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Unified Approach to the Noise Analysis
in the Spectrogram and Wigner

Distribution
LJubiša Stanković, Veselin Ivanovíc, Zoran Petrovíc

Abstract– An analysis of time-frequency rep-
resentations of noisy signals is perfomed. Using
the S-method for time-frequency signal analy-
sis, the influence of noise on two the most im-
portant distributions (spectrogram and Wigner
distribution) is analyzed in unified manner. It
is also shown that, for signals whose instanta-
neous frequency is not constant, an improve-
ment over the spectrogram and the Wigner dis-
tribution performances in a noisy environment
may be achieved using the S-method. The ex-
pressions for mean and variance are derived.
Results are given for several illustrative and nu-
merical examples.

I. INTRODUCTION

Time-frequency signal representations may
roughly be classified into two categories: lin-
ear and quadratic [1], [2] (recently, higher or-
der representations have been introduced, [3],
[4], [5]). From the linear class of transforms,
we will mention only the most important one,
the short-time Fourier transform (STFT). The
second class of time-frequency transforms are
quadratic one. Despite the absence of the lin-
earity property, they are frequently used be-
cause many aspects of the signal’s represen-
tation may be improved with respect to the
linear transforms. The Wigner distribution
(along with its pseudo and smoothed forms)
is the most prominent member of this class.
It satisfies most of the desired properties of a
time-frequency distribution [1], [2], [10], [22].
This is the reason for its wide applicability and
research interest. Besides the Wigner distri-
bution, there are other important quadratic
distributions. It is important to note that
all quadratic (shift covariant) time-frequency
distributions belong to the Cohen class [1].

Annales des Telecommunications, vol.51, No.11/12,
Nov./Dec.1996.

The energetic version of the STFT, called a
spectrogram, also belongs to this class. The
Wigner distribution, in contrast to the spec-
trogram and some other distributions (reduced
interference distributions [1], [2], [6], [7], [8],
[9], [22]), exhibits very strong cross-term ef-
fects when multicomponent signals are ana-
lyzed.

The S-method, recently defined in [11] and
analyzed in detail in [4], [5], [12], [13], [14],
[23], is able to produce the representation of
a multicomponent signal such that the distri-
bution of each component is its Wigner dis-
tribution, but without cross-terms. The S-
method may be implemented in a numerically
very efficient way (more efficient than that of
the Wigner distribution itself) [11]. Two spe-
cial (marginal) cases of the S- method, which
follow, are just two the most frequently used
distributions: the spectrogram and the Wigner
distribution.

Although noise is very often present in the
considered time-frequency signal representa-
tions, its rigorous analytical treatment has
been dealt with only in a few papers. Martin
and Flandrin analyzed time-frequency repre-
sentations of nonstationary random processes
in [15]. Nuttal analyzed noisy signals in [16],
while the analog and discrete forms of the
Wigner distribution of noisy signals were stud-
ied by Stankovíc and Stankovíc in [17], [18].
Hearon and Amin considered the variance in
the Cohen class of distributions and found the
optimal kernel with respect to noise variance,
[19].

In this paper, noise is analysed in the frame-
work of the S-method. It is shown that, un-
der some conditions, the application of the S-
method in the case of noisy signals may im-
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prove the performances with respect to the
spectrogram and Wigner distribution. This
paper is organized as follows. In the next sec-
tion, a short review of the S-method is given.
Analysis of the time-frequency representation
of noisy signals is presented in Section III. Ex-
amples are provided in Section IV.

II. REVIEW OF THE S-METHOD

Let us consider two basic means for the
time-frequency analysis of a signal: the
short-time Fourier transform (STFT) and the
Wigner distribution (WD), [1], [2], [10]. The
STFT and the pseudo-form of the WD are de-
fined by:

STFTf (t, ω) =

∫ ∞

−∞

f(t+τ)w(τ)e−jωτdτ (1)

PWDf (t, ω) =

∫ ∞

−∞

w
(τ
2

)
w
(
−τ
2

)
×

f
(
t+

τ

2

)
f∗
(
t− τ

2

)
e−jωτdτ , (2)

where the real window w(τ) is assumed. Re-
lation between the STFT and the PWD is de-
rived in [11] as:

PWDf (t, ω) =
1

π

∫ ∞

−∞

STFTf (t, ω + θ)×

STFT ∗f (t, ω − θ)dθ. (3)

On the basis of the previous expressions, the
S-method for time-frequency analysis is given
in the following form:

SMf (t, ω) =
1

π

∫ ∞

−∞

P (θ)STFTf (t, ω + θ)×

STFT ∗f (t, ω − θ)dθ. (4)

Through a suitable selection of the window
P (θ), it is possible to obtain the auto-terms of
multicomponent signals such that they remain
unchanged with respect to those in the WD,
while the entire elimination (or reduction) of
cross-terms is achieved, as shown in [5], [11],
[12], [13].

The discrete forms of equations (1), (2) and
(3) are [11], [12], [13]:

DSTFTf (n, k) =
N−1∑

i=0

f(n+ i)w(i)e−j
2π
N
ik,

(5)

DPWDf (n, k) =
N−1∑

i=0

w(i)w(−i)×

f(n+ i)f∗(n− i)e−j
2π
N
2ik, (6)

DPWDf (n, k) =
1

N

N
2
−1∑

l=−N
2

DSTFTf (n, k+l)×

DSTFT ∗f (n, k − l). (7)

Factor of 2 is omitted in (6) in order to simplify
the notation. Relation (7) may be written in
symmetrical form as:

DPWDf (n, k) =
1

N

N/2∑

l=−N/2

α(l)×

DSTFTf (n, k + l)DSTFT ∗f (n, k − l), (8)

where α(l) = 1, for all l except |l| = N/2, when
α(±N/2) = 1/2. Understanding equation (8)
as an averaged value of the STFT of a dis-
crete signal and its complex conjugate value,
the discrete form of the S-method is obtained
as:

DSMf (n, k) =
1

2Ld + 1

Ld∑

l=−Ld

Pd(l)×

DSTFTf (n, k + l)DSTFT ∗f (n, k − l). (9)

Note that:
1) for Pd(l) = δ(l), we obtain the spectro-

gram of discrete signals (DSPEC), and
2) for Pd(l) = 1 and 2Ld + 1 = N , the dis-

crete form of the Wigner distribution (in this
case α(l) should be included).

Taking into consideration that:

DSTFT (n, k + l)DSTFT ∗(n, k − l)+

DSTFT (n, k − l)DSTFT ∗(n, k + l) =

2Re {DSTFT (n, k + l)DSTFT ∗(n, k − l)} ,

and assuming that Pd(l) is a rectangular win-
dow, we get:

DSMf (n, k) = DSPECf (n, k)+

2

2Ld + 1

Ld∑

l=1

Re{DSTFTf (n, k + l)×



UNIFIED APPROACH TO THE NOISE ANALYSIS IN THE SPECTROGRAM AND... 355

DSTFT ∗f (n, k − l)}, (10)

where DSPECf (n, k) = |DSTFTf (n, k)|2.
Details on the numerical and on-line im-

plementation of the distribution defined by
(10), as well as its calculational complexity,
are given in [5], [11], [12], [13], [23].

III. NOISY SIGNAL ANALYSIS

In this section, we assume that a determin-
istic signal f(n) is corrupted by an additive
noise ν(n), so that the time-frequency analy-
sis will be performed on the basis of x(n) =
f(n)+ ν(n). Complex and real noise ν(n) will
be considered. Very simple expressions for the
mean and variance of the S-method (includ-
ing the spectrogram and Wigner distribution
as special cases) will be derived for Gaussian
white noise.

A. Complex noise

Consider signal f(n) with additive complex
noise ν(n) with independent real and imag-
inary parts, having equal variances, denoted
by σ2ν/2. The total noise variance is σ2ν . In
order to analyze the noise’s influence on the S-
method, we rewrite equation (9) in the form:

DSMx(n, k) =
1

2Ld + 1
×

Ld∑

l=−Ld

N−1∑

i1=0

N−1∑

i2=0

w(i1)w(i2)x(n+ i1)x
∗(n+ i2)×

e−j
2π
N
k(i1−i2)e−j

2π
N
l(i1+i2). (11)

A.1 Mean value of the S-method

The mean of DSMf (n, k) estimator, based
on the discrete signal x(n) = f(n) + ν(n), is:

E {DSMx(n, k)} = DSMf (n, k)+

1

2Ld + 1

Ld∑

l=−Ld

N−1∑

i1=0

N−1∑

i2=0

w(i1)w(i2)×

Rνν(i1 − i2)e
−j 2π

N
k(i1−i2)e−j

2π
N
l(i1+i2), (12)

where Rνν(i1 − i2) = E {ν(n+ i1)ν∗(n+ i2)}
is the noise autocorrelation function (it is as-
sumed that the noise is stationary, zero-mean).
For white noise, Rνν(i) = σ2νδ(i), so we get:

E {DSMx(n, k)} = DSMf (n, k)+

σ2ν
2Ld + 1

Ld∑

l=−Ld

N−1∑

i=0

w2(i)e−j
2π
N
2li (13)

= DSMf (n, k) +
σ2ν

2Ld + 1

Ld∑

l=−Ld

Ww2(2l),

(14)
where Ww2(l) = FT

{
w2(i)

}
is the discrete

Fourier transform of w2(i). Since, in the
pseudo Wigner distribution, we have an equiv-
alent window w(i)w∗(−i) which, for a real and
even window function, reduces to w2(i), the
window w2(i) is used in the analysis instead of
w(i).

Relation (14) may be written as:

E {DSMx(n, k)} =

DSMf (n, k) + aw
Nσ2ν
2Ld + 1

, (15)

where aw =
1
N

∑Ld
l=−Ld

Ww2(2l) is a constant
depending on the selected window. For exam-
ple, for the rectangular, Hanning and Ham-
ming windows, this constant is 1, 0.5 and 0.54,
respectively (see Table I).

A.2 Means in the spectrogram and Wigner
distribution

For Ld = 0, i.e., assuming Pd(l) = δ(l), we
have:

E {DSMx(n, k)} = DSPECf (n, k)+Nawσ
2
ν ,

(16)
representing the mean value of the spectro-
gram, as obtained in [20] for the case of the
rectangular window (aw = 1).

Replacing 2Ld+1 = N in equation (15), we
get:

E {DSMx(n, k)} = DPWDf (n, k)+awσ
2
ν .
(17)

The above relation represents the mean of
the Wigner distribution estimator. The same
value is derived in [18]. One may conclude
that relation (15) unifies the mean value ex-
pressions for the spectrogram and Wigner dis-
tribution.
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TABLE I

V������� ��� ���� ��� � �!�"#��#"

w2(i) Rectangular window Hanning window Hamming window
rw (2Ld + 1) (3Ld + 1)/4 (0.79Ld + 0.29)
aw 1 0.5 0.54

A.3 Variance in the S-method

Calculation of the DSM variance starts with
the defining expression which, observing that
DSMx(n, k) is a real function, may be written
in the following form:

σ2xx = var {DSMx(n, k)} =

E
{
DSM2

x(n, k)
}
−E2 {DSMx(n, k)} . (18)

After several routine manipulations, the
variance in two components is achieved, as:
σ2xx = σ2fν + σ2νν . Component σ2fν depends
both on signal f(n) and on noise ν(n), while
the other variance component σ2νν depends ex-
clusively on the additive noise ν(n).

The noise-only-dependent part of the vari-
ance is:

σ2νν =
1

(2Ld + 1)2
×

Ld∑

l1=−Ld

Ld∑

l2=−Ld

N−1∑

i1=0

N−1∑

i2=0

N−1∑

i3=0

N−1∑

i4=0

w(i1)w(i2)×

w(i3)w(i4)[E{ν(n+ i1)ν
∗(n+ i2)×

ν(n+ i3)ν
∗(n+ i4)} −E{ν(n+ i1)×

ν∗(n+ i2)}E{ν(n+ i3)ν
∗(n+ i4)}]×

exp

[
−j 2π

N
k(i1 − i2 + i3 − i4)

]
×

exp

[
−j 2π

N
[l1(i1 + i2) + l2(i3 + i4)]

]
. (19)

For Gaussian noise it holds [21]:

E{ν(n+ i1)ν
∗(n+ i2)ν(n+ i3)×

ν∗(n+ i4)} = Rνν(i1 − i2)×
Rνν(i3 − i4) +Rνν∗(i1 − i3)×

Rν∗ν(i2− i4)+Rνν(i1− i4)Rνν(i3− i2). (20)

If we further assume that the noise is white
(knowing that, for complex noise with in-
dependent real and imaginary parts, having

equal variances, Rνν∗(i1−i3) = Rν∗ν(i2−i4) =
0), we get:

σ2νν =
σ4ν

(2Ld + 1)2
×

Ld∑

l1=−Ld

Ld∑

l2=−Ld

N−1∑

i1=0

N−1∑

i2=0

w2(i1)w
2(i2)×

exp

[
−j 2π

N
[(l1 + l2)i1 + (l1 + l2)i2]

]
. (21)

Finally, the distribution’s variance may be

written in a very simple and compact form as:

σ2νν =
rwN2σ4ν
(2Ld + 1)2

, (22)

where rw is a window-dependent constant:

rw =
1

N2

Ld∑

l1=−Ld

Ld∑

l2=−Ld

W 2
w2(l1 + l2). (23)

For example, for the rectangular, Han-
ning and Hamming windows, this constant
is given in Table I. The normalized variance
σ2νν/(N

2σ4ν) is shown in Figure 1.
On the basis of (22), we may easily write the

variances in the pseudo Wigner distribution
and spectrogram. For example, for the pseudo
Wigner distribution and rectangular windows,
substituting 2Ld + 1 = N into equation (22),
we get:

σ2νν = Nσ4ν ,

while for the spectrogram, Ld = 0, we arrive
at:

σ2νν = N2σ4ν .

The variance’s component depending on both
the signal and the noise is defined by:

σ2fν =
1

(2Ld + 1)2
×
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Fig. 1. Normalized variance in the S-method

Ld∑

l1=−Ld

Ld∑

l2=−Ld

N−1∑

i1=0

N−1∑

i2=0

N−1∑

i3=0

N−1∑

i4=0

w(i1)×

w(i2)w(i3)w(i4){f(n+ i1)f(n+ i3)×
Rν∗ν(i2 − i4) + f(n+ i1)f

∗(n+ i4)×
Rνν(i3 − i2) + f∗(n+ i2)f(n+ i3)×

Rνν(i1 − i4) + f∗(n+ i2)f
∗(n+ i4)Rνν∗(i1

−i3)} exp
[
−j 2π

N
k(i1 − i2 + i3 − i4)

]
×

exp

[
−j 2π

N
[l1(i1 + i2) + l2(i3 + i4)]

]
. (24)

For complex white noise, with independent
real and imaginary parts, having equal vari-
ances, the previous relation reduces to:

σ2fν =
σ2ν

(2Ld + 1)2
×

{
Ld∑

l1=−Ld

Ld∑

l2=−Ld

N−1∑

i1=0

N−1∑

i3=0

N−1∑

i4=0

w2(i3)×

w(i1)f(n+ i1)w(i4)f
∗(n+ i4)×

exp[−j 2π
N
[i1(k + l1)− i4(k − l2)+

i3(l1 + l2)]]+

Ld∑

l1=−Ld

Ld∑

l2=−Ld

N−1∑

i1=0

N−1∑

i2=0

N−1∑

i3=0

w2(i1)×

w(i2)f
∗(n+ i2)w(i3)f(n+ i3)×

exp[−j 2π
N
[i3(k + l2)− i2(k − l1)+

i1(l1 + l2)]]} (25)

since the correlation functions Rνν∗(i1 −
i2) = E {ν(i1)ν(i2)} = 0 and Rν∗ν(i1 −
i2) = E {ν∗(i1)ν∗(i2)} = 0 are equal to
zero (note that for the complex zero-mean
noise, with independent real νr(i) and imag-
inary νi(i) parts, we have E {ν(i1)ν(i2)} =
E {νr(i1)νr(i2)} −E {νi(i1)νi(i2)} = 0).

The previous equation may be written in the
form:

σ2fν =
2σ2ν

(2Ld + 1)2

Ld∑

l1=−Ld

Ld∑

l2=−Ld

Ww2(l1+ l2)×

DSTFTf (n, k+ l1)DSTFT
∗
f (n, k− l2). (26)

For the rectangular window w2(i) (Ww2(l1+
l2) = Nδ(l1+l2)), this part of variance reduces
to a very simple form:

σ2fν =
2Nσ2ν

(2Ld + 1)2

Ld∑

l=−Ld

DSPECf (n, k + l).

(27)
It may be concluded that this part of variance
is heavily dependent on the spectrogram and
window Pd(l) width.

Very similar forms may be obtained for
other window w2(i) forms. For example, for a
Hanning window we easily get Ww2(l1 + l2) =
N
2 [δ(l1+ l2)− (δ(l1+ l2+1)+ δ(l1+ l2−1))/2]
and the expression for variance σ2fν similar to
(27) follows.
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B. Real noise

In the case of real noise ν(n), Rνν(n) =
Rν∗ν(n) = Rνν∗(n) = Rν∗ν∗(n), so we obtain
the mean value as:

E {DSMx(n, k)} = DSMf (n, k)+aw
Nσ2ν
2Ld + 1

,

(28)
while the variance takes the form:

σ2νν =
σ4ν

(2Ld + 1)2
×

Ld∑

l1=−Ld

Ld∑

l2=−Ld

N−1∑

i1=0

N−1∑

i2=0

w2(i1)w
2(i2)×

(
1 + exp

[
−j 2π

N
2k(i1 − i2)

])
×

exp

[
−j 2π

N
[(l1 + l2)i1 + (l1 + l2)i2]

]
, (29)

where the calculations, similar to those in Sub-
section III.1, are performed.

Appropriate transformations yield:

σ2νν =
rwN2σ4ν
(2Ld + 1)2

+
σ4ν

(2Ld + 1)2
×

Ld∑

l1=−Ld

Ld∑

l2=−Ld

Ww2(l1 + l2 + 2k)×

Ww2(l1 + l2 − 2k). (30)

Having in mind the definitions of Ww2(l) and
rw, we arrive at a very simple expression:

σ2νν =
rwN

2σ4ν
(2Ld + 1)2

(1 + δ(2k)), (31)

which holds for the rectangular, Hanning and
Hamming windows. The only difference be-
tween complex and real noise is in the exis-
tence of factor δ(2k), i.e., the variances in these
two cases are the same except at frequencies
which k = 0, where the variance for the real
noise case is twice greater.

The signal and noise-dependent part of the
variance is:

σ2fν =
2σ2ν

(2Ld + 1)2

Ld∑

l1=−Ld

Ld∑

l2=−Ld

{Ww2(l1+l2)×

DSTFTf (n, k + l1)×
DSTFT ∗f (n, k − l2) +Ww2(l1 + l2 − 2k)×

Re [DSTFTf (n, k + l1)DSTFTf (n, k + l2)]}.
(32)

One may conclude that the variances in the
case of real noise are just slightly different than
those in the case of complex noise with inde-
pendent real and imaginary parts.

C. Variances in the spectrogram and Wigner

distribution

The variances in the spectrogram and
Wigner distribution (in exactly the same form
as obtained in [20] and [18] with rectangular
windows) follow from (31), noting that the
delta pulse function may be written as:

δ(k) =
sin 2πN kN

N sin 2πN k
=

(
sin 2πN kN

N sin 2πN k

)2
. (33)

Replacing Ld = 0 and 2Ld + 1 = N , respec-
tively, we get:

σ2νν = Nσ4ν

(
1 +

sin 2πN 2kN

N sin 2πN 2k

)
, (34)

σ2νν = σ4ν

[

N2 +

(
sin 2πN kN

sin 2πN k

)2]

, (35)

for the rectangular windows. Expressions (34)
and (35) were separately obtained in [20] and
[18]. If the noise is white, but not Gaussian,
the results differ only slightly, [20], [18].

IV. EXAMPLES

Consider now (analytically and numerically)
two simple examples:

1) sinusoidal noisy signal and,
2) linear frequency modulated noisy signal.

A. Example 1

Assume that the signal f(n) inside a win-
dow, for a given instant n, may be treated as
a sinusoid:

x(n) = f(n) + ν(n) = Aej
2π
N
k0n + ν(n). (36)

In this case, the STFT at instant n is of the
form:

DSTFTf (n, k) = Nδ(k − k0)f(n), (37)
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where a rectangular window w(i) is used.
The S-method produces:

DSMf (n, k) =
1

2Ld + 1
×

Ld∑

l=−Ld

DSTFTf (n, k + l)DSTFT ∗f (n, k − l) =

A2N2

2Ld + 1
δ(k − k0). (38)

Two special cases, the spectrogram and the
Wigner distribution, are:

DSPECf (n, k) = A2N2δ(k − k0),

DPWDf (n, k) = A2Nδ(k − k0). (39)

In order to investigate the influence of noise
on the time-frequency representation, we de-
fine the peak signal to noise ratio (S/Nmax).
It will be defined as the ratio of the squared
absolute maximal value of the distribution and
estimator’s variance1 . For the S-method, this
ratio is:

S/Nmax =
|max {DSMf (n, k)}|2

σ2νν + σ2fν
(40)

One may distinguish two parts of the time-
frequency plane: one which will be denoted by
Πνν where only σ2νν exists, and the other Πfν
where both components σ2νν + σ2fν exist.

In the Πνν region, the signal-to-noise ration
is:

S/Nmax =

(
A2N2

2Ld+1

)2

N2σ4ν
2Ld+1

=
A4N2

(2Ld + 1)
. (41)

1Another possible definition of the signal-to-noise
ratio is the local ratio of distribution and its variance

S/N =

∣∣DSMf (n, k)
∣∣2

σ2νν + σ
2
fν

.

However, we preferred the definition (40) since it pro-
duces simpler results; it also compares the pick value of
the distribution with the noise in the time-frequency
plane. This is very reasonable in many practical appli-
cations, where a time-frequency distribution (its pick
value(s)) is used to estimate the instantaneous fre-
quency of a signal. In this case, we are not interested in
the local ratio, especially at the points where the dis-
tribution is equal to zero. For that point, it is better
to compare the variance, due to noise, with the max-
imum value of the distribution, since this ratio repre-
sents the measure of possible false peak detection (i.e.,
wrong frequency detection).

From the previous equation it may be con-
cluded that the maximal S/N value is obtained
for the spectrogram (Ld = 0), while the min-
imal value is obtained for the Wigner distri-
bution (2Ld + 1 = N). This is an expected
result, since it is common to consider the spec-
trogram as the smoothed Wigner distribution.
However, the same results are not found in the
case of the linear frequency modulated signal,
which will be studied in the next example.

In the Πfν region, where both parts of the
variance exist, the ratio is:

S/Nmax =
(A/σν)

4

2Ld+1
N2 + 2A2

Nσ2ν

Ld∑

l=−Ld

δ(k − k0 + l)

.

(42)
In this region, the dominant factor is due
to σ2fν . However, this factor exists only in
the region defined by the window Pd(l) width
(Fig.2). For the spectrogram, region Πfν coin-
cides with the domain where the spectrogram
is different from zero.

In the Wigner distribution, the value
(S/Nmax) contains variance σ2fν for all fre-
quencies, so we get:

S/Nmax =
(A/σν)4

1
N +

2
N (A/σν)

2
.

Assume, for example, that A = σν , then
in the worst case (region Πfν) for the spectro-
gram, we have S/Nmax = N2/(1+2N) ∼= N/2,
while in the Wigner distribution S/Nmax ∼=
N/3. Obviously, the signal-to-noise ratio in
these two distributions is of the same or-
der. The difference is only d = 10log(3/2) =
1.76[dB].

B. Example 2

In this example, a linear frequency modu-
lated signal considered:

x(t) = f(t) + ν(t) = Aejat
2/2 + ν(t). (43)

The reason why we defined the signal in the
analog, rather than in the discrete domain, is
because we use some mathematical tools that
are not well defined in the discrete form. Of
course, we will transfer the results to the dis-
crete domain before the noise analysis.
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Fig. 2. The distribution of variance in the case of a noisy sinusoidal signal

Assuming that constant a in (43) is large,
one may use the stationary phase method2

to obtain an approximate expression for the
STFT:

STFTf (t, ω) ∼= w

(
ω − at

a

)
×

√
2πj

a
e−jω

2/(2a)f(t), (44)

or for the spectrogram:

SPECf (t, ω) ∼=
2πA2

a
w2
(
ω − at

a

)
. (45)

2The stationary phase method [21] states that, for

signal x(t) = A(t)ejϕ(t), if |A′(t)/A(t)| � |φ′(t)|, then:

X(ω) =

∫ ∞

−∞
A(t)ejφ(t)dt ∼=

ejφ(t0)A(t0)
√
2πj/ |φ′′(t0)|

with φ′(t0) = 0, φ′′(t0) �= 0, and φ(t) = ϕ(t) − ωt.
From the stationary phase method, it directly follows
that, if we have a product of x(t) and w(t) (where w(t)
is slow-varying, i.e. |[A(t)w(t)]′/[A(t)w(t)]| � |φ′(t)|
and if the instantaneous frequency may be treated as
linear, i.e. at0 − ω = 0, then:

Xw(ω) =

∫ ∞

−∞
A(t)w(t)ejφ(t)dt = X(ω)w(ω/a)

where w(ω/a) = w(t)|t=ω/a.

The discrete form3 of spectrogram is:

DSPECf (n, k) ∼=
2πA2N2

aT 2
×

w2
(
2πk/T − anT/N

a

)
, (46)

where T is the window w(τ) width and N is
the number of samples.

The maximum possible value of the spec-
trogram (needed for the defined signal-to-noise
ratio) is:

max {DSPECf (n, k)} ∼=
2πA2N2

aT 2
. (47)

The Wigner distribution of f(t) is:

WDf (t, ω) = A2W (ω − at),

where W (ω) = FT
{
w2(τ/2)

}
, (48)

the maximum value of the discrete form
Wigner distribution is:

max {DWDf (n, k)} =
A2N

T
Cw,

where Cw =W (0) =

∫ ∞

−∞

w2(τ/2)dτ. (49)

According to (8) and (49), we obtain:

max {DPWDf (n, k)} =
3The discrete form of the Fourier transform is:

∞∑

n=−∞

x(n�t)e−jωn�t ∼=
1

�t

∫ ∞

−∞
x(t)e−jωtdt,

where �t is sampling interval, �t = T/N .
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Fig. 3. Normalized spectrogram at a given instant t

Fig. 4. Normalized Wigner distribution at a given instant t

max{ 1
N

N/2∑

l=−N/2

α(l)DSTFTf (n, k + l)×

DSTFT ∗f (n, k − l)} = A2N

T
Cw. (50)

If the width of the STFT along the fre-
quency axis (i.e. the width of w((2πk/T −
anT/N)/a)) is equal to 2Ldm + 1, then the
maximum value of the S-method, according to
(50), is:

max {DSMf (n, k)} =

max{ 1

2Ldm + 1

Ldm∑

l=−Ldm

DSTFTf (n, k + l)×

DSTFT ∗f (n, k − l)} = N

2Ldm + 1

A2N

T
Cw.

(51)

Now, we may find the S/Nmax ratio. Con-
sider first the part of the time-frequency plane
where only σ2νν exists. For the spectrogram,
in Πνν region, we get:

S/Nmax =
max {DSPECf (n, k)}2

σ2νν
=

(
2πA2N2

aT2

)2

N2σ4ν
=
4π2N2A4

(aT 2)2σ4ν
. (52)

For the S-method with Ld ≥ Ldm (including
the Wigner distribution with 2Ld+1 = N), it
follows:

S/Nmax =
max {DSMf (n, k)}2

σ2νν
=

(
N

2Ld+1
A2N
T Cw

)2

N2σ4ν
2Ld+1

=
N2A4C2w

T 2(2Ld + 1)σ4ν
,

for Ld ≥ Ldm. (53)

The ratio of the signal-to-noise ratios in the
spectrogram and in the S-method (relations
(53) and (52)) is:

R =
S/Nmax |S−method

S/Nmax |spectrogram
=

(
aT 2

π

)2
C2w
4T 2

1

2Ld + 1
= rsrwrp. (54)

We see that there are three parts of the coef-
ficient R: rs, depending on the signal form (its
parameter a); rw, depending on the window
w(τ) and rp depending on the window Pd(l).
Coefficient R will be used for the comparison
of the S-method and spectrogram with respect
to its maximal squared absolute values and the
variance of the distribution (due to noise only)
in the time-frequency plane. If this ratio is
greater than 1, it means that the S-method has
greater peack signal-to-noise ratio, i.e., that
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the estimation of the instantaneous frequency
(based on the S-method) is more reliable. We
may easily conclude that R decreases as Ld
increases. Maximum value of R is reached for
the minimum value Ld = Ldm, for which rela-
tion (54) holds. In order to achieve that value
of R, note that the maximum frequency, sam-
pling period along the frequency, and Ldm are
given by:

ωm = πN/T ;

	ω = 2π/T ;
2Ldm + 1 = aT/	ω = aT 2/2π.

Note that Ldm is obtained according to (45),
(46). Thus, a very simple expression for the
maximum R is obtained:

R =
a

2π
C2w. (55)

In the Πfν part of time-frequency plane,
where both components of the variance exist,
the expressions for the signal-to-noise ratios
are slightly more complex. For the spectro-
gram, we have:

S/Nmax =
((2πA2N2)/(aT 2))2

4πA2σ2νN
3

aT2 +N2σ4ν
.

Note, again, that this region coincides with
that in which the spectrogram is different from
zero. While, for the S-method, signal-to-noise
rations is:

S/Nmax =

(
N

2Ld+1
A2N
T Cw

)2

σ2fν +
N2σ4ν
2Ld+1

≥

(
N

2Ld+1
A2N
T Cw

)2

4πA2σ2νN
3

aT2(2Ld+1)
+

N2σ4ν
2Ld+1

,

for Ld ≥ Ldm.

C. Numerical example 1

In this numerical example we considered:

x(t) = Aejat
2/2 + ν(t),

with a = 1400, the Hanning window of the
width T = 0.25, number of samples N = 128,
amplitude A = 1 and noise variance σ2ν = 1.

Results with spectrogram, S-method (Ld = 2),
S-method (Ld = 6) and the Wigner distribu-
tion are shown in Figures 5a,b,c,d and 6a,b,c,d,
respectively (with, Fig.6, and without noise,
Fig.5). The coefficient R (equation (55)), in
this case, is R = 7.85 or the ratio of ampli-
tudes

√
R =

√
7.85 = 2.82. This coefficient

analytically proves (as is visually obvious from
Figure 6) that the S-method may significantly
improve the representation, in a noisy environ-
ment, with respect to the spectrogram and the
Wigner distribution.

Note that the noise in spectrogram is espe-
cially pronounced just inside the region where
the spectrogram is different from zero (Πfν re-
gion) (Fig.6a). In Figure 6c, the S-method
with Ld = 6 (which is sufficient to obtain the
same signal representation as in the Wigner
distribution) is presented. The region Πfν is
spread around the Wigner distribution in the
region defined by Ld = 6. In the remaining
part of the time-frequency plane, the noise is
less pronounced. A variant between the cases
in Figure 6a and Figure 6c is presented in Fig-
ure 6b, where the distribution is almost con-
centrated at the instantaneous frequency, with
a very narrow Πfν region defined by Ld = 2.
The case of the Wigner distribution where the
region Πfν is the entire time-frequency plane
is presented in Figure 6d. The advantage of
the S-method with a small Ld, in the time fre-
quency analysis of the noisy signals, is evident
from Figure 6, as well as from the analytical
treatment perfomed in the previous sections.

D. Numerical example 2

Time-frequency representation of a multi-
component signal:

x(t) = f(t)+ν(t) = ej1400t+ej680(t−0.1)
2

+ν(t),

is presented in Figure 7. The variance of white
Gaussian noise is σ2ν = 1. The same number of
samples and window w(i) are used as in Fig-
ures 5 and 6. From Figure 7, we may conclude
that the S-method, with Ld = 3, achieves al-
most the same concentration as the Wigner
distribution, but the noise influence is signif-
icantly decreased with respect to the Wigner
distribution. Also, in contrast to the Wigner
distribution, the S-method is cross-term free



UNIFIED APPROACH TO THE NOISE ANALYSIS IN THE SPECTROGRAM AND... 363

ω

512π

0 1/8

1

t

a )

b )

c )

d )

Fig. 5. Time-frequency representation of linear frequency modulated signal without noise: a) Spectrogram, b)
S-method with Ld = 2, c) S-method with Ld = 6, and d) The Wigner distribution.

(Figure 7). This figure further demonstrates
the above-described properties concerning si-
nusoidal and linear frequency modulated sig-
nals.

An interesting system with a signal-
dependent window Pd(l) width which, in the
case of multicomponent signals, follows the
components’ widths, and stops all summations
in (9) outside the auto-therm, is presented in
[23], while an example with a real seismic sig-
nal is given in [24].

V. CONCLUSION

Noise analysis in the spectrogram and
Wigner distribution is perfomed using the S-
method. It is shown that the results for these
two very important distributions readily fol-
low as special cases from the S-method analy-
sis. Also, in the case when the frequency is
not constant, the S-method enables an im-
provement of the time-frequency presentation
as compared to its two marginal cases, the
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a )

b )

c )

d )

Fig. 6. Time-frequency representation of linear frequency modulated signal with noise (SNR = 10 log(A2/σ2ν) =
0 [dB]): a) Spectrogram, b) S-method with Ld = 2, c) S-method with Ld = 6, and d) The Wigner distribu-
tion.

spectrogram and Wigner distribution.
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