, since the components or-
thogonality is assumed by the Proposition.
Amplitude constants are again contained in
the eigenvalues λi. Thus, the reconstructed
signal can be written as

frec(n) =
M∑

i=1

√
λiui(n)

It is equal to the original signal, up to the
phase constants in each component. When we
have several components of different energies
f1(n), f2(n), ..., fM(n) and when they are of
equal importance in analysis, we can use nor-
malized values of the signal components and
calculate the time-frequency representation of

fnor(n) =
M∑

i=1

k(λ)ui(n)

by using the weights k(λ) = 1 in the signal,
i.e., by using the eigenvectors as signal compo-
nents (Capon’s way of weighting in the mini-
mal variance high resolution approach, see the
Appendix).
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When there exists a very strong disturbing
signal, like a sea-clutter in the HFSWR signal,
we can omit the first, strongest component,
and define reconstructed signal as

frec(n) =
M1∑

i=2

√
λiui(n)

where M1 is the expected number of compo-
nents.

A. Illustrative example

Consider a signal whose analog form reads:

x(t) = ej
π

6400
t2−( t

96
)2+

7∑

k=2

√
27−k
10 ejωkte−(

t−dk
16

)2

within the interval −128 ≤ t ≤ 127, where
ω2 = −3π

4 , ω3 = −π
2 , ω4 = −π

4 , ω5 =
π
4 ,

ω6 =
π
2 , ω7 =

3π
4 , d2 = d7 = 0, d3 = d5 = −64

and d4 = d6 = 64. The sampling interval is
∆t = 1. Spectrogram, calculated according
to (8), is presented in Fig.1, upper row. The
Wigner distribution is presented in Fig.1, bot-
tom row. Based on the Wigner distribution,
the elements of matrix R are calculated by us-
ing (3). Eigenvalue decomposition (6) of this
matrix produces exactly one non-zero eigen-
value, λ1 = 390.92 (λ2 = 0.00, λ3 = 0.00,
....), being equal to the total signal energy
Ex = 390.14 (within the numerical calculation
error), as expected from (3)-(7).

In order to illustrate that eigenvalue decom-
position of the spectrogram (that is the first
step in S-method calculation) does not pro-
duce a meaningful result, we have repeated
this procedure by using the spectrogram in-
stead of the Wigner distribution in the cal-
culation of the elements of R, according to
(3). The eigenvalue decomposition obtained
in this way proves that the spectrogram can
not be related to a sum of the Wigner distrib-
utions of the signal components, Fig.1, upper
row (right) .

The S-method of the same signal is calcu-
lated by using (8) and (9) with L = 12. The
obtained results are depicted in Fig.2. Ma-
trix RSM is formed according to (14). Its
eigenvalue decomposition results in the same

number of non-zero eigenvalues as the num-
ber of signal components. Eigenvalues corre-
spond to the components energies, while the
eigenvectors correspond to the normalized sig-
nal components, up to the phase constants.
Time-frequency representation of the eigen-
vectors is shown in Fig.3. First seven com-
ponents correspond to the signal, while the
remaining ones are with very small eigenval-
ues. Energies of discrete signal components
are: E1 = 119.40, E2 = 50.13, E3 = 48.13,
E4 = 46.12, E5 = 44.12, E6 = 42.11 and
E7 = 40.11, while the obtained eigenvalues by
using the S-method with L = 12 are: λ1 =
119.40, λ2 = 50.18, λ3 = 48.19, λ4 = 46.19,
λ5 = 44.18, λ6 = 42.17, λ7 = 40.15, λ8 = 0.68,
...

Sensitivity of the results with respect to L
is quite low within a wide region. We have
repeated calculations with values of L from
L = 10 up to L = 20 and obtained almost
the same results. The error in components en-
ergy, estimated by corresponding eigenvalues,
was within ±0.25%.

As a decomposition example, we omitted
the strongest component and reconstructed
the rest of the signal. The obtained time-
frequency representation is given in the upper
row (right) of Fig.2. The last subplot in Fig.2
presents concentration measure of the compo-
nents, in logarithmic scale, which will be dis-
cussed and used later.

B. Decomposing radar time-varying signals in
a strong sea-clutter

Next we will apply the proposed method to
the HFSWR signals with a strong sea-clutter.
Before we start analysis of experimental data,
we will consider some typical situations from
the theoretical point of view.

1. When the sea-clutter signal and the
target signal are separated in time-frequency
plane (occupying unknown and varying ranges
in time-frequency domain) and at the same
time, the signal energy is of the clutter energy
order, it will be possible to get a decomposi-
tion such that the first component corresponds
to the stronger clutter and the second compo-
nent corresponds to the target signal. In this
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Fig. 1. Spectrogram and its eigenvalue decomposition (upper row); Wigner distribution and its eigenvalue
decomposition (bottom row).

case

u1(n) ∼ fclutter(n) =
√
λ1e

jϕ1u1(n)

u2(n) ∼ ftarget(n) =
√
λ2e

jϕ2u2(n)

where ϕ1 and ϕ1 are arbitrary phase constants.
Separate time-frequency representation of the
clutter and target signal would be easy in this
case.

2. Now consider the case when target sig-
nal is much weaker than the sea clutter sig-
nal and the value of L is not sufficiently large
to complete the integration over clutter and
target signal, according to (12). Then, the
first several components can be attributed to
the clutter signal only (smaller L will increase
the number of clutter components). The main
part of the clutter and the residual clutter
parts are stronger than the target signal. Here,
we have to define a criterion to select and re-
solve the target signal component.

3. The sea-clutter signal and the target sig-
nal are close or crossing each other or target
signal is highly nonstationary covering wide
area. In this case both the clutter and the sig-
nal could be separated into few parts, and the
criterion for selecting the target components
should be defined, as well.

C. Criterion for identifying target components

Note that the signal components in HFSWR
are single frequency modulated signals, bet-
ter concentrated in the time frequency plane
than the clutter residual components. Thus,
the criterion for selecting eigenvector(s), being
the target signal (or parts of the target signal),
could be

Crit(p) =
(N + 1)maxn,k{SMup(n, k)}

∑N/2
k=−N/2

∑N/2
n=−N/2

∣∣SMup(n, k)
∣∣
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Fig. 2. The S-method of original multicomponent signal (first row, left); The S-method of reconstructed signal
by using eigenvectors, with omitted first eigenvector-component (first row right); Eigenvalues of the signal’s
S-method; Measure of concentration of signal components (eigenvectors) in logarithmic scale.

or

C−rit(p) =
(N + 1)maxn,k{SMup(n, k)}

2
∑N/2

k=−N/2

∑N/2
n=−N/2

∣∣SM−
up(n, k)

∣∣

(16)
where SM−

up(n, k) denotes negative values of

SMup(n, k). It means that higher concen-
trated components (greater maximum in the

numerator, since all eigenvectors are nor-
malized in energy) with smaller oscillations
(smaller mean absolute (negative) value in the
denominator) are better candidates for the tar-
get signal components. This criterion can be
considered as concentration measure, with in-
finity power in the numerator and power 1 in
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Fig. 3. Time-frequency representation of the eigenvectors of the S-method. First seven of them correspond
to the normalized signal components. In all subplots horizontal axis is for time and vertical axis is for
frequency.

the denominator of Crit(p). It can also be un-
derstood as the peak-to-average absolute value
ratio.

The simplest algorithm is to find the value
when Crit(p) reaches maximal value (p =
pmax) and assign this eigenvector to the tar-
get signal component:

ftarget(n) = upmax(n).

This simple approach works well in most of the
considered signals. Of course, the strongest
component in decomposition is the clutter,

thus u1(n) is omitted from the analysis.

For few considered signals, the target sig-
nal component is divided over several eigenvec-
tors, as discussed in cases 2 and 3 mentioned
within the previous subsection. In order to
deal with these cases, let us analyze the range
for Crit(p) values. If the whole distribution of
one component is concentrated at one point
in time-frequency plane, i.e., SMup(n, k) =
Aδ(n−n0, k−k0), then Crit(p) = N+1. For a
component that is uniformly distributed along
a single line, i.e., pure linear frequency modu-
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lated component, Crit(p) = 1. For uniformly
spread distribution values over the entire time-
frequency plane (obviously not being a sig-
nal component) we have Crit(p) = 1/(N + 1).
Thus, we can say that if, for example Crit(i) >
P , where P is of order 1 or just slightly higher,
for i = k, p, ..., q, then ui(n) are parts of the
target signal, i.e.,

H(i) =

=

{
Crit(i) > P ui(n)is a target signal comp.

Crit(i) ≤ P ui(n)is not a target signal comp.
.

Thus, we can take all eigenvectors that satisfy
this criterion and form the target signal:

ftarget(n) =
√
λkuk(n) +

√
λpup(n) + ...(17)

+
√
λquq(n)

with i = k, p, ..., q and i > 1, since the first
component will always be the strongest one
corresponding to the clutter. Note that if L in
(9) is not large enough to complete the inte-
gration over the clutter, then few of the largest
components will be ones belonging to the clut-
ter and i > 2 components should be omitted.

In the time-frequency domain we get

SMtarget(n, k) = g(λk)SMk(n, k) +

+g(λp)SMp(n, k) + ...+ g(λq)SMq(n, k)(18)

where g(λ) is a function of eigenvalue. If we
want to take all the components with the same
weight g(λ) = 1, or if we want to keep their
original weights g(λ) = λ. Cases between
these two are possible, for example g(λ) =

√
λ.

D. Numerical realization

Numerical realization of the S-method
(9),(12) is very simple, according to

STFT (n, k) = DFTm{x(n+m)w(m)}
and

SM(n, k) = |STFT (n, k)|2 + (19)

2
L∑

i=1

�[STFT (n, k + i)STFT ∗(n, k − i)]

or

SML(n, k) = SML−1(n, k) +

2�[STFT (n, k + L)STFT ∗(n, k − L)]

where SML(n, k) is SM(n, k) calculated
with L samples in (9) and SM0(n, k) =

SPEC(n, k) = |STFT (n, k)|2. Symbol �[·]
stands for real value.
Calculation complexity: Basic step in

the S-method realization is in calculation of
the STFT by using the FFT algorithms or
recursive formulae [17]. Calculation of the
STFT in M time instants by using the N
samples FFT requires an MN log2N order
of basic arithmetic operations (multiplications
and additions). Additional block for the S-
method calculation, according to (19), requires
MNL arithmetic operations. For example, for
N = 1024 and L = 10, the additional number
of arithmetic operations is of the same order as
the basic STFT calculation. It is significantly
less intensive than the calculation of Wigner
distribution or any other quadratic represen-
tation [17]. In addition, the S-method can be
implemented in hardware [21], which makes
the calculation complexity problem less impor-
tant. Furthermore, the coherent integration
time in the considered example is quite long.
Decomposition of the S-method based matrix
is done by using the standard iterative eigen-
value decomposition procedures, with a given
number of significant eigenvalues (we used 36
significant eigenvalues). We checked the cal-
culation time in MATLAB algorithms. The
eigenvalue decomposition increased this time
for 29% of the time required for the calculation
of the STFT and the S-method with L = 10,
N = 1024 and M = 512.

V. D��� ������
�

The signals considered here are experimen-
tal plane data, as used in [22]. The plane is a
King-Air 200 performing maneuvers, tracked
by a HFSWR, using a 10-element linear re-
ceiving antenna array. The radar carrier fre-
quency is 5.672MHz and the pulse repetition
frequency is 9.17762Hz. Each trial corre-
sponds to a block of 256 pulses. Therefore the
CIT (coherent integration time) of each sig-
nal is 27.89sec. The King-Air performed two
figure-of-eight maneuvers, Fig.4. Each figure-
of-eight manoeuvre consisted of two circles
with an approximate diameter of 10km. The
first figure-of eight manoeuvre was performed
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Fig. 4. Path of the King-Air 200 as a function of range (in km) and azimuth (in degrees)

at 200ft (61m), while the second figure-of-eight
manoeuvre was performed at 500ft (152m).
The location of the King-Air, when each sig-
nal was collected, is marked by a square, Fig.4.
Each signal reflects a different scenario that
could arise when tracking the manoeuvering
plane.

In the HFSWR, beside the target, signal
contain a clutter that is primarily due to scat-
tering from the surface of sea waves. The re-
ceived signal of a pulse Doppler radar, taken
at a particular range, is viewed in the Fourier
transform or Doppler domain. Two sharp
peaks, Bragg components, can be observed.
These peaks mean that the dominant form of
sea-clutter is due to scattering from sea waves,
with wavelengths being half of the wavelength
of the radar carrier frequency, travelling radi-
ally towards and away from the radar [7], [1].
The Bragg components of the clutter are called
1st order clutter. In addition to the Bragg
components, the Doppler spectrum has a con-
tinuum called the 2nd order clutter.

A. Calculation procedure:

Denote signal length by N . In all considered
cases we use N = 256.

Step 1. Calculate the STFT (with rectan-
gular window) of the zero-padded signal, over-
sampled by factor 2.

Step 2. Calculate the S-method of the sig-

nal according to (19) for a given L, for example
L = 10. Size of obtained S-method is 2N =
512 samples in time and 4N = 1024 samples
in frequency. Central part of the S-method in
frequency domain is equivalent to the Wigner
distribution. Note that the frequency range
of the S-method is like in the Fourier trans-
form (−fs/2, fs/2) and (−fs/4, fs/4) for the
Wigner distribution, where fs is the sampling
frequency. Only even samples are included in
further analysis in order to avoid non-integer
indices in (14).

Step 3. Calculate matrix R according to
(14). Since the signal is zero-padded, use only
even rows in order to avoid non-integer indices.
Since only central part of S-method, and only
even samples are used, order of the matrix R
is N = 256

Step 4. Decompose R into eigenvectors and
eigenvalues. Note that eigenvectors has the
same length as the original signal.

Step 5. Calculate the S-method (19) of the
eigenvectors by using the STFT with a win-
dow, for example square root Hann window of
256 samples.

Step 6. Calculate measure (16) and assign
the eigenvector corresponding to the maximal
measure to the target signal if C−rit(pmax) > 2.
If C−rit(pmax) ≤ 2 then there is no target sig-
nal detected (target signal is too close to the
clutter). In this case, repeat steps 1. to
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Fig. 5. Signal 3 (reference to Fig.1.): Time-frequency representation (top right), Concentration of the eigenvec-
tors time-frequency representations (top left), Time-frequency representation of the detected target signal
(bottom right), Highly concentrated time-frequency representation of the detected target signal (bottom
left) and FFT estimation of the target velocity (dashed line)

6. with smaller L, for example L = 4. If
C−rit(pmax) > 2 check if there is any other
highly concentrated eigenvector, for example
with C−rit(p 	= pmax) > 3. If there is such a
highly concentrated eigenvector, it should also
be a part of the target signal. Include it ac-
cording to (17).

Step 7. Show time-frequency representation
of the resulting target signal (23) and calcu-
late its high resolution version (24), with ex-
cluded isolated points. High resolution images
are obtained by using the high resolution ver-
sion of the S-method presented in the Appen-
dix. After a high resolution distribution is cal-
culated, the pattern recognition algorithm is
used to eliminate instants when isolated points
are produced (random maxima at the instants
when there is no target signal component).
Only the regions where more than 10 con-
nected points of the high resolution S-method
exist, are kept for final high resolution presen-

tation.

Step 8. Take the next signal and go to Step
1.

By using this procedure we analyzed all
positions for the described experiment. The
target signal is detected and separated in all
cases. In four cases, the target signal was too
close to the clutter, and the target was not
detected with L = 10. The procedure was
repeated with L = 4, according to the de-
scription in step 6, and the target was then
detected.

B. Results

Now, the proposed procedure is applied to
the signal decomposition. The following typi-
cal cases are presented here:

-Stationary target signal (plane is moving
with a constant velocity), far from the clutter,
Fig.5. Time-frequency representation of the
corresponding eigenvectors is shown in Fig.6.
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Fig. 6. Time frequency representations of the eigenvectors used for the concentration calculation and target
signal detection for signal presented in Fig.5. In all subplots horizontal axis is for time and vertical axis is
for frequency.

-Nonstationary target signals far from the
clutter, Figs.7, 9 along with time-frequency
representation of the eigenvectors Fig.8 for the
signal shown in Fig.7.

-Highly nonstationary target signal covering
wide frequency range, Fig.10

-Nonstationary target signal very close to
the clutter, Fig.11

-Nonstationary target signal crossing the
clutter, Fig.12.

For all the signals, the time-frequency rep-
resentation (S-method) of the original signal

including the clutter, is given (upper right sub-
plot in Figs.5,7,9,10,11,12). Since the clut-
ter is extremely strong, in order to get signal
component visible, the limiter is used in time-
frequency representation. Upper left subplot
represents concentration measure for eigenvec-
tors in all considered cases. Lower subplots
present S-method of the detected target sig-
nal component (right) and its highly concen-
trated version (left). Frequency axis in the
highly concentrated representations is scaled
to represent target instantaneous radial veloc-
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Fig. 7. Signal 31: Time-frequency representation (top right), Concentration of the eigenvectors time-frequency
representations (top left), Time-frequency representation of the detected target signal (bottom right), Highly
concentrated time-frequency representation of the detected target signal (bottom left) and FFT estimation
of the target velocity (dashed line)

ity while dashed line represents target radial
velocity obtained by standard FFT technique.
Figs.6 and 8 present time-frequency represen-
tations of the eigenvectors used for the concen-
tration measure and target signal component
detection.

For comparison with the FFT method, we
will present three cases: non-accelerating tar-
get far from the Bragg’s lines, accelerating tar-
get far from the Bragg’s lines and the target
very close to the Bragg’s lines, Fig.13. As ex-
pected, in the case of constant velocity (non-
accelerating target) the FFT method produces
a clear result with a peak corresponding to the
Doppler frequency. It is in accordance and in
good agreement with the time-frequency re-
sult presented in Fig.5. However, in the second
case the FFT method is smeared, and the con-
stant frequency estimated based on the FFT
does not correspond to the real event of fast

varying target velocity, Fig.10. In the third
case, there is a slightly smeared peak, but con-
nected to the clutter spectrum. Considering
only the FFT it would be difficult to conclude
that the target exists. Time-frequency based
approach clearly indicates that we have a tar-
get signal, including its separation by the pro-
posed method Fig.11. Note that the velocities
obtained by using the FFT approach are pre-
sented for all considered cases, as mentioned
earlier.

VI. C��	���
��

We proposed a new time-frequency based
signal decomposition method. It is based on
the property that the eigenvalue decomposi-
tion of an appropriately formed matrix of the
Wigner distribution produces only one non-
zero eigenvalue, combined with the property
that the S-method can produce a sum of the
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Fig. 8. Time frequency representations of the eigenvectors used for the concentration calculation and target
signal detection for signal presented in Fig.7. In all subplots horizontal axis is for time and vertical axis is
for frequency.

Wigner distributions of individual signal com-
ponents. Efficiency and accuracy of the pro-
posed decomposition method is demonstrated
on simulated examples. Then, it is used in im-
proving the analysis of signals obtained from
a low-altitude aircraft by using the HFSWR
in the presence of sea-clutter. Since we were
dealing with high speeds and accelerations
of the aircraft, the time-frequency method
improved readability and detection, because
its resolution abilities were not reduced by a
spread in the Doppler signature. The study

performed by using the new method demon-
strated that use of time-frequency signal de-
composition can improve target velocity esti-
mation and detection performance of the HF-
SWR. The method provided true time vary-
ing Doppler shift within the considered time,
which was not possible with the Fourier trans-
form method that provided only its average
value. In addition, the proposed method suc-
cessfully detected the target signal in all cases
of the presented real experiment, which was
not the case when detection was performed by
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Fig. 9. Signal 43: Time-frequency representation (top right), Concentration of the eigenvectors time-frequency
representations (top left), Time-frequency representation of the detected target signal (bottom right), Highly
concentrated time-frequency representation of the detected target signal (bottom left) and FFT estimation
of the target velocity (dashed line)

the Fourier transform method. The method
presented here is not restricted to this appli-
cation, but it can be applied also in various
other settings of nonstationary signal analysis
and filtering.

VII. APPENDIX: H
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As shown in [16] all spectral estimators can
be considered as either being smoothed or be-
ing cross-calculated. The first family leads
to the variations of smoothed spectrograms,
while the other leads to the variations of the
estimators defined in [17]. Here, we will show
that the Capon’s method can be considered
as a version of the smoothed spectrograms
(spectrograms of eigenvectors for close signal
components and spectrograms of signal com-
ponents for separated components). A form

of highly concentrated distributions based on
the S-method may be defined in an analogous
manner, using the analysis presented in this
paper.

The Capon’s filtering method applied to
N + 1 samples of a signal f(n), being a sum
of complex sinusoids exp(jωin), denoted in a
vector form as f(n)results in the distribution

SCap(n, k) =
1

a

∗

(k)R̂−1
f
a(k), (20)

where ∗ denotes Hermitian transpose and
a(k) = [1 ej2πk/(N+1) ...ej2πk]T , with

R̂f = Ef(n)f∗(n) (21)

In practice, the autocorrelation matrix R̂f is
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Fig. 10. Signal 53: Time-frequency representation (top right), Concentration of the eigenvectors time-frequency
representations (top left), Time-frequency representation of the detected target signal (bottom right), Highly
concentrated time-frequency representation of the detected target signal (bottom left) and FFT estimation
of the target velocity (dashed line)

estimated by:

R̂f (n,K) = 1
K

K∑

p=1

f(n+ p)f∗(n+ p) + ρI

= 1
KQQ

∗ + ρI, (22)

where I is the identity matrix used for regu-
larization and Q is the matrix whose columns
are signal vectors f(n+ p), p = 1, ...,K.

The Capon’s form can be written by using
eigenvalue decomposition of the autocorrela-
tion matrix R̂f (n,K) as

R̂f (n,K) =
1

K
QQ∗ + ρI =

1

K
VΛV∗ + ρI,

By using this decomposition, we can write

R̂−1
f
(n,K) =

1

ρ

[

I−
K∑

p=1

(1 +
ρK

λp
)−1VpV

∗
p

]

whereVp are eigenvectors and λp are eigenval-

ues of R̂f (n,K) The Capon’s form then reads

SCapK(n, k) =
ρ

N + 1−
K∑

p=1

λp
Kρ+λp

SPECVp(n, k)

,

where SPECVp(ω, t) are the spectrograms of
the eigenvectors and ρ → 0. For separated
components the eigenvectors correspond to the
signal components, summed with the same
weights.

In our case, the S-method form that corre-
sponds to the Capon’s form would lead to the
factor of

SMnor(n, k) =
K∑

p=1

SMup(n, k)
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Fig. 11. Signal 7: Time-frequency representation (top right), Concentration of the eigenvectors time-frequency
representations (top left), Time-frequency representation of the detected target signal (bottom right), Highly
concentrated time-frequency representation of the detected target signal (bottom left) and FFT estimation
of the target velocity (dashed line)

instead of
K∑

p=1
SPECVp(n, k) in the Capon’s

form, resulting in a distribution:

SMCK(n, k) =

=
ρ

N + 1−
K∑

p=1
ρpSMup(n, k)

=
A

1−
K∑

p=1
cpSMup(n, k)

, (23)

where A = ρ/(N + 1) and cp = ρp/(N + 1).
In the realization we used a very simple nor-

malized version of the highly concentrated S-
method:

SMCK(n, k) =
1

1−
K∑

p=1

SMup (n,k)

1.01maxk{SMup (n,k)}

.

(24)

R
�
�
�	
�

[1] D. Barrick: “First-order theory and analysis
of MF/HF/VHF scatter from the sea”, IEEE
Trans. on Antennas and Propagation, vol.20,
No.1, Jan.1972, pp.2-10.

[2] B. Boashash, B. Ristic: “Polynomial time-
frequency distributions and time-varying higher
order spectra: Applications to analysis of multi-
component FM signals and to treatment of mul-
tiplicative noise” Signal Processing, vol.67, no.1,
May 1998, pp.1-23.

[3] B. Boashash, Ed.: Time-frequency signal anlysis
and processing, Elsevier, 2003.

[4] G.F. Bourdeaux-Bartels: “Time-varying signal
processing using Wigner distribution synthe-
sis techniques”, in The Wigner Distribution-
Theory and Applications in Signal Processing,
W.Mecklenbrauker, Ed, Amsterdam: Elsevier
1997.

[5] V.C. Chen and H. Ling: Time-frequency trans-
forms for radar imaging and signal analysis,
Artech House, Boston, MA, USA, 2002.

[6] L. Cohen, Time-frequency analysis, Prentice-Hall
Inc., New York, USA, 1995.

[7] D.D. Crombie: “Doppler spectrum of sea echo at
13.56 Mc/s”. Nature, No.175, 1955, pp.681-682.



SIGNAL DECOMPOSITION BY USING THE S-METHOD... 335

S-method

time

fr
e
q

u
e

n
c
y

0 10 20 30
0

5

10

15
Components concentration

eigenvector No

c
o

n
c
e
n
tr

a
ti
o
n

S-method of target signal

time

fr
e

q
u

e
n
c
y

Target signal HC

time [s]

v
e
lo

c
it
y
 [

m
/s

]

0 5 10 15 20 25

-100

-50

0

50

100

Fig. 12. Signal 19: Time-frequency representation (top right), Concentration of the eigenvectors time-frequency
representations (top left), Time-frequency representation of the detected target signal (bottom right), Highly
concentrated time-frequency representation of the detected target signal (bottom left) and FFT estimation
of the target velocity (dashed line)

-4 -2 0 2 4

Signal No.3

m
a

g
n

it
u

d
e

-4 -2 0 2 4

Signal No.53

frequency [Hz]

-4 -2 0 2 4

Signal No.7

Fig. 13. Fourier transform (absolute value) of the three typical signals: nonaccelerating target far from Bragg’s
lines, accelerating target far from Bragg’s lines and target very close to Bragg’s lines. Triangle arrows show
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