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Abstract

This paper presents time}frequency analysis of multiple resonances in combustion chamber pressure signals and
corresponding structure-born sound signals of the cylinder block of a combustion engine considering only one
combustion cycle. Since the Wigner distribution proved itself as a good tool for these kinds of signals, the requirement
which we imposed here was to produce a sum of the Wigner distributions of the signal components separately, but
without cross-terms using only one signal realization. A distribution having this property can be achieved using the
S-method. Based on this property of the method, we investigate a procedure to estimate the instantaneous frequencies
that are functions of temperature within the combustion chamber and the energies of the components that are used for
knock detection. The calculation delay is smaller than the duration of one combustion cycle. This can provide an e$cient
and accurate combustion control of spark-ignition car engines. The procedure is demonstrated on several simulated and
experimental signals. ( 1999 Elsevier Science B.V. All rights reserved.

Zusammenfassung

Dieser Artikel praK sentiert die Zeit}Frequenz Analyse mehrfacher Resonanzen von Drucksignalen in Brennkammern
und den korrespondierenden KoK rperschallsignalen des Zylinderblocks eines Verbrennungsmotors unter BeruK cksich-
tigung nur eines Verbrennungszyklus. Da die Wigner Verteilung sich als geeignetes Werkzeug fuK r diese Art von Signalen
erwiesen hat, verlangen wir als Anforderung die Berechnung der Summe der Wigner Verteilungen der einzelnen
Signalkomponenten, jedoch ohne die Kreuzterme und unter Benutzung nur einer Realisierung des Signals. Eine
Verteilung mit dieser Eigenschaft kann uK ber der S-Methode erhalten werden. Auf Grund dieser Eigenschaft der Methode
untersuchen wir ein Verfahren zur SchaK tzung der Momentan-frequenzen. Diese Frequenzen sind Funktionen der
Temperatur innerhalb der Brennkammer und der Energien der Komponenten die fuK r die Klopfdetektion verwendet
werden. Die VerzoK gerung aufgrund der Berechnung ist kleiner als die Dauer eines Verbrennungszyklus. Dies erlaubt eine
e$ziente und genaue Verbrennungsregelung von Automotoren. Die Prozedur wird anhand verschiedener simulierter
und experimenteller Signale vorgefuK hrt. ( 1999 Elsevier Science B.V. All rights reserved.

Re2 sume2

Cet article preH sente une analyse temps}freH quence de reH sonances multiples dans des signaux de pression de chambres de
combustion, et des signaux correspondants de sons des structures du bloc de cylindres d'un moteur à combustion, en ne
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consideH rant d'un seul cycle de combustion. Comme la distribution de Wigner s'est reH veH leH e e( tre un bon outil pour ces types
de signaux, l'exigence que nous nous sommes imposeH e ici est de produire une somme de distributions de Wigner des
composants des signaux seH pareHment, mais sans termes croiseH s, en utilisant seulement une reH alisation du signal. Une
distribution ayant cette proprieH teH peut e( tre atteinte en utilisant la meH thode S. Sur la base de cette proprieH teH de la meH thode,
nous avons eH tudieH une proceH dure d'estimation des freH quences instantaneH es qui sont fonctions de la tempeH rature dans la
chambre de combustion et des eH nergies des composants qui sont utiliseH s pour la deH tection des chocs. Le retard de calcul
est infeH rieur à la dureH e d'un cycle de combustion. Ceci peut fournir un contro( le de combustion e$cace et preH cis pour des
moteurs de voitures à allumage par eH tincelle. La proceH dure est deHmontreH e sur plusieurs signaux simuleH s et expeH rimen-
taux. ( 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Structure-borne sound signals and more seldom
pressure signals are used for e$cient combustion
control of spark-ignition engines. This control can
increase e$ciency, reduce pollution and noise, and
protect against knock. Knock is an abnormal com-
bustion that causes rapid rise of the temperature
and pressure. Its detection is an important problem
since frequent knock occurrence can destroy the
engine or signi"cantly degrade its performances. By
measuring the pressure at a suitable point inside
the cylinder we can observe the combustions. How-
ever, pressure sensors are expensive, di$cult to
mount and not robust enough. These are the rea-
sons why their application is mainly limited to test
beds. Sound signals can be considered as time-
varying "ltered versions of the pressure and can be
used for the observation of diagnostic parameters,
as resonance frequencies that are function of tem-
perature, and resonance energies that indicate
knock [4,8,13}15,25]. The application of acceler-
ation sensors on the surface of the engine is easy
and economical, but sound signals are superim-
posed with mechanical noise that can signi"cantly
in#uence the analysis.

Such sound and pressure signals are highly non-
stationary, therefore neither classical signal analy-
sis tools in time-domain nor in frequency-domain
are e$cient here. Even the short-time Fourier
transform and its energetic version spectrogram, as
extensions of the Fourier analysis to the non-
stationary problems, cannot be used due to high
nonstationary e!ects in the car engine signals [15].
These signals require joint time}frequency analysis

[4,5,7,8,13}15,18]. This approach to the car engine
signal analysis was introduced in [18]. It has been
shown that pressure signals and sound signals can
be considered as frequency modulated multicom-
ponent signals with random amplitudes and phases
of the components when low frequency parts are
neglected [3,9,13}15]. Due to cyclostationarity and
the property that the components of these signals
are mutually not correlated, it has been found that
the Wigner distribution can be used as an e$cient
time}frequency tool for their analysis [13}15]. The
problem of cross-terms in the Wigner distribution
was resolved by averaging over-pressure or sound
signals of di!erent combustion cycles of the engine
under similar working conditions. Since the com-
ponents are not correlated, the cross-terms dis-
appear and theoretically, using an in"nite number
of combustions, the mean of Wigner distributions
converges to the Wigner}Ville spectrum containing
the auto-terms only. Time}frequency representa-
tion concentration can be improved using the Weyl
spectrum introduced in [17]. An extensive study,
based on the Wigner distribution, with numerous
results and conclusions has been reported [14,15].
The main disadvantage of this approach is that
the elimination of cross-terms requires a large num-
ber of combustions meaning a long observation
time and can mask the e!ects in a single combus-
tion or a decision based on the analysis can be too
late.

The aim of this paper is to present a time}fre-
quency analysis of car engine sound or pressure
signals based on a single combustion. Since the
Wigner distribution proved itself as a good tool for
these kind of signals, the requirement which we
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impose here was to produce a sum of the Wigner
distributions of the signal components separately,
but without cross-terms using only one signal real-
ization. A distribution having this property has
been introduced in [19] referred to as the S-method
and studied in [20}22]. A hardware realization of
the S-method is presented in [23]. Its comparison
with other reduced interference distributions for
the linear frequency modulated signals is done in
[21]. Based on the nice property of this method
that it can produce the sum of the Wigner distribu-
tions of all signal components, we shall be able to
estimate the powers and instantaneous frequencies
of each sound or pressure signal component, that is
the main goal of this paper. Knowing the instan-
taneous power, we can calculate the energy of com-
ponents and make a decision if a knocking
combustion occurred or not [14,15]. This can pro-
vide e$cient and accurate information for anti-
knock control of spark-ignition engines.

The paper is organized as follows. A model of the
car engine signals is presented in Section 2. Its
time}frequency analysis is studied in Section 3. The
S-method as a tool for time}frequency analysis is
reviewed in this section, as well. The discrete forms
of the presented algorithms are given. Section
4 contains synthetic and real signals examples and
discussions.

2. Car engine signal models and analysis

A pressure signal or an undisturbed sound signal
can be described by a multicomponent frequency
and amplitude modulated signal if low frequency
parts of the signals are "ltered out [3,9,13}15].
Consider "rst a very simple form of a real mono-
component signal neglecting cyclostationarity,

y6 (t)"2A(t) cos(u(t)), (1)

with u(t)"u
0
: t
~=

m(q) dq#U, where u
0
m(t) is the

instantaneous frequency and U is a random phase.
If we suppose that the variations of amplitude are
much slower than the phase variations, then the
analytic signal of y6 (t) can be written as

y(t)"A(t)e+r(t). (2)

The pseudo-Wigner distribution

WD
yy

(t,u)"P
=

~=
wA

q
2BwA!

q
2ByAt#

q
2B

]yHAt!
q
2Be~+uqdq (3)

provides a time}frequency representation of the
signal y(t). Two important properties of the pseudo-
Wigner distribution that will be used here are [10]

1
2pP

=

~=
WD

yy
(t,u) du"A2(t), (4)

:=
~=

uWD
yy

(t,u) du
:=
~=

WD
yy

(t,u) du
"u@(t)"u

0
m(t). (5)

These properties hold for any signal y(t), as far as
w(0)"1.

In the case of linear frequency modulated signals,
if the variations of A(t$q) within w(q) are much
slower than the phase variations, the pseudo-
Wigner distribution can be written as

WD
yy

(t,u)"A2(t)=(u!u@(t))

"A2(t)=(u!u
0
m(t)),

where =(u) is the Fourier transform of
w(q/2)w(!q/2). The instantaneous frequency can
be now obtained using

u@(t)"argGmax
u

WD
yy

(t,u)H, (6)

if =(u) reaches its maximum at u"0.
If the instantaneous frequency is not a linear

function of time, we have either to use the general
unbiased form (5) or to use the simple form (6)
being aware that a biased value may be obtained.
The maximal possible value of the bias would
be Du@(t)!argMmaxuWD

yy
(t,u)ND)1

6
M

2
C, where

M
2

is the supremum of the instantaneous fre-
quency second derivative, M

2
"supDu(3)(t)D, and

C is a constant, C"!=(2)(0)/=(4)(0) with=(2)(0)
and =(4)(0) being the second- and the fourth-
order derivatives of =(u) at u"0. For a rectan-
gular window C" 3

20
¹2

w
, where ¹

w
is the width
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of the window w(1
2
q)w(!1

2
q), [12]. For M

2
@1

6
C,

argMmaxuWD
yy

(t,u)NKu@(t) holds.
Therefore, if we know the pseudo-Wigner distri-

bution of a monocomponent frequency modulated
signal, we can exactly reconstruct its amplitude and
instantaneous frequency either by using Eq. (6) or,
if the nonlinearities in the instantaneous frequency
are high, by using Eq. (5).

In reality, sound and pressure signals should be
modeled as multicomponent signals [3,9,13}15].
The analysis slightly complicates in this case. Con-
sider a signal

y6 (t)"2
P
+

p/1

A
p
(t) cos(u

p
(t)),

with

u
p
(t)"u

pP
t

~=
m

p
(q) dq#U

p
, p"1,2,2, P,

where u
p
m

p
(t) are the instantaneous frequencies

and U
p

are the random phases of the compo-
nents p"1,2,2, P. The problem would be re-
solved if we were able to use a distribution having
the property

D(t,u)"
P
+
p/1

WD
ypyp

(t,u), (7)

where WD
ypyp

(t,u) is the pseudo-Wigner distribu-
tion of the component y

p
(t), correspondingly.

Note. If a large number of realizations of a stochas-
tic process y(t)++P

p/1
y
p
(t) were known and if the

components were uncorrelated, EMy
p
(n)yH

q
(m)N"

0, pOq, then averaging the Wigner distribution, or
the product y(t#1

2
q)y(t!1

2
q), using realizations

from di!erent combustions, would produce Eq. (7),
[3,13,14]. However, if we want signal processing
based on a single realization of y(t), then this ap-
proach is not applicable.

A method that produces the distribution having
the property that it is equal to the sum of the
pseudo-Wigner distributions of each signal com-
ponent in the case of multicomponent signals was
introduced as the S-method [19}23]. It will be
shortly reviewed in the sequel.

3. The S-method and car engine signals parameters
estimation

A de"nition of the short-time Fourier transform
(STFT) of the signal y(t), with a "nite duration
window w(q), is

STFT
y
(t,u)"P

=

~=
y(t#q)w(q)e~+uqdq. (8)

It is easy to establish the relationship between Eq.
(8) and Eq. (3). It has been derived in [19] as

WD
yy

(t,u)"
1
pP

=

~=
STFT

y
(t,u#h)

]STFTH
y
(t,u!h) dh. (9)

This relation has led to the S-method de"nition
[19}21,23]:

SM(t,u)"
1
pP

=

~=
P(h)STFT

y
(t,u#h)

]STFTH
y
(t,u!h) dh, (10)

where P(h) is a "nite frequency-domain window,
we also assume to be rectangular, P(h)"0, for
DhD'¸

P
. The width ¸

P
may be time and frequency

dependent, as well. The S-method belongs to the
general Cohen class of distributions [6]. It can
produce the desired representation of a multicom-
ponent signal such that the distribution of each
component is its pseudo-Wigner distribution,
avoiding cross-terms.

Consider the signal y(t)"+P
p/1

y
p
(t), where y

p
(t)

are monocomponent signals. Assume that the abso-
lute value of the short-time Fourier transform of
each component is greater than an assumed small
reference level R only inside the region D

p
(t,u),

p"1,2,2,P. Denote the length of the pth region
along u, for a given t, by 2B

p
(t), and its central

frequency by u
0p

(t). The S-method of y(t) produces
approximately the sum of the pseudo-Wigner dis-
tributions WD

ypyp
(t,u) of each signal component,

SM
yy

(t,u)+
P
+
p/1

WD
ypyp

(t,u), (11)
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if the regions D
p
(t,u), p"1,2,2, P, do not overlap

for pOq, and if the width of the rectangular win-
dow P(h), for a point (t,u), is de"ned by

¸
P
(t,u)

"G
B

p
(t)!Du!u

0p
(t)D, for (t,u)3D

p
(t,u),

p"1,2,2,P,

0 elsewhere.

(12)

The proof of this statement is evident since Eqs.
(9) and (10) produce the same value for each signal
component individually provided that the proposi-
tion assumptions hold.

Note. Any window P(h) with constant width
¸
P
*maxu,t

M¸
P
(u, t)N produces SM

yy
(t,u)++P

p/1
WD

ypyp
(t,u), if the regions D

p
(t,u), p"1, 2, . . ,P,

are at least 2¸
P

apart along the frequency axis, i.e.,
Du

0p
(t)!u

0q
(t)D'B

p
(t)#B

q
(t)#2¸

P
, for each

p, q and t. This is the S-method with constant
window width, as it was originally introduced in
[19,20].

3.1. Discrete forms

For the signal y(t) sampled with sampling inter-
val ¹ and N samples within the window w(q), the
discrete form of Eq. (10), denoted by SM(n, k)"
SM(n¹,(2p/N¹)k), is

SM(n, k)"
2

N¹

LP (n,k)
+

i/~LP (n,k)

STFT(n,k#i)

]STFTH(n,k!i), (13)

where

STFT(n, k)"¹

N@2~1
+

m/~N@2

w(m¹)y(n¹#m¹)e~+(2p@N)mk

(14)

is the discrete form of the short-time Fourier trans-
form (STFT). Note that ¹

w
"N¹ is the duration

of the window w(q). Very e$cient methods for the
STFT realizations by using either the FFT algo-
rithms or the recursive approaches are well known
[1,2,16,19,23].

After the STFT is obtained, the numerical realiz-
ation of the S-method (13) is very simple according
to

SM(n, k)"
2

N¹ASPEC(n,k)

#2
LP (n,k)
+
i/1

R[STFT(n,k#i)STFTH(n,k!i)]B,
(15)

where SPEC(n, k)"DSTFT(n,k)D2 denotes the spec-
trogram, while the other terms in the summation
(15) improve its concentration to the Wigner distri-
bution quality.

There are two possibilities to implement this
summation:
1. With a signal independent ¸

P
(n, k)"¸

P
. This

way is very simple, and from our experience very
e$cient.

2. With a signal dependent ¸
P
(n, k) the summation

lasts until zero value of STFT(n, k#i) or
STFT(n, k!i) is detected for each point (n, k).
Practically, that means a square absolute value
of STFT(n, k#i) or STFT(n, k!i) smaller than
a reference level R2.

3.2. Determination of the regions of support
and reference level

In order to perform the integrations over the
region D

p
within the pth component, we have to

"nd that region. Its determination will be based on
an assumed reference level R2. For a given time
instant n, the frequency range of a region D

p
de-

noted by D
p@n

is determined as a set of neighboring
points where the S-method (or the spectrogram) is
absolutely greater than the assumed reference level.
We have assumed that the interval D

p@n
ends when

two subsequent points are below the reference level
R2. For the analysis of car engine signals we have
found the reference level de"ned as a fraction of the
signal power

R2
n
"

1
Q2

N@2~1
+

k/~N@2

SM(n, k) (16)

rather than a fraction of the distribution's maximal
values as very convenient for the determination of
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D
p@n

in Eqs. (17) and (18). This helped to avoid the
summation over the regions where a small signal
energy is almost uniformly distributed over the
wide frequency interval and a given time instant n.

For numerical examples, computational e$-
ciency, and speci"c implementations see [19}23].

3.3. Parameters of a discrete signal estimation

After the S-method is calculated using either
signal independent or signal dependent ¸

P
in Eq.

(15), and the regions of support D
p
, i.e. frequency

intervals D
p@n

using R2 are found for each compon-
ent, then the signal's squared amplitude is cal-
culated as

A2
p
(n)"

1
N¹

+
k|Dp@n

SM
yy

(n, k), p"1,2,2, P. (17)

For linear frequency modulated signal components
the instantaneous frequencies are obtained using

k
p
(n)"argGmax

k|Dp@n

SM
yy

(n, k)H, p"1,2,2,P,

u@
p
(n)"

2n
N¹

k
p
(n).

(18)

For a simpler graphical presentation of the re-
sults, the amplitude value A2

p
(n) is assigned to the

point (n, k
p
(n)) in the time}frequency plane (n, k).

A new matrix

A
M

(n, k)"G
A2

p
(n) for (n, k)"(n, k

p
(n)),

0 elsewhere,
(19)

is formed to that aim. It has zero values everywhere
except for the points (n, k

p
(n)). The matrix A

M
(n, k)

contains full information about the instantaneous
frequencies and powers and allow an easy presenta-
tion and energy calculation. The pth resonance
energy is de"ned and estimated by

E
p
"P

=

~=
Dy

p
(t)D2dt"P

=

~=
A2

p
(t) dt

"

1
2pP

=

~=Pu|Dp@t

SM
yy

(t,u) dudt

+
=
+

n/~=

A2
p
(n)¹, (20)

where Eq. (17) is used. The summation over n is
done within a signal component. The practical real-
ization of this summation is performed using the
matrix A

M
(n, k). At each following time instant n,

the non-zero value of A
M

(n, k) placed according to
Eq. (19) at (n, k

p
(n)) is summed with the non-zero

value from the previous time instant (n!1) if they
belong to the same signal component. The indi-
cator of the points (n, k

p
(n)) and (n!1, k

p
(n!1))

belonging to the same component is the intersec-
tion of the corresponding regions of support
D

p@n
and D

p@n~1
. If these regions overlap along the

frequency axis, we say that they belong to the same
component.

The decision if two points (n, k
p
(n)) and

(n!1, k
p
(n!1)) belong to the same component

can be also based on a simple analysis as follows. If
the points in the time}frequency plane are enough
dense and we assume that the instantaneous fre-
quencies are smooth functions, then we may say
that the points (n, k

p
(n)) and (n!1, k

p
(n!1)) be-

long to the same signal component if they are
within a de"ned range along the frequency axis, for
example if Dk

p
(n)!k

p
(n!1)D)b, i.e., if the instan-

taneous frequencies do not absolutely change for
more than b frequency axis steps during one time
axis step. Note that too small b would cause that if
the condition Dk

p
(n)!k

p
(n!1)D)b is not satis"ed

for a given component p and instant n, then the
algorithm stops summation (20) at instant n and
consider the remaining part of the pth component
as a new component with respect to energy calcu-
lation. Too large b can cause that the instantaneous
frequencies of more than one component satisfy
Dk

p
(n)!k

p
(n!1)D)b. For engine signals, b"2 is

appropriate.
The estimation of amplitude and instantaneous

frequency is in#uenced by the input noise. Variance
of the amplitude estimate, according to Eq. (17),
may be obtained using the results from [24], as
p2
A

2"4Kp2
n
(2A2(n)#p2

n
)E

w
/N2, where E

w
is the

energy of the lag window, p2
n

is the input noise
variance, and K is the number of samples within
D

p@n
for a given n. For small noise, the ratio

p2
A

2/A2(n)+8K(E
w
/N2) (p2

n
/A2(n)) is proportional

to the input signal-to-noise-ratio. With a large
value of N, this ratio is very small. Variance of the
instantaneous frequency estimate (18), due to the
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Table 1
Signal parameters

p 1 2 3 4 5

A
p

12 8 6 4 6.5
d
p

8 6 6 5 5.8
c
p2

!12J2p !12J2p !12J2p !12J2p !12J2p
c
p1

36p 76p 116p 156p 196p

input noise, is given by p2u+(p2
n
/2A2(n))G

w
(1/N2¹),

where G
w

is a constant depending on the window
type only [12]. Details on the estimation accuracy
may be found in [12,24,11].

4. Examples and results discussion

4.1. Synthetic car engine signals

The presented procedure is tested "rst on a syn-
thetic "ve component signal with linear frequency
modulated components

y(t)"2
5
+

p/1

A
p
(t) cos(u

p
(t))#n(t), (21)

where

u
p
(t)"c

p2
t2#c

p1
t#U

p
,

A
p
(t)"G

A
p
te~dpt, t*0,

0 elsewhere,

p"1,2,2, P. (22)

Wideband Gaussian noise with standard devi-
ation p

n
is denoted by n(t), while the random phases

U
p

are uniformly distributed within [0,2p]. We
assumed that the signal (21) begins at t"0 and its
main part is located within normalized unity time
period 0)t)1. Observation period was then
widened to !0.1)t)1.5. The sampling interval
was ¹"1/256. The Hanning window w(q) was
used. Its width was ¹

w
"N¹"1 with N"256

samples, as well as p
n
"0.1. Signal parameters

A
p
, d

p
, c

p2
, c

p1
are given in Table 1.

The signal de"ned by Eqs. (21)}(22) with para-
meters given in Table 1 is presented in Fig. 1(a).
Using this signal we calculated the S-method with
¸
P
"4 (Fig. 1(e)). Time}frequency representation

produced by the S-method is compared with two
other basic time}frequency distributions: the Wig-
ner distribution and the spectrogram. As it is
known the Wigner distribution su!ers from the
cross-terms. In the case of a "ve com-
ponent signal there are 10 cross-terms, many of
them overlapping each other and overlapping sig-
nal components (Fig. 1(c)). The spectrogram
is shown in Fig. 1(b). Its resolution is quite low and,
as it has been shown in [15] for these kind of
signals, cannot be signi"cantly improved by chang-
ing the window w(q) form. Fig. 1(d,e) visually con-
"rm Eq. (11). The S-method (Fig. 1(e)) produces the
distribution that is equal to the sum of the Wigner
distributions calculated for each signal component
separately (Fig. 1(d)). The calculation of distribu-
tion presented in Fig. 1(d) is possible since in the
simulation, and only in the simulation, we know
the signal components separately. The S-method
comparison with other reduced interference distri-
butions from the Cohen class in the case of the
linearly frequency modulated signals is performed
in [21].

After the S-method is obtained, the instan-
taneous frequencies, powers and energies as cumu-
lative powers of each signal component are
calculated according to relations (17)}(20) (see
Fig. 1(f,g,h)). Reference level in Eq. (16) was
Q2"200. The method's accuracy is checked by
comparing the obtained values with the exact in-
stantaneous frequencies, powers and energies, pre-
sented in Fig. 1(f,g,h) by lines. The agreement is very
high. Note that a small deviation of the estimated
instantaneous frequency from the exact one exists
at the very beginning of each signal component,
t"0. This can be explained by the fact that here
the amplitude variations are very fast and the as-
sumption that the signal is linearly frequency
modulated does not hold here.
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Fig. 1. Time}frequency analysis of the simulated pressure or sound signal: (a) signal in the time domain; (b) spectrogram; (c) Wigner
distribution; (d) sum of the Wigner distributions calculated for each signal component separately, in (c) the same gray scale is used as in
(d); (e) time}frequency representation using the S-method with ¸

P
"4; (f) instantaneous frequencies: exact (line), calculated using the

time}frequency representation (e) (thick line); (g) components power: exact (line), calculated using the time}frequency representation
(dotted); (h) components energy (line), cumulative component powers calculated using the time}frequency representation (thick line).
Reference level is determined by Q2"200. The lag window w(q) is the same for all distributions.
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4.2. Experimental data

The procedure which has been presented in the
paper and tested on a synthetic signal is applied to
sound and pressure signals of a 6-cylinder BMW
test bed engine measured in parallel at di!erent
speeds: 1000 rpm, 2000 rpm and 5000 rpm.2

As in the cases of the synthetic signals, the signals
themselves, their time}frequency representations
using the S-method, instantaneous frequencies,
powers, and cumulative powers corresponding to
the selected pressure and sound at speed 1000 rpm
are shown in Fig. 2. Both pressure and sound
signals are highly nonstationary signals with the
signi"cant oscillations starting just after 103 crank
angle. Crank angle is measured in degrees from top
dead center (TDC). In the sound signal, Fig. 2(d-
right), the algorithm recognized four separate com-
ponents also just after 103 crank angle. The power
calculated prior that angle is assigned to one com-
ponent only and is located between two compo-
nents with higher instantaneous frequencies (Figs.
2(c,d-right)). The energies of oscillations in both,
pressure signal and sound signal are mainly located
along three resonance time-varying frequencies.
While in the pressure signal the energy is mostly
concentrated in the middle component, in the
sound signal the energy is mainly concentrated in
the two other dominant components. In the pres-
sure signal the dominant part of energy is located
up to the crank angle just higher than 203, while the
oscillations in the sound signal last longer, up to
a crank angle of about 353. The linear frequency
modulation corresponding to temperature vari-
ations is especially notable on the longer lasting
sound signal (Fig. 2(c-right)). It is easy to estimate
that the instantaneous frequency law, e.g., for the
middle frequency component is

u@(t)"!0.09h#13.125 kHz,

where h denotes the crank angle in degrees from
TDC that is a time integral over speed. We can also
observe that the middle resonance frequency in the
sound signal, corresponding to the strongest oscil-
lation in the pressure signal, has signi"cant power

2Support of the ARAL Research, Bochum is acknowledged.

variations. A small resonance between two higher
strong resonance components appeared in the
sound signal as well. Most of these e!ects can be
considered as a consequence of the existing evid-
ences that the sound signal y(t) can be seen as
a time-variant "ltered noisy version of the pressure
signal x(t),

y(t)"P
t

~=

h(t, t!q)x(q) dq#n(t),

and the time variance of h depends on t over crank
angle h only.

In the case of experimental data we are not able
to check directly the proposed algorithm and the
calculation procedure, as in the case of simulated
signals. But few rough check points can be in-
dicated in the real data cases as well. If we have
obtained correct results, we can expect for example
that the following relation for the signal and cal-
culated powers DA

p
(t)D2 holds:

Dy(t)D)2
P
+

p/1

DA
p
(t)D,

with equality for the points where all components
in Eq. (21) are in phase u

p
(t)"kn. Considering, for

example, the sound signal in Fig. 2(a-right) we can
see a strong negative peak at 150 crank angle.
A high possibility is that the existing four compo-
nents summed at this point in phase producing
a sum of amplitudes. Calculating the amplitudes as
square roots of the powers from Fig. 2(d-right)
at h"153 we roughly get 2+P

i/1
A

p
(t)"2(J400#

J320#J250#J90)"1060, what is in good
agreement with the amplitude in Fig. 2(a-right).
Once more we want to emphasize that this is
a quite rough check. It can be in#uenced by the
existing noise as well as by the fact that the compo-
nents of a multicomponent signal very rarely take
the same multiple of p phase. The procedure for the
energy calculation can be easily checked by com-
paring the area under a power curve and the corre-
sponding energy. For example, the highest power
component in Fig. 2(d-right) has the area of about
11
3
][103]2 ) 104], where 103 means 10 degree

crank angle. One crank angle degree corresponds
to 1.666 )10~4 sec for a speed of 1000 rpm. Therefore
the energy should be about 45 units that corresponds
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Fig. 2. Time}frequency analysis of the pressure signal (left) and sound signal (right) with speed 1000 rev/min: (a) signal in the time
domain, (b) time}frequency representation using the S-method with ¸

P
"2, (c) instantaneous frequencies, (d) components' power, (e)

components' cumulative power. Reference level is determined by Q2"100. Time is measured in crank angle degrees from the TDC.
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Fig. 3. Time}frequency analysis of the pressure signal (left) and sound signal (right) with speed 2000 rev/min: (a) signal in the time
domain, (b) time}frequency representation using the S-method with ¸

P
"2, (c) instantaneous frequencies, (d) components' power, (e)

components' cumulative power. Reference level is determined by Q2"100. Time is measured in crank angle degrees from the TDC.
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Fig. 4. Time}frequency analysis of the pressure signal (left) and sound signal (right) with speed 5000 rev/min: (a) signal in the time
domain, (b) time}frequency representation using the S-method with ¸

P
"2, (c) instantaneous frequencies, (d) components' power, (e)

components' cumulative power. Reference level is determined by Q2"100. Time is measured in crank angle degrees from the TDC.

26 LJ. Stankovic& , J.F. Bo( hme / Signal Processing 79 (1999) 15}28



to the value in Fig. 2(e-right). The power calcu-
lation along with its cumulative form producing
resonance energies is a good indicator for the
knock detection.

Results of the time}frequency analysis of pres-
sure and sound signals measured at the speed of
2000 rpm are shown in Fig. 3. The energy of the
pressure signal is located in two lower frequency
components, while that of the sound signals is
mainly located in the lowest and highest compon-
ent. The middle component in the pressure signal
almost disappeared in the sound signal. Changes of
the power of the lowest frequency component in the
sound signal, having almost constant frequency,
shows that the transfer function from pressure sig-
nal to the sound signal is highly time-variant. Sim-
ilar amplitude and energy check as in the previous
case can be made. An interesting point for the
amplitude check is in the sound signal at the crank
angle of 203.

Sound and pressure signals measured at a high
speed of 5000 rpm are analyzed in Fig. 4. For this
case we can "rst note that the sound signal is
strongly corrupted by the noise. The oscillations
starting point can hardly be observed in the sound
signal due to noise. But if we concentrate only on
the energy of the strongest component, then we can
conclude that it starts just about crank angle of 103,
the same as the oscillations in the pressure signal.
Also we can conclude that there are two dominant
components in the sound signal at almost the same
frequency positions as in the pressure signal, while
the third strongest component appeared at a very
low frequency where there was not any signi"cant
component in the pressure signal.

5. Conclusion

An analysis of multiple resonances in com-
bustion engine signals is done. It is based on the
S-method that can produce a time}frequency rep-
resentation equal to the sum of the pseudo-Wigner
distributions of each signal component separately.
Some new theoretical aspects of this method are
presented. In the analysis only one signal realiz-
ation is used. Basic step for the realization of the
S-method is the short-time Fourier transform cal-

culation. It can be done using e$cient FFT algo-
rithms or recursive approaches that require few
additions and multiplications for each time instant
and frequency and can be performed in parallel.
The S-method realization only requires some addi-
tional multiplications and additions that can also
be performed for each time}frequency point in par-
allel. Therefore, numerically e$cient realizations of
the method are possible, including hardware on-
line realization. Time}frequency representations
produced by the S-method are used to calculate
instantaneous frequencies and energies of each
pressure and sound signal component. These two
parameters are important for the knock detection.
The accuracy of the obtained results is checked on
synthetic signals. The method is then applied to
several real data examples. Some rough checks for
the real data analysis are proposed and performed.

The presented pressure signal and corresponding
sound signal analysis can be used in several re-
search and application directions. There exist
strong evidences that the sound signals are ob-
tained as noisy time-varying "ltered versions of the
pressure signals. The results presented in this paper
can be used to test the mathematical models of the
system transfer functions from the pressure to the
sound signals. After a reliable relation between
these signals has been established, then only sound
signals, i.e. their parameters as studied in the paper,
can be used in combustion observation. The
powers of the sound signal resonances calculated
according to the procedure presented in the paper
and related to the energies of the pressure signal
resonances, can be used for knock detection. In-
stantaneous frequencies that follow from the de-
scribed procedure are important parameters as
they indicate the temperature changes in the com-
bustion chamber.
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