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TIME-FREQUENCY SIGNAL ANALYSIS

On the Capon’s Method Application in
Time-Frequency Analysis

LJubisa Stankovié, Vesna Popovié, Milos Dakovié

Abstract— Capon’s method is widely used in
the literature in array signal processing and
spectral analysis. Recently, this method has
been extended to the time-frequency analysis.
The topic of this paper is to compare the stan-
dard spectrogram and its Capon’s counterpart,
with respect to the several basic parameters:
instantaneous frequency estimation, distribu-
tion concentration, and resolution of two close
components. The analysis is generalized to the
distributions from the Cohen class and distrib-
utions that take into account phase nonlinear-
ity.

I. INTRODUCTION

IME -frequency analysis is used in order

to get a time distribution of the signal’s
spectral content [6]. The simplest method for
this analysis is based on the short-time Fourier
transform (STFT), which is a straightforward
extension of the Fourier transform. However,
the STFT performance is highly dependent on
the window used for signal localization. In or-
der to improve time-frequency concentration,
various other representations are defined [6].
One research direction is in improving signal’s
concentration in time-frequency plane by in-
creasing the order of representation [4], [15],
[16]. Another direction is in keeping impor-
tant property of transform linearity with re-
spect to the signal, but introducing polyno-
mial forms with respect to the lag coordinate
[7], [14]. The third research direction, with the
same goal, is in defining signal adaptive repre-
sentations [1], [2], [3], [8].

An adaptive approach, used to improve
the concentration and resolution of the
time-frequency representations, is based on
the Capon’s adaptive filtering [5].  The
Capon’s form, originally proposed as an array-
processing technique, is quite efficient spectral
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analysis tool [9], [12], [17], [18]. It is used in
order to improve both the resolution and es-
timation accuracy. Here we will analyze the
performance of Capon based method in time-
frequency analysis as it was proposed and pre-
sented in [11], [13]. Results are compared
with the ones that can be obtained by using
the standard or smoothed spectrogram for the
same purpose. Several straightforward modifi-
cations of the spectrogram forms are presented
just to illustrate the conclusions.

This letter contains and overview of the ba-
sic definitions of the Capon’s method in Sec-
tion II. Relation between Capon’s and stan-
dard spectrogram, with respect to the instan-
taneous frequency estimation, concentration,
and resolution of two close components is stud-
ied in Section III. Numerical examples illus-
trate the theoretical conclusions.

II. BASIC MODELS AND DEFINITIONS

The Capon’s filtering method applied to N
samples of a noisy signal z(t), denoted in vec-
tor form as

x(t)=[z(t)z(t+1)z(t+2)..a(t+N-1)], (1)

results in the distribution

1

o) R

(2)

where * denotes Hermitian transpose and:
a(w) =[1¢" eim...ei“’(N*l)]T, (3)

Ry = E{x(t)x"(t)}- (4)

In practice, the autocorrelation matrix Ry is
estimated by:

—

Ru(t,K) = % z_: x(t+p)x*(t+p) + pl
=0

S|
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=% QQ "+l (5)

where I is the identity matrix used for regu-
larization, Q is the matrix whose columns are
signal vectors x(t +p), p=0,1,...., K — 1.

III. RELATION BETWEEN THE STANDARD
SPECTROGRAM AND THE CAPON’S
FORM

Inversion of the autocorrelation matrix (5)
can be done by using:

(:QQ"+o1)" =
1 QQ\ ', 1
-o(d2) el o
From (1) and (6) follows:

Scap(t,w):
1
N1
a@il-Q(1+%2)  Q'law)
_ P
~ N-STFT(w,t)(Kpl+ Q*Q) 'STFT(w, )

(7)
where STFT(w, t) = a" (w)Q is a vector whose
elements are STFT(w,t+ p) = a*(w)x(t + p),
p=0,1,.., K —1. For K =1 when Q = x(t)
we get:

p
N — (Ey +p) Y STFT(w,t)|?’
(8)

N—1
where E, = > |z(t +p)? is the energy of

SCapl (ta W) =

P
x(t) and STFT(w,t) = a*(w)x(t) is the stan-
dard STFT, while |STFT(w,t)|? is the stan-
dard spectrogram.

The Capon’s form can be written by using
eigenvalues decomposition of the autocorrela-
tion matrix Ry (¢, K) (or singular values de-
composition of the signal matrix Q) as

Ri(t,K) =
L@ + 1 =L (Usv ) (USVH) + pt
I =2 p

1
= —=VAV* 1
K +pl,

where U and V are left and right singular
value decomposition matrices of Q, S is matrix
of corresponding singular values of Q, while
A = S? is the eigenvalues matrix of Ry(t, K).
By using this decomposition we can write

1[0 &= K
RO K) == |I-) 1+ 5= )7V,
P =0 P

where V), are eigenvectors and )\, are eigenval-
ues of Ry (t, K) The Capon’s form then reads

SCapK(t7w) = K_1 L
A
N-— p;o mSPECVP(w,t)

where SPECYy, (w,t) are the spectrograms of
the eigenvectors.

Special cases:

1. When Kp > Apax then A, /(Kp+ ) —
Ap/(Kp) producing
SCapK(tvw) = K—_1 P =

N—KLP Zo A SPECYy, (w,t)
p:

p
i K-1

N-L 20 SPEC,(w,t + p)
p=

K-1
since ) AV, V5 = QQ7, what reduces to
p=0

the smoothed standard spectrogram.
2. When Kp — 0, A\, #0, p=0,1,..., K-1
we get:

P ()

K-1
N— " SPECy, (w,t)
p=0

SCa;uK(taw) =

When the signal z(t) contains well sepa-

% T (t) =

m=1

M
> Apmexp(jo,,(t)), as in [11], [13], then the
1

m=
eigenvectors are proportional to the signal

components resulting in a linear combination
of the spectrograms of the components with
normalized amplitudes:

rated FM components z(t) =

Scapx (t,w) = ———L (10)
N- S SPE%C2 (w,t)
m:1 m
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A. Instantaneous Frequency (IF) estimation

The spectrogram and the Capon’s
spectrogram have the same performance
with respect to the IF estimation for one
component signal.

Proof: Denote the absolute value of the
STFT by a general real-valued function f(w)
that has maximum at w = wg. Function of the

form (8)
a

g(w) = m,

has the maximum at the same position (as-
suming that b > f?(w)), since denominator in
g(w) reaches smallest value for greatest f2(w).
Therefore, the spectrogram |STFT(w, t)|? and
the Capon’s form defined by (8) have max-
ima at the same position. Since the IF is es-
timated based on the position of maximum,
w;i(t) = arg{max,{|STFT(w,t)*}}, both of
these distributions behave the same with re-
spect to the IF estimation.

Note 1. With respect to the IF esti-
mation, the spectrogram and Scapk (¢, w)
behave in the same way for multicom-
ponent signals well separated in time-
frequency plane, as they were in [11],
[13].

B. Concentration

Capon’s spectrogram (8) can look
much better concentrated in the time-
frequency plane than the standard spec-
trogram.

Proof: Assume again that f(w) symbolizes
absolute value of the STFT, while g(w) =
a/(b— f?(w)) symbolizes the Capon’s form (8).
If the regularization parameter b is appropri-
ately chosen, so that b = max(f?(w)) + S,
where § — 0+, we get g(w) — +00 at w = wo,
where wq is the position of the maximum of
f(w). Thus, if we normalize the values of g(w)
by g(wo), we will get an ideally concentrated
function g(w) =1 for w = wy, and g(w) — 0+
for all other w, see Fig.1a) and b).

As long as b = max(f?(w)) + 3, with 3 > 0,
the Capon’s spectrogram looks better concen-
trated. In the limit case, when 5 — oo, then

9) = 7=y = 31+ @),
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i.e., the Capon’s spectrogram will be just a
scaled version of the standard spectrogram.

We can define a very simple, almost ideally
concentrated, distribution based on the spec-
trogram, as

- H
S0l ) = T ST T, ) B O (L )
(1)
where M(t) = max,{|STFT(w,t)|*}, with

i quite small, for example p = 0.001.
Then, we will get almost ideally concen-
trated distribution: Sc(w,t) = 1 at w;(t) =
arg max,,{|STFT(w,t)*}, and Sc(w,t) = 0
elsewhere. Here, all parameters are defined
without any reference to the physical meaning
of the parameters in the Capon’s derivation
[11], [13]. For multicomponent signals this dis-
tribution will produce almost ideally concen-
trated components, if they are of the same am-
plitude. Components with amplitudes smaller
than the maximal one will be less concen-
trated, but still better than in the standard
spectrogram. Note that the normalization may
cause large changes in components amplitudes.
Example 1: Consider signal

x(t) = exp[—2t* + j32msin(tn)]

within |¢| < 1. The spectrogram of this signal,
calculated by using the Hanning window of the
width N = 16 zero-padded up to 256 samples,
is shown in Fig.1lc. Modified spectrogram, cal-
culated according to (11) with p = 0.001, is
shown in Fig.1d. The last one is almost ide-
ally concentrated along the IF.

C. Resolution of two close components

For signal with two components s(t) =
exp(jwot) + exp(j(wo + €)t) we can resolve
components from the standard spectro-
gram at an appropriate time instant.

Proof: Both Capon’s and standard spectro-
gram behave as

|STFT(w,t)|*=|STFT(w,t)+STFTy(w,t)>

(12)
where STFT;(w,t) and STFTs(w,t) are the
STFTs of signal components. They are related
to the Fourier transform (FT) of the lag win-
dow W(w) as

STFTy(w,t) = W(w — wy)e @ wo)t
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spectrogram at a given instant, b) Illustration of the corresponding modified spectrogram, c¢) Standard
spectrogram of a sinusoidally modulated signal, d) Modified spectrogram corresponding to the Capon’s

form.

STFTy(w,t) = W(w— (wo+e))e dWwolteiet,
Thus we get
|STFT (w,t))* =
|W(w — wo) + e7'W(w — wo — 5)}2

Independently on the lag window width,
there is an instant where et = (2n+ 1)7 when,

|STFT(w,t)]*=|W(w—wo) — W (w—wo—e)|°.

(13)
Since the FT of window function W(w) =
W (—w) is symmetric, then |STFT (wo + §,1) |2
0 as long as we can find a point where et =
(2n+ 1)m. Thus, as long as we can find a zero
value (or a minimum), anywhere in time, be-
tween two components in the spectrogram at
w = wo + §, there will exist two picks in the
spectrogram.
Accordingly, we can define a very simple
modified spectrogram, with almost ideal res-
olution, for any window width:

SH(w,t) =

min{[STFT(w,t+p)*:0< p< K — 1}, (14)
n
1—Sp(w,t)/ [Mu()(1+p)]’
(15)

S]H(w,t) =

where My (t) = max,{Su(w,t)}.

Relation (14) follows from the fact that (12)
reaches minimum at exp(jet) = —1.
Example 2: Consider discrete-time signal with
two close components:

z(n) = exp(j2£1.375n) + exp(j351.5n).

The spectrogram is calculated by using the
Hanning window of the width N = 16 zero-
padded up to 256 samples (16 times interpo-
lation). Width of one signal component cal-
culated by Hanning window is approximately
3 samples, or 48 samples after the interpola-
tion, Fig.2a). Thus, after the interpolation the
components are only two samples apart (at
k1 =1.375x16 = 22, and ko = 1.5 X 16 = 24).
Spectrogram is shown in Fig.2a), the spectro-
gram calculated by (14), with K = 128, is
shown in Fig.2b), while the result obtained
by (15) is given in Fig.2c). Components are
shifted in frequency for 128 samples (corre-
sponding to negative frequencies). We can see
that the highly concentrated distribution (15),
corresponding to the Capon’s form, can be ob-
tained only if the components can be separated
in (14). The components are highly biased
with respect to the true frequency values at
k1 = 128422, and ko = 128 + 24. Bias follows
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Fig. 2. Resolution of two close components: a) Standard STFT absolute value, b) Spectrogram Sg(w,t)

obtained from the standard spectrogram(a) by using relation (14), ¢) Modified spectrogram calculated by

using (15).

from the shifted maxima in (13).

D. Generalization

The above forms can be generalized in two
ways:
(a) For application on signals with arbitrary
frequency varying components, all the previ-
ous results can be generalized by using [9], [10],
[13]:
a(w) = [1 em[%(t) em[21¢(t).”em[klw(t)]:ﬁ’

(16)

where AlFlp(t) = o(t+k) —p(t), k= 1,...,L—
1. This form would be efficient in the analy-
sis of liner (or generally polynomial) frequency
modulated signals.
(b) By using the local autocorrelation function
vector ry(T):

re(7) = [1:(0) 7(1) 7(2)...m: (N — 1)]T, (17)

with elements r:(p) = > o(p, Dzt + 1 +
p)z*(t + 1 — p), instead of the signal vector
x(t), we can apply all the previous forms to the
quadratic distributions from the Cohen class.
Here ¢(p, 1) denotes kernel in time-lag domain.

For example, the modified Choi-Williams
distribution (CWD) can be obtained by using:

_ M
CWelw, )= 1=CW?2(w,t)/[Mow (t)(1+p)]’

with Mow (t) = max,{CW?(w,t)}.
Ezample 3: Consider the CWD with kernel:

@(t T) -

FTy{exp(—4507)2)} for —1<16],|7] < 1

sampled at 1/128. Signal was of the form:

x(t) = v(t)

—9(t—21)2( (500t 45127t j(—500t2+5127t
Lo 9(t—%) (ex +512mt) 4 i + w>)7

motivated by an example in [11]. Signal is
sampled at 1/1024. Standard deviation of
Gaussian noise v(t) was 0.1. The CWD is cal-
culated by using the eigenvalues-kernel decom-
position. Signal is zero-padded four times be-
fore the Fourier transform calculation for each
eigenvector. The CWD is shown in Fig.3a).
The modified CWD by using the absolute
maximum in the entire time-frequency plane
with 4 = 0.1, is shown in Fig.3b. Modified
CWD, by using maxima for each time instant
and p = 0.01, is presented in Fig.3c). The last
distribution is multiplied by the total signal
spectra power density function, in order not
to show the regions where there is no signal.

The analysis presented in this section can
be used for a simplified calculation of the
Capon’s method, without using autocorrela-
tion matrix. From (9) and (10) we can see
that the Capon’s distribution is directly re-
lated to the sum of spectrograms of the au-
tocorrelation matrix eigenvectors. For mul-
ticomponent well separated signals, in time-
frequency plane, the eigenvectors are propor-
tional to the signal components. Thus, the
Capon’s form can be obtained from the nor-
malized sum of spectrograms of signal compo-
nents.

IV. CoONCLUSION

The Capon’s and standard forms of time-
frequency representations are considered and
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Fig. 3. Time-frequency representations based on the Choi-Williams distribution: a) Choi-Williams distribution,
b) Modified Choi-Williams distribution by using the absolute maximum, c¢) Modified Choi-Williams distri-
bution by using maxima for each time instant. Distribution is multiplied by the total signal power spectra

density function.

compared with respect to several basic proper-
ties: instantaneous frequency estimation, dis-
tribution concentration, and resolution of two
close components. For the monocomponent
signals and multicomponent signals with well
separated components, as they were consid-
ered in literature for time frequency analysis,
the Capon’s form produce exactly the same re-
sults as the standard one with respect to the
first and the third property, while it can look
much more concentrated in the time-frequency
plane. Simple modifications of the standard
spectrogram are proposed in order to illus-
trate these conclusions. The analysis is gen-
eralized to the distributions from the Cohen
class, and to the distributions that take into
account phase nonlinearity.
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