
496 TIME-FREQUENCY SIGNAL ANALYSIS

Local Polynomial Wigner Distribution
LJubiša Stanković

Abstract– Local polynomial time-frequency

transformes, introduced by Katkovnik, are ex-

tended, in this paper, to the Wigner distrib-

ution. These distributions may be efficiently

realized, in the case of multicomponent signals,

using the S-method.
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Local polynomial time-frequency transform
(LPTFT) has been introduced by Katkovnik,
[1], [2], as:

X(�ω, t) =

∞∫

−∞

x(t+ τ)w(τ)e−jθ(�ω,τ)dτ (1)

where
θ(�ω, τ) =

= ω1τ + ω2
τ2

2!
+ ω3

τ3

3!
+ ....+ ωm

τm

m!
(2)

The LPTFT is anm+1 dimensional transform
which concentrates at:

�ω∗ = (φ′(t), φ(2)(t), ..., φ(m)(t)) (3)

where φ′(t) is the signal’s instantaneous fre-

quency, and φ(2)(t), ..., φ(m)(t) are its first, sec-
ond and (m−1) derivatives, respectively. If we
are interested in the instantaneous frequency
estimation, then ω2, ω3, ..., ωm should be con-
sidered as auxiliary variables and the estima-
tion is based on the maxima of X(�ω, t) over
the space ω2, ω3, ..., ωm. These maxima are
now two-dimensional function of (ω1, t), de-
noted byM(ω1, t). Note that the conventional
STFT is obtained at ω1 = ω, ω2 = ω3 =
... = ωm = 0. As opposite to the polyno-
mial Wigner-Ville distributions [3], [4], [5], [6],
the LPTFT is a linear transform with respect
to the signal, what is very important property,
but it is paid by a multidimensional form of the
distribution, what make its realization com-
plex. Discrete-time version of the LPTFT has
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been proposed and justified in [7]. The local
polynomial periodogram (LPP) is given by:

I(�ω, t) = |X(�ω, t)|2 . (4)

Integral of the LPTFT over ω1 produces origi-
nal signal, x(t) =

∫∞
−∞

X(�ω, t)dω1/(2πw(0)),
while a form of Parseval’s theorem may be
written as

1

2π

∞∫

−∞

|X(�ω, t)|
2
dω1 =

∞∫

−∞

|x(t+ τ)w(τ)|2 dτ (5)

what demonstrates that the LPP may be
treated as an energetic distribution. These are
only some of the properties of the LPTFT and
LPP. Further details may be found in [1], [2],
[7].

II. L���� P��	
����� W��
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Here, we introduce the local polynomial
Wigner distribution (LPWD) as:

W (�ω, t) =

∞∫

−∞

x(t+
τ

2
)x∗(t−

τ

2
)we(τ)e

−jθo(�ω,τ)dτ (6)

where now we do not have (there is no need for)
the even terms in θ(�ω, τ). Instead of θ(�ω, τ) we
use θo(�ω, τ) which is defined by:

θo(�ω, τ) =

= ω1τ + ω3
τ3

3!
+ ....+ ω2n+1

τ (2n+1)

(2n+ 1)!
(7)

Distribution (6) is concentrated at �ω∗ =

(φ′(t), φ(3}(t), ..., φ(2n+1)(t)). Therefore, in
this way we may achieve the instantaneous fre-
quency estimation with a significantly reduced
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distribution dimension, i.e., reduced number
of the auxiliary variables (instead of m+1 di-
mensional space we have m/2+ 1 dimensional
one). For example, if we can expect that the
signal’s phase has significant derivatives up to
the fourth order, then only ω1 and ω3 axes,
i.e., θo(�ω, τ) = ω1τ + ω3τ

3/3!, may be used,
instead of four coordinates, ω1, ω2, ω3, ω4, in
θ(�ω, τ) = ω1τ + ω2τ

2/2! + ω3τ
3/3! + ω4τ

4/4!
in (1). If we consider only the coordinates
with nonlinear τ (auxiliary variables for the
frequency estimation), then, in this example,
instead of three coordinates (ω2, ω3, ω4), we
need only one (ω3).

Integral of the LPWD over ω1 is

1

2π

∞∫

−∞

W (�ω, t)dω1 = |x(t)|
2

(8)

for we(0) = 1. The LPWD is quadratic distri-
bution with respect to signal, the same as the
LPP is. But, the LPWD, in contrast to the
LPP, exhibits cross-terms in the case of mul-
ticomponent signal, even if the signal compo-
nents are far apart in the time-frequency plane.
This drawback can be avoided using the S-
method, [8], [9], [10], [11], [12], for the local
polynomial Wigner distribution realization.

III. S-M����� �
 ��� LPTFT

Local polynomial Wigner distribution may
be realized without cross-terms, if the signal’s
component do not overlap in LPP, using the
S-method in the form:

S(�ω, t) =

=

∞∫

−∞

P (θ)X(�ω + �λ, t)X∗(�ω − �λ, t)dθ (9)

where �λ = (θ, 0, 0, ...0). Window P (θ) controls
the convolution in θ, which is one-dimensional
variable along the first coordinate ω1. In the
case of a multicomponent signal

x(t) =
M∑

i=1

xi(t) (10)

all auto-terms are located at, and around,
θ = 0, while the cross-terms are dislocated

from that point. Suppose that the LPTFT of
the i-th component Xxi(�ω, t), i = 1, 2, ...,M ,
is concentrated along ω1 around its instan-
taneous frequency φ′i(t) within the region∣∣ω1 − φ′i(t)

∣∣ < B. All auto-terms in (9) are
concentrated in the region |θ| < B, while the
cross-term between i-th and j-th components
is located within

∣∣θ − [φ′i(t)− φ
′
j(t)]/2

∣∣ < B.
If the width of low-pass frequency domain win-
dow P (θ), denoted by WP , is large enough to
provide integration over auto-terms, WP ≥ B,
and if the auto-terms in the LPTFT are at
least B apart we may get

S(�ω, t) =
M∑

i=1

Wxi(�ω, t) (11)

where Wxi(�ω, t) is the LPWD of the compo-
nent xi(t). Using the variable width window
P (θ) approach, described in [12], relation (11)
holds with a less restrictive condition that the
auto-terms do not overlap along ω1 for any t,
i.e., relation (11) holds if the LPP does not
have cross-terms. Since the window P (θ) is
usually quite narrow, this method is numer-
ically very efficient, [9], [12]. Since all even
terms θ(�ω, τ) will be eliminated by convolu-
tion (9), then we can calculate the LPTFT,
needed in (9), using only θo(�ω, τ) defined by
(7):

Xo(�ω, t) =

∞∫

−∞

x(t+ τ)w(τ)e−jθo(�ω,τ)dτ (12)

i.e., by taking coordinates ω2 = ω4 = ω2n = 0
in (1). Inserting (12) into (9) we get the cross
terms free distribution with as high concen-
tration as in (4), applying only a half of the
coordinates required in (1).

IV. E!��"��

If we want to include terms in the phase ex-
pansion up to the fourth order term, then the
S-method has the form:

S(ω1, ω3, t) =

∞∫

−∞

P (θ)Xo(ω1 + θ, ω3, t)X
∗
o (ω1 − θ, ω3, t)dθ

(13)
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Fig. 1. Time-frequency representation of a multicomponent signal using the local polynomial approach: a)
Maxima of the S-method, b) Maxima of the S-method along the lines where they are detected.

where
Xo(ω1, ω3, t) =

=

∞∫

−∞

x(t+ τ)w(τ)e−j(ω1τ+ω3τ
3/3!)dτ (14)

Consider now a particular signal

x(t) = Aejφ(t) =

= Aej(at+bt
2/2+ct3/3!+dt4/4!) (15)

The LPTFT of x(t), with θo(�ω, τ) as in (7), is

Xo(ω1, ω3, t) =

= x(t)W
(
ω1 − (a+ bt+ ct

2/2 + dt3/3!)
)
∗ω1

FT
{
ej[φ

(2)(t)τ2/2+φ(4)(t)τ4/4!]
}

on ω3 = φ(3)(t) = c+ dt.

Note that, as compared to (1), we assumed
ω1 = ω4 = 0, since these coordinates do not
influence the result in the LPWD. The LPWD
of signal (15) is given by:

W (ω1, ω3, t) =

= A2We

(
ω1 − (a+ bt+ ct

2/2 + dt3/3!)
)

(16)
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on ω3 = φ(3)(t).

The same result will be obtained with
S(ω1, ω3, t) if the window P (θ) is wide enough
to provide integration over the auto-terms
along ω1, for a given t. If we had used the
LPTFT, given by (1), using all four coordi-
nates we would get the same concentration as
in (16):

|X(ω1, ω2, ω3, ω4, t)|
2 =

= A2W 2
(
ω1 − (a+ bt+ ct

2/2 + dt3/3!)
)

(17)

along ω2 = φ(2)(t), ω3 = φ(3)(t)

and ω4 = φ(4)(t).

As a numerical example, for a multicomponent
signal, consider

x(t) = [ej(20πt+100π(t−0.5)
3−15π(t−0.5)4)+

+e−j(30πt+50π(t−0.3)
3−20(t−0.3)4)]e−2(t−0.5)

2

with the following parameters: time interval
0 ≤ t < 1; sampling period ∆t = 1/128;
the Hanning window w(τ) of the unity width;
and the rectangular window P (θ) with vari-
able width and reference value at 4% of the
maximal periodogram value for a given t. Co-
ordinate ω3 is taken from −1000π to 1000π
with a step of 100π. Maximal values of the
S-method (calculated using (13) via (14), [8],
[9], [10], [11], [12]) over ω3, for each value of
t, SM(ω1, t) = maxω3{S(ω1, ω3, t)}, is pre-
sented in Fig.1a. Note that this is the best
possible presentation with respect to the auto-
term values, since it takes its maxima, but
with respect to the side lobes this is the worst
possible presentation, since the maximal val-
ues of the side lobes are also taken for presen-
tation in Fig.1a, [1], [2]. Fig.1b. presents the
values of S(ω1, ω3, t) taken along the lines ω3
where the maxima are detected (for positive ω1
semiplane, where the maxima of signal’s first
component are detected, and for negative ω1
semiplane, the lines ω3 at which the maxima
of the second component are detected). This
second approach is more illustrative, but less
practically applicable, since it requires a priori
knowledge of the ranges within which the sig-
nal component instantaneous frequencies vary.

V. C�
������


A distribution based on the local polyno-
mial time-frequency transform (LPTFT) and
Wigner distribution is introduced. This distri-
bution (LPWD) may produce very high signal
concentration at the instantaneous frequency
with a reduced problem dimension. Using the
S-method an efficient realization of this distri-
bution is presented.
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