SIGNAL

PROCESSING

&

san e LS
ELSEVIER Signal Processing 80 (2000) 2507-2515
www.elsevier.nl/locate/sigpro

Sensor array signal tracking using a data-driven
window approach

Alex B. Gershman! **, LJubiSa Stankovic®, Vladimir Katkovnik®

*Department of Electrical Engineering, McMaster University, Hamilton, Ontario, Canada L8S 4K1
*Department of Electrical Engineering, University of Montenegro, Podgorica, Yugoslavia
“Center for Signal Processing, Tampere University of Technology, Finland

Received 19 April 1999; received in revised form 15 May 2000

Abstract

In many practical source tracking applications, the interval of source stationarity may severely vary with time, so that
array observations may contain both almost stationary data blocks and nonstationary data intervals with rapidly
moving sources. Moreover, typical situations may occur where some sources move rapidly within the window exploited,
whereas the motion of the other sources is weak. In such scenarios, the traditional fixed-window approach appears to be
nonoptimal because it may lead to a very poor tracking performance. Below, we address the narrowband direction of
arrival (DOA) tracking problem using a new adaptive-window approach. In our technique, a separate data-driven
window is used for each source of interest. The optimization of window lengths is based on the bias-to-variance tradeoft.
The comparison of our approach with conventional fixed-window algorithms is presented showing that the underlying
idea has an evident potential in nonstationary scenarios with rapidly moving sources. A natural price for the improved
tracking performance is a higher computational cost and the restriction of our approach by the scenarios with
‘well-separated’ sources. © 2000 Elsevier Science B.V. All rights reserved.

Zusammenfassung

In vielen praktischen Anwendungen der Quellen-Nachfithrung kdnnen die Stationarititsintervalle der Quellen zeitlich
stark schwanken. Array-Beobachtungen konnen daher sowohl beinahe stationdre Datenblocke als auch instationére
Datenbldcke mit schnell bewegten Quellen enthalten. Dariiber hinaus konnen typische Situationen auftreten, bei denen
sich einige Quellen innerhalb des Beobachtungsfensters schnell bewegen, wihrend die Bewegung der anderen Quellen
nur schwach ist. In solchen Szenarien scheint der traditionelle Ansatz eines festen Beobachtungsfensters nicht optimal zu
sein, da er zu sehr schlechten Nachfiihrungsergebnissen fithren kann. In dieser Arbeit behandeln wir das Problem
der Nachfithrung von Einfallsrichtungen (DOAs) im Schmalband-Fall, wobei wir einen neuen Ansatz mit
adaptiven Fenstern verwenden. Bei unserer Methode wird fiir jede relevante Quelle ein eigenes datengesteuertes
Fenster verwendet. Die Optimierung der Fensterlingen beruht auf dem Bias-Varianz-Austausch. Ein Vergleich
unseres Ansatzes mit konventionellen Algorithmen mit festen Fenstern zeigt, dass die ihm zugrundeliegende Idee ein
offensichtliches Potential fiir instationédre Szenarien mit schnell bewegten Quellen besitzt. Der Preis fiir die verbesserten
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Nachfithrungseigenschaften sind ein hoherer Rechenaufwand und die Beschrinkung unseres Ansatzes auf Szenarien
mit “gut getrennten” Quellen. © 2000 Elsevier Science B.V. All rights reserved.

Résumé

Dans de nombreuses applications pratiques de suivi de sources, I'intervalle durant lequel la source est stationnaire peut
varier sévérement au cours du temps, de sorte que des observations en réseau peuvent contenir a la fois des blocs de
données presque stationnaires et des intervalles de données non stationnaires, avec des sources bougeant rapidement. De
plus, des situations typiques peuvent arriver ou certaines sources bougent rapidement durant la fenétre exploitée alors
que le mouvement d’autres sources est faible. Dans de tels scénarios, 'approche traditionnelle par fenétre fixe apparait
non optimale parce qu’elle peut mener a de treés pauvres performances en suivi. Ci-dessous, nous adressons le probléeme de
suivi par direction d’arrivée a bande étroite, en utilisant une nouvelle approche par fenétre adaptative. Dans notre
technique, une fenétre séparée, dirigée par les données, est utilisée pour chaque source d’intérét. L’optimisation de la
longueur de la fenétre repose sur un compromis biais/variance. Nous présentons la comparaison de notre approche avec
les algorithmes conventionnels a fenétre fixe, qui montre que I'idée sous-jacente a un potentiel évident pour des scénarios
non stationnaires avec des sources bougeant rapidement. Le prix naturel pour des performances de suivi est un cotit de
calcul plus important et la restriction de notre approche par les scénarios avec des sources ¢bien séparées)y. © 2000
Elsevier Science B.V. All rights reserved.

Keywords: Source tracking; Data-driven windows; Root-MUSIC

1. Introduction MUSIC technique [1,12]. The adaptive-window

selection procedure is based on the approximate

In typical nonstationary array processing scen-
arios, the interval of data stationarity tends to vary
with time, i.e., the received data may include both
highly nonstationary and almost stationary blocks.
Another typical situation occurs where some
sources move rapidly within the window exploited,
whereas the motion of the remaining part of
sources is weak.

In such scenarios, the lag window length be-
comes one of the most important parameters. In
the traditional fixed-window approach, the use of
short windows is well known to increase the vari-
ance of direction finding techniques. With longer
lag windows, the estimation variance can be
lowered but the DOA estimates become biased
and, therefore, are unable to track rapidly moving
sources. As a result, the traditional fixed-window
approach does not enable tracking multiple sources
with severely different intervals of stationarity.

In this paper, we develop a new adaptive-window
approach to DOA tracking. In our technique, mul-
tiple data-driven windows are used, i.e., a separate
adaptive window is employed for each source. Our
algorithm combines the developed adaptive multi-
window subspace tracker and the popular root-

minimization of the mean squared estimation error
using the bias-to-variance tradeoff approach de-
veloped originally for another class of problems
[7-9]. Comparisons with conventional fixed-win-
dow algorithms demonstrate a potential of the de-
veloped adaptive-window approach. A natural
price for the improvements achieved is a higher
computational cost. Also, our approach is re-
stricted by scenarios with ‘well separated’ sources.

2. Signal model

Assume that a uniform linear array (ULA) of
n sensors receives ¢ (¢ <n) narrowband signals
impinging from the unknown varying directions
{01(1),02(t), ... ,0,(t)}. The output vector of the array
at the discrete time t can be expressed as

x(1) = A(0)s(t) + n(2), (1)
where the n x g time-varying direction matrix

A1) = [a1(1),a5(1), ..., a,4(1)] )



A.B. Gershman et al. | Signal Processing 80 (2000) 2507-2515 2509

is composed of the source direction vectors

a;(t) = <1,€:xp{j2—/{c dsin Qi(t)}, s

exp{j 27” d(n — 1)sin 9@}) T, 3)

A is the wavelength, d is the interelement spacing,
(+)" stands for the transpose, and the g x 1 and n x 1
vectors s(t) and n(f) contain the source waveforms
and the sensor noise, respectively.

3. Conventional fixed-window approach

In this section, we revisit the traditional fixed-
window approach with the rectangular sliding win-
dow containing M independent data snapshots.?
Write the data matrix as

X(1) = [x(t — M/2),x(t — M/2 + 1), ...,
x(t + M/2 — 1)]. “)

The lag window estimate of the array covariance
matrix

R(1) = E{x(0x"(1)} = AOSOA"™0) + o° (5)
is given by
R(1) = A—I/IX(t)XH(z), ©

where S(t) = E{s(t)s"(t)}, I is the identity matrix,
o2 is the sensor noise variance, and ()" stands for
the Hermitian transpose.

Write the eigendecomposition of (6) as

R(t) = E)A(t)EY(t)
= Es(0As(OES(1) + Ex())Ax()ER (D), (7)

where the ¢ x ¢ and (n — q) X (n — ¢q) diagonal ma-
trices Ag and Ay contain the ¢ and n — ¢ sample
signal- and noise-subspace eigenvalues, respective-
ly, whereas the columns of the n x g and nx (n — q)
matrices Eg and Ey contain the sample signal- and
noise-subspace eigenvectors, respectively.

2 Without loss of generality, M is assumed to be even.

Note that there are many computationally effi-
cient algorithms for updating the matrix Eg(t) (for
example, see [2,17] and references therein). The
discussion on what algorithm is better is beyond
the scope of our study. Hereafter, assume that one
of existing subspace tracking techniques is ex-
ploited. The last step of the fixed-window DOA
tracker is to estimate the source DOA’s, for
example, using the root-MUSIC polynomial [1]

Suusic(z) = a"(1/2) Ex(t))EX (Da(z),
=a"(1/2){I — Es()Eg()}a(z), (®)

where, according to (3)

az)=[1,z....22 11", z@t) = exp{jz)TC dsin@(t)}.

©

The estimates of source trajectories 0;(t), i =
1,2,...,q can be found from the roots of (8) in
a standard way [1,12].

In the presence of the coherent (multipath)
sources, the spatial smoothing algorithm can be
incorporated in the tracker scheme [14].

4. Adaptive-window approach

Let us make the following assumptions:

(A1) The array is large (n>1) so that the sources
are well separated in the sense of Rayleigh
criterion [3].

(A2) The source powers are subject to much
slower variations than their DOA’s.

(A3) The number of sources is known.

The first assumption is almost always true for
large arrays. Although the high-resolution root-
MUSIC algorithm will be exploited for DOA
tracking, we stress that this algorithm is chosen
because of other reasons than its high-resolution
property. The motivation of this choice is due to
a very simple implementation of root-MUSIC
which is based on the eigendecomposition of the
array covariance matrix and polynomial rooting.
It is worth noting that in the case g«mn, the
eigendecomposition can be performed using com-
putationally efficient fast algorithms [16], and the
computational cost of polynomial rooting is
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negligible as compared to that of the eigendecom-
position if the fast Jenkins—Traub or Lang-Frenzel
algorithms are employed [10].

Assumptions (A2) and (A3) are also very typical
for array processing [ 15]. Denoting w;(t) = sin 0;(t)
and &;(t) = sin 0;(¢), and assuming that the sources
are sorted so that w; <w, < - <w, and
WD <y < -+ <@, let us obtain the optimal
window length by minimizing the mean squared
error (MSE) given by

£2(M) = bias?(M) + var,(M), (10)

where

bias; = E{®; — w;}, var; = E{(&; — E{®;})*},
(11)

and the explicit dependence on the window length
is emphasized. Here, we stress that in what follows,
we formulate our algorithm in terms of spatial
frequencies w; rather than the DOA’s 0.

Note that the bias of any DOA estimate cannot
be known a priori because it depends on unknown
source motion parameters (i.c., on the angles 0;(t)
and their derivatives). Furthermore, in the non-
stationary case, the bias component is mainly de-
termined by the rapid DOA changes within the
sliding window rather than the finite sample effects.
In [7], an elegant approximate solution minimizing
(10) has been presented, based solely on the vari-
ance knowledge. This approach is usually referred
to as an intersection of confidence intervals (ICI)
criterion [7,8]. Below, this solution is adapted to
the problem considered. The key idea of the ICI
criterion is to find the optimal window length from
the bias-to-variance tradeoff, i.e., from the condi-
tion that the bias squared should have the same
order of magnitude as the variance.

It can be shown [15] that under Assumption (A1)
and in the stationary case, the variance of the spa-
tial frequency @; at the output of the spectral
MUSIC estimator can be expressed as

622(1 + 1/nSNR))

Y = M (2rd)P SNR; n(n® — 1)

(12)

where SNR; = ¢7/0?, and 67 = S;; is the variance
of the ith source waveform. Rao and Hari [12] have
shown that the same expression (12) is valid for the

10’
NUMBER OF SNAPSHOTS

Fig. 1. The ratio C of the experimental and theoretical RMSE’s
versus M.

root-MUSIC technique as well. It is worth noting
that (12) does not depend on the source spatial
frequency w;, i.e., it depends only on the unknown
source SNR and known wavelength /, interelement
spacing d, number of sensors n, as well as the
chosen window length M. It is also important to
note that (12) is a large sample (O(1/M)) approxi-
mation. However, in situations with well-separated
sources, even a few snapshots are already sufficient
to approach the value of (12). To illustrate this
property, we display in Fig. 1 the ratio C of the
experimental and theoretical root-mean-square er-
rors (RMSE’s) versus M for a ten-element ULA,
two equipowered sources with the DOA’s 8, = 0°
and 0, = 20°, and SNR = 10 dB. The experimental
RMSE was computed using 1000 independent runs
and averaged over the sources. From Fig. 1, we
observe that the parameter C rapidly converges to
C =1, and expression (12) becomes valid with
a good precision starting from M = 4-8 snapshots.

Let us restrict the absolute value of the estima-
tion error by

| — @(M)| < |bias(M)] + xy/var,(M), (13)

where the distribution of the estimate &; is assumed
to be Gaussian [15], and (13) holds with the prob-
ability P(k) for the corresponding quantile x of the
standard Gaussian distribution .A47(0,1). Let the
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window length M be so small that [7,9]

|bias;(M)| < k./var;(M), (14)

Using (14), Eq. (13) can be rewritten as

|lw; — &i(M)] < 2K/ var;(M). (15)

Let us now consider a discrete set of window
lengths {M,}/< . If these window lengths provide
such a small bias then the segments

D, = [@;(M,) — 2K/ var;(M,), &;(M;)
+ 2k /var;(M,)], [ =1.2,...,K (16)

have a common point (i.e., intersect with each
other). Condition (15) becomes violated if some
window lengths from the set {M,};~; produce
strongly biased estimates, so that |bias;(M)| >
K/ var;(M). Therefore, to find a reasonable approx-
imation to the optimal window length, it is mean-
ingful to exploit (16) referred to as the ICI criterion
[7]. Obviously, this criterion corresponds to the
following bias-to-variance tradeoff condition:

|bias;(M)| ~ x./var;(M). (17)

The discrete set {M,}/~; can be thought to be
a grid covering the window lengths of interest.

According to (17), the essence of the exploited
tradeoff is to compare the empirical bias with the
variance predicted using (12). Since the parameter
k should be chosen so that k ~ 1, the underlying
tradeoff compares the orders of magnitude of the
bias and variance rather than the exact values. This
is the reason why the ICI criterion provides a suffi-
cient degree of robustness against possible variance
estimation errors [8,9].

The estimates of the confidence intervals (16) can
be written as

Di(t) = [&(M,,1) — 2ic/var (M, t), &, (M, t)
+ 2 /var (M, 1)], [=12,....,K, (18)

where
_ 62%(1 + 1/nSNR,
(M, 1) = (L + 1/nSNR(1) (19)

M,(2rd)*SNR;(Hn(n? — 1)

is the estimate of (12), and S/N\R(t) is any estimate of
the SNR of the ith source. In what follows, the

source SNR’s will be estimated as

1 t+P

SNRl(t) = mp:;_}) maXi(h(p,Q)), (20)
where

H 9 2
iip,0) = OO ell

6% is an estimate of the noise variance,

max;(-), i =1,2,...,q are the g highest maxima of
(21) sorted with respect to the source index i, and
2P + 1is the length of the estimating interval. Esti-
mate (20) corresponds to the averaged outputs of
the single-snapshot conventional beamformer
which can be exploited here according to Assump-
tions (A1) and (A2). The estimate 6* of the noise
variance can be found using several reliable ways,
for example, by averaging the minimal eigenvalues
of the covariance matrix, using single-snapshot de-
convolution procedures (such as a popular CLEAN
algorithm [13]), or by means of calibration
measurements carried out in advance (in the ab-
sence of signal sources). According to Assumption
(A2), P>»min{{M,}/,} can be chosen to stabilize
the estimates (20) and 62. It is worth noting that
even rather approximate estimates (i.e., up to the
order of magnitude) of the source SNR’s suffice for
the ICI criterion [7,9]. It is also important that the
particular estimate (21) is a slight modification of
a single-snapshot variant of the maximum likeli-
hood (ML) estimate of the signal power derived in
[6,4]. Therefore, it can be expected to have a suffi-
ciently high performance. Note also that the esti-
mate (20) is biased in the general case but its bias
becomes negligible in large arrays (Assumption
(A1) [6]

Now, we formulate our adaptive-window DOA
tracking algorithm as the following sequence of
steps:

Step 1: Specify a sequence of window lengths
(sorted in ascending order)

%:{MI}IKZI, Ml <M2< <MK' (22)

For each value M,, compute (or update) the output
of the DOA tracker based on the root-MUSIC
polynomial (8). As a result of this step, we get the
sorted estimates @, (M;) < ®,(M;) < --- < ®,(M;)
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of spatial frequencies @;(M;) obtained for each
source i=1,...,q and each window length
I=1,...,K.

Step 2: For each source, estimate its SNR using
(20), and then insert (20) into (19) to obtain the
estimates var;(M;, t) for each source and each win-
dow length M,. Using these estimated variances
aAnd (18),Af0r each source find the estimates
Dq(¢),...,Dg(t).

Step 3: For each source, obtain the optimal win-
dow length M,,(i,t) determined as the largest
M, from set (22) for which the estimated segments
D,_((t) and D,(t) still intersect (have a common
point). In other words, we obtain the optimal win-
dow length via the largest index le{1,...,K} for
which the following inequality:

| (M, 1) — &;(M; -1, 1)

< 2ul(y/Var(My, 1) + /Var(M, -1, 1) (23)

is satisfied. If all intervals exploited do not intersect,
the shortest window should be taken.

This step results in g optimal windows (one win-
dow per source) M, (i,t), i=1,...,q.

Step 4: Exploit the obtained optimal windows in
the DOA tracker described in Section 3.

Note that in Step 3, a particular variant of the
ICI criterion is used, based on the intersection of
two neighboring confidence intervals [9].

It should be noted that after a proper modifica-
tion, our approach can be applied to the exponen-
tial window case as well. However, to treat this
case, another expression for the variance is required
instead of (12).

5. Simulations

We have assumed a ULA of five omnidirectional
sensors with the half-wavelength spacing. SNR =
1.25 dB has been assumed for each source in
a single sensor. The simplest two-window algo-
rithm was implemented with the window lengths
equal to 8 and 128 snapshots (i.e., M = 8,128). In
all figures given below, the true source trajectories
are indicated by dashed lines.

In the first two examples, we simulated the single
source scenario. Fig. 2(a)—(c) displays the estimated
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Fig. 2. Tracking performances of (a) the fixed-window algo-
rithm with M =38, (b) the fixed-window algorithm with
M =128, and (c) the adaptive-window algorithm in the first
example. k¥ =2. The true source trajectory is shown with
a dashed line.

trajectories for the first example using the fixed-
window algorithm with M = 8, the fixed-window
algorithm with M = 128, and the adaptive-window
algorithm, respectively. The parameter k = 2 has
been taken. Similar plots for the second example
are displayed in Fig. 3(a)-(c). From this figure, we
see that for x = 2, the residual effect of bias is still
quite essential in the interval between 120th and
350th snapshots. Decreasing x, we are able to re-
duce this effect, but at the expense of higher vari-
ance. This is demonstrated in Fig. 4(a)-(c) which
corresponds to the second example with the value
k=14

Additionally, the Empirical RMSE’s (ERMSE?’s)
[5,11]

ERMSE = / ! i i (0.(t) — 0,(1))*

qT = =1 l l (24)
of these techniques have been compared. In (24),
T is the length of estimated source trajectory. The
ERMSE characterizes instantaneous DOA estima-
tion errors averaged over the interval T.

In subplots (a)-(c) of Fig. 2, the ERMSE is
2.18° 4.10°, and 1.43°, respectively. In the similar
subplots of Fig. 3, the ERMSE is 1.65°, 4.01°, and
1.48°, respectively. In the subplots of Fig. 4, this
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Fig. 3. Tracking performances of (a) the fixed-window algo-
rithm with M =8, (b) the fixed-window algorithm with
M = 128, and (c) the adaptive-window algorithm in the second
example. k¥ =2. The true source trajectory is shown with
a dashed line.

parameter is 1.65°, 4.01°, and 1.44°, respectively.
We see that the adaptive-window algorithm has the
smallest ERMSE among the techniques tested and
finds an excellent tradeoff between the estimation
bias and variance.

In the third example, the scenario with two un-
correlated sources was simulated and x =2 is
taken. Fig. 5(a)—(c) shows the estimated trajectories
for this example using the same techniques as in
Figs. 2-4. In subplots (a)-(c) of this figure, the
ERMSE is 2.32°, 4.13°, and 1.82°, respectively. As
in the first and second examples, the adaptive-
window algorithm performs better than both
fixed-window techniques, i.e., has the smallest
ERMSE.

Hence, from our simulations it follows that the
presented adaptive-window algorithm has an obvi-
ous potential when applied to the source tracking
problems in the presence of rapid and abrupt
source trajectory changes. In particular, the pro-
posed technique has reduced DOA estimation
ERMSE’s relative to the conventional (fixed-win-
dow) root-MUSIC based tracking algorithm. In
fact, our algorithm provides more flexibility than
the fixed-window approach because the use of mul-
tiple adaptive windows enables to track both slow
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Fig. 4. Tracking performances of (a) the fixed-window algo-
rithm with M =8, (b) the fixed-window algorithm with
M = 128, and (c) the adaptive-window algorithm in the second
example. k¥ = 1.4. The true source trajectory is shown with
a dashed line.

|

o
T

ANGLE (DEGREES)
&
2

I ) (2) FIXED-WINDOW (M=8) )

L
0 200 400 600 800 1000
SNAPSHOT INDEX

50 A 1

-50F T i
- (b) FIXED-WINDOW (M=128) ‘

0 200 400 600 800 1000
SNAPSHOT INDEX

ANGLE (DEGREES)

o
S
%
L

o
T
L

)

@

S
T
i

ANGLE (DEGREES)

() /-'IKDAPTNE—WIND‘OW (M=8,128)

400 600 800 1000
SNAPSHOT INDEX

o
N
S
153

Fig. 5. Tracking performances of (a) the fixed-window algo-
rithm with M =8, (b) the fixed-window algorithm with
M =128, and (c) the adaptive-window algorithm in the third
example. k = 2. The true source trajectories are shown with
dashed lines.

and fast (e.g. abrupt) trajectory changes. If in the
multiple source case the motion of some sources is
fast and that of the remaining sources is slow, the
fixed-window algorithm may experience severe



2514 A.B. Gershman et al. | Signal Processing 80 (2000) 2507-2515

degradation. However, the multiwindow algorithm
can easily treat this situation just by making use
of multiple windows with different lengths (one
window per source). This effect can be seen from
Fig. 5 by examining the source tracking perfor-
mance in the interval between 460th and 500th
snapshots.

We end up this section with some remarks
prompted by several additional simulations with
more than two windows whose results were not
detailed in this paper, in the interest of brevity.

The application of the algorithm with more than
two windows to the examples considered showed
further slight performance improvements which
correspond only to several percents of reduction
of the ERMSE. However, the multiwindow
algorithm may have more significant improve-
ments over the simplest two-window algorithm in
more complex scenarios where the source traject-
ory has multiple scales of stationarity or where
there is no a priori information for a motivated
fixed-window choice. This issue requires more
study in future.

6. Conclusions

In several practically important source tracking
applications, the interval of source stationarity may
vary with time, so that the array observations may
contain both almost stationary and nonstationary
data intervals. Even more complicated situations
may occur where some sources move rapidly within
the window, whereas the motion of the other sour-
ces is weak. In such scenarios, the traditional fixed-
window approach may be nonoptimal because it
may result in a significant degradation of the source
tracking performance. The DOA tracking problem
in the presence of high DOA nonstationarity and
rapid (abrupt) source trajectory changes was ad-
dressed using the adaptive multiwindow frame-
work. The so-called ICI approach (earlier
developed for another class of problems) was
adapted to the problem considered. The optimiza-
tion of window length is based on the bias to
variance tradeoff. A new DOA tracking algorithm
with a data-driven (adaptive) window length was
proposed. Comparisons with the conventional

fixed-window source tracking algorithm demon-
strated promises and feasibility of the new ap-
proach. A natural price for tracking improvements
achieved is a higher computational cost and a re-
striction by “well separated” (low-resolution)
source scenarios.
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