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Instantaneous Frequency Estimation by
Using the Wigner Distribution and

Linear Interpolation
LJubiša Stanković, Igor Djurovíc, Radomir-Mato Laković

Abstract– Nonparametric algorithm for the
instantaneous frequency (IF) estimation, by
using the Wigner distribution (WD) with an
adaptive window length, is considered in the
paper. This algorithm produces a bias-to-
variance trade-off close to optimal, meaning al-
most minimal mean squared error (MSE) of the
estimation. Thus, the adaptive window length
is characterized by a small bias at the consid-
ered instant. Then, according to the WD con-
centration property, the IF estimate can be as-
sumed as a linear function within this window.
Instead of nonparametric IF estimation in other
points within this interval the linear IF interpo-
lation can be performed. Length of the inter-
polation segment is determined based on the
adaptive window length. It is done in such a
way to produce a trade-off between the inter-
polation caused error and calculational com-
plexity. This modification can produce a sig-
nificant calculation savings, without increasing
the overall MSE. Theoretical analysis has been
confirmed on numerical examples and statisti-
cal study with four synthetic signals. The ap-
proach presented here can be generalized in a
straightforward manner to nonlinear interpo-
lations and higher order time-frequency repre-
sentations.

I. I������	�
��

Accurate instantaneous frequency (IF) esti-
mation is an important problem in numerous
applications [1]-[10]. Here we will focus our
attention to the nonparametric IF estimation
based on the time-frequency (TF) representa-
tions, in particular on the Wigner distribution
(WD). The WD, like many other TF distrib-
utions, exhibits the property that its first mo-
ment along the frequency is equal to the IF
[11]. This property holds for the nonnoisy sig-
nals. It can be used for nonparametric IF esti-
mation only in low to moderate noise environ-
ments [12]. The WD is concentrated around
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signals’ IF [1]. This fact has motivated in-
troduction of the IF estimator based on po-
sitions of the WD maxima [1]-[3]. This es-
timator is a simple and commonly used non-
parametric estimation tool. Statistical perfor-
mance of this estimator is analyzed in [1]-[3].
It has been shown that the bias, caused by
the IF non-linearity, is proportional to a power
of the lag window length, while the variance,
caused by the noise, is a decreasing function
of the lag window length. Thus, the bias-
to-variance trade-off, producing the minimal
mean squared error (MSE), exists.

The nonparametric algorithm for calcula-
tion of the adaptive window length in the WD
is proposed in [3]. It is based on the rule of
confidence intervals intersection. Algorithm
sources are in the nonparametric regression.
Recently this algorithm is applied to other
TF representations, including the Polynomial
Wigner-Ville distribution (PWVD) [13]. The
main algorithm drawback is in calculation of
several WDs at each time instant.

In this paper we propose a modification of
the nonparametric algorithm. The algorithm
results in a window length such that the bias
is relatively small (of the same order of mag-
nitude as the estimate’s variance) within the
considered lag interval. Small bias for the WD
based estimator means that the IF can be con-
sidered as a linear function within the lag win-
dow. Thus, in calculation we can skip an in-
terval proportional to the adaptive lag win-
dow length. Within this interval the IF es-
timate is interpolated with a linear function.
Furthermore, the interpolation means that we
can skip WD calculations in the other points
within this interval. It results in a reduction
of calculation complexity, since the number of
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points where the nonparametric algorithm is
performed (with calculation of several WDs)
is decreased. Deviation of the true IF from
the linear behavior could increase the MSE.
Therefore, the interval length should be cho-
sen as a trade-off between the calculation com-
plexity and possible non-linearity error.
The paper is organized as follows. Perfor-

mance of the WD based IF estimator is re-
viewed within Section II. This section ends
with a description of the nonparametric algo-
rithm for the IF estimation, which is based
on the intersection of confidence intervals rule.
The proposed algorithm modification is intro-
duced and presented in Section III. Compari-
son of the calculation complexity between the
original and the modified algorithm is given.
Theoretical analysis is confirmed in Section
IV, where numerical examples and statistical
study are done.

II. T�
 WD �� �� IF E��
�����

An important property of TF representa-
tions is that they are concentrated around the
signals’ IF [1]-[10]. This is the basis for a group
of methods for the IF estimation, which use de-
tection of the TF representations maxima po-
sitions. For FM signals, f(t) = Aejφ(t), the IF
is defined as the first derivative of the phase,
ω(t) = φ′(t). Based on a TF representation
TF (t, ω), the IF is estimated as:

ω̂(t) = argmax
ω

TF (t, ω). (1)

Here, a special attention will be paid to the
WD:

WDh(t, ω) =
∑

k

wh(kT )x(t+ kT )x∗(t− kT )e−j2ωkT , (2)

of a noisy signal

x(t) = f(t) + ν(t), (3)

where T is the sampling interval, ν(t) is a
white, Gaussian noise with independent real
and imaginary part with variance 2σ2, and
wh(t) is a lag window whose length is h, i.e.,
wh(t) = 0 for |t| ≥ h/2. The WD of signal (3)
can be written in the form:

WDh(t, ω) = A2

×
∑

k

wh(kT )ejφ(t+kT )−jφ(t−kT )e−j2ωkT

+WDν(t, ω), (4)

where WDν(t, ω) denotes the noise-term,
given by

WDν(t, ω) =
∑

k

wh(kT )[f(t+ kT )ν∗(t− kT )

+ν(t+kT )f∗(t−kT )+ν(t+kT )ν∗(t−kT )]e−j2ωkT.
(5)

The signal phase can be expanded into a Tay-
lor series up to the third order term

φ(t+kT )−φ(t−kT )≈2φ′(t)(kT )+
2φ′′′(t)(kT )3

3!
.

(6)
For small φ′′′(t)(nT )3/3! we can make the ap-
proximation: exp(j2φ′′′(t)(kT )3/3!) ≈ 1 +
j2φ′′′(t)(kT )3/3!, so that expression (4) can be
written as:

WDh(t, ω) = A2
∑

k

wh(kT )ej2φ
′(t)kT e−j2ωkT

+A2
∑

k

j
1

3
φ′′′(t)(kT )3wh(kT )ej2φ

′(t)kT e−j2ωkT

+WDν(t, ω)

=WD1(t, ω) +WD3(t, ω) +WDν(t, ω). (7)

Note that the first term WD1(t, ω) has
maxima along the IF ω(t) = φ′(t), where
∂WD1(t, ω)/∂ω|ω=φ′(t) = 0. Other two terms
in (7), WD3(t, ω) and WDν(t, ω), produce
the IF estimation error. A linearization of
∂WDh(t, ω)/∂ω, around the exact IF value
ω(t) = φ′(t), is performed in [3], in order to
calculate the errors which appear in this esti-
mator. It is assumed that the errors caused
by WD3(t, ω) and WDν(t, ω) are statistically
independent. Then we can write:

∂WDh(t, ω)

∂ω
|0 =

∂WD1(t, ω)

∂ω
|0 +

∂2WD1(t, ω)

∂ω2
|0∆ω(t)

+
∂WD3(t, ω)

∂ω
|0 +

∂WDν(t, ω)

∂ω
|0 = 0, (8)
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where |0 denotes the point ω = φ′(t). From
(8) we get an expression for the IF estimation
error ∆ω(t):

∆ω(t) = ω̂(t)− ω(t)

= −
∂WD3(t,ω)

∂ω
|0 + ∂WDν(t,ω)

∂ω
|0

∂2WD1(t,ω)
∂ω2

|0
. (9)

Expected value of the IF estimation error is,
[3], [14]:

E{∆ω(t)} = −
∂WD3(t,ω)

∂ω
|0

∂2WD1(t,ω)
∂ω2

|0
=

−∑
k

2(kT )
3 φ′′′(t)(kT )

3
wh(kT )e

j2φ′(t)kT−j2φ′(t)kT

∑
k(−2jkT )2wh(kT )ej2φ

′(t)kT−j2φ′(t)kT

= kbφ
′′′(t)h2 = kbω

(2)(t)h2, (10)

while the variance is given by:

var{∆ω(t)} =
E

{∣∣∣∂WDν(t,ω)
∂ω

|0
∣∣∣
2
}

∣∣∣∂
2WD1(t,ω)
∂ω2

|0
∣∣∣
2

=
σ2

A2

(
1 +

σ2

A2

) ∑
k(kT )2w2h(kT )

(
∑
k(kT )2wh(kT ))2

=
σ2

A2

(
1 +

σ2

A2

)
kvh

−3. (11)

The constants kb and kv depend on the win-
dow shape. For common lag windows they are
given in Table I. Expressions for kb and kv di-
rectly follow from the relations (10) and (11),
[3], [14]. The estimator’s variance (11) is a de-
creasing function, while the bias (10) is an in-
creasing function of the window length h. The
MSE of the IF estimation error is:

MSE =
(
kbω

(2)(t)h2
)2
+

σ2

A2

(
1 +

σ2

A2

)
kvh

−3.

(12)
From (12) we can find the optimal win-
dow length h. By minimizing the MSE,
∂MSE/∂h|

h=ĥ(t) = 0, we get:

ĥ(t) =
7

√
3 σ

2

A2

(
1 + σ2

A2

)
kv

4k2b [ω
(2)(t)]2

. (13)

This expression cannot be used in practical re-
alizations since it contains unknown derivative
of the IF ω(2)(t). However, it was used for de-
velopment of the adaptive algorithm for the
IF estimation, based on the confidence inter-
vals intersection [3], [14]. This algorithm can
produce solutions close to the optimal ones.
Note that for the optimal window length the

equality E{∆ω(t)} =
√

3
4var{∆ω(t)} holds.

In order to illustrate the above relations and
errors in the IF estimation we will present an
example.

Example: Consider the signal f(t) =
exp(jφ(t)), with the IF given by ω(t) =
φ′(t) = 24atan(16t), within the time interval
t ∈ [−1, 1], with the sampling interval T =
1/512. The signal is embedded in a Gaussian
noise with the standard deviation of imaginary
and real part having the value of σ = 0.15.
The IF estimates, based on the maxima of the
WD with a rectangular window of the length
h = NT , for the cases of N = 512, N = 128,
and N = 8, are shown in Figures 1a,b,c, re-
spectively. It can be seen that wider window
lengths produce larger bias and smaller vari-
ance, while smaller window lengths produce
smaller bias and larger variance, according to
(12). The MSE error of IF estimation, deter-
mined by using Monte Carlo simulations, as
a function of the window length, is shown in
Figure 1d for three different amounts of noise
σ = 0.1, σ = 0.3 and σ = 0.7. For the highest
amount of noise the MSE minimum is reached
for a wide window length, since the influence
of noise on the IF estimates is the smallest for
that window length. The WDs with N = 512
and N = 8, corresponding to estimates in Fig-
ures 1a,c, are shown in Figures 1e,f, respec-
tively.

A. Specific Statistical Approach Based on

Confidence Intervals Intersection

A specific statistical approach for the IF es-
timation is proposed in [3]. Its origin is in
nonparametric regression. An adaptive, close
to the optimal, IF estimate is obtained by us-
ing adaptive time-varying window lengths [3].

The adaptive window length ĥ(t) is chosen, at
each time instant, from a set of the windows
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TABLE I

P����
�
�� kv ��� kb ��� 	����� �
���� ���
�.

Window type Rectangular Hanning Triangular Hamming
kv 0.0833 0.0163 0.0208 0.0217
kb 0.0250 0.0131 0.0167 0.0168

Fig. 1. Instantaneous frequency estimation based on the WD maxima: a) N = 512; b) N = 128; c) N = 8; d)
MSE (σ = 0.1 - solid line; σ = 0.3 - dotted line; σ = 0.7 - dashed line); e) WD with N = 512; f) WD with
N = 8.

with dyadic lengths

H = {hk = h02
k, k = 0, 1, 2, ..., J}, (14)

where h0 is an initial, narrow window. Esti-
mate of the optimal window ĥ(t) is determined
by using the rule of confidence intervals inter-
section, producing a bias-to-variance trade-off
[3]. Here, we will briefly explain its basic idea.
The IF estimates are obtained based on the

WD with various window lengths from the set
H:

ω̂hk(t)=argmax
ω

WDhk(t, ω), k=0,1,2, ..., J.

(15)
The confidence intervals for each estimate are
defined as:

Dhk =[ω̂hk(t)−κσ(hk), ω̂hk(t)+κσ(hk)], (16)

where κ determines probability that the mean

value of ω̂hk(t) is within the confidence in-
terval, while σ(hk) is the standard devia-
tion of the IF estimate (11). For example,
for Gaussian distribution of random variable
ω̂hk(t), κ = 3 means that the mean value is
within Dhk with probability of 0.997. When
the bias is so small that it can be neglected,
the mean value of ω̂hk(t) is equal to the true IF
ω(t). Thus, the confidence intervals intersect
when the bias is small, since they contain the
true IF value. When we increase the window
length the bias is increased, while the vari-
ance is decreased. For large window lengths
the bias becomes so large that the mean val-
ues of ω̂hk(t) have large difference, due to the
bias, and the consecutive confidence intervals
stop to intersect. The specific statistical ap-
proach proposes comparison of the confidence
intervals of estimates produced with consecu-
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tive window lengths from the set H. In or-
der to take into account a small bias, up to
E{∆ω(t)} ≈

√
var{∆ω(t)}, one should mod-

ify the confidence intervals as:

Dhk =

[ω̂hk(t)− (κ+1)σ(hk), ω̂hk(t) + (κ+1)σ(hk)].
(17)

The adaptive window length, with an appro-
priate bias-to-variance trade-off, is chosen as
the widest one from the set H when two con-
secutive intervals still intersect.

Algorithm
The algorithm for the IF estimation can be

summarized as follows:
1) Consider an instant t = t0.
2) Calculate the WD with the narrowest

window from the set h0 ∈ H, WDh0(t, ω),
k = 0.
3) Initial IF estimate is:

ω̂h0(t) = argmax
ω

WDh0(t, ω). (18)

4) Consider next window length k = k +
1, hk = h02k, calculate the WD for this win-
dow WDhk(t, ω), and determine correspond-
ing IF estimate:

ω̂hk(t) = argmax
ω

WDhk(t, ω). (19)

5) If the inequality:

|ω̂hk(t)− ω̂hk−1(t)| ≤ (κ+1)[σ̂(hk)+ σ̂(hk−1)],
(20)

is not satisfied or hk is the widest window from
the set H, then data-driven window is ĥ(t) =
hk−1(t), and the adaptive IF estimate is ω̂(t) =
ω̂hk−1(t). Otherwise, go to step 4.
6) t = t+ T , go to step 1.

Value κ in (20) is set to 3. Procedure for
the standard deviation estimation (20) can be
performed at the beginning of the algorithm,
based on the formula given in [3], [14]. Val-
ues of (κ+ 1)[σ̂(hk) + σ̂(hk−1)] in (20) can be
stored in a look up table. The same algorithm
can be used with other time-frequency repre-
sentations. Its implementation in the case of
the PWVD is described in [13].

III. P�����
� A����
���

The proposed algorithm is a modification of
the previously described nonparametric algo-
rithm. This modification is proposed in order
to reduce the calculation complexity. In the
adaptive algorithm the estimation starts from
the narrowest window, producing the small-
est bias and the largest variance. Then, twice
wider window is used in each successive esti-
mation for the considered time instant. If the
confidence intervals of two consecutive win-
dows intersect, it means that the bias is still
small, as compared to the variance. Note that
from (10) follows that the bias is proportional
to the squared IF’s second derivative. Thus,
from the same relation follows that small bias
means small IF’s second derivative, i.e., the
IF, estimated by the WD, can be treated as
a linear function within the considered win-
dow. We can conclude that the IF can be rep-
resented by a straight line within an interval
determined by the optimal window. In this
way, by using the adaptive statistical approach
we get the IF estimation, as well as the inter-
val where we can use parametric IF estimation,
with a satisfactory overall precision.
Consider a time interval [t1, t2]. The IF

estimates at the end points, ω̂(ti), i = 1, 2,
are obtained by using the presented statistical
method. Within the interval (t1, t2), the IF
is interpolated by a line that contains points
(ti, ω̂(ti)), i = 1, 2. Let us now analyze the
influence of interpolation on the IF estimation
accuracy. Neglecting other sources of errors,
assume that the exact IF values at the points
(ti, ω(ti)), i = 1, 2, are obtained. Let the IF
be a continuous function with continuous and
limited derivatives within the interval (t1, t2).
The IF within the interval is interpolated with
a line:

ω̂(t) = aω(t2) + (1− a)ω(t1), (21)

where a = (t− t1)/(t2 − t1), and t ∈ [t1, t2] is
an arbitrary point. Expanding the functions
ω(ti), i = 1, 2, into the Taylor series around a
point t ∈ [t1, t2], up to the second order term,
we get:

ω̂(t) = ω(t)− a(1− a)ω(2)(t)(∆t)2/2, (22)
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where ∆t = t2−t1 is the interval length. From
(22) we can conclude:
-If ∆t = t2−t1 is of the window length order

of magnitude, then the interpolation error be-
haves in the same way as the estimation bias
in the considered point.
-The largest error, with respect to the varia-

tion of parameter a only, occurs in the middle
of the considered interval, a = 0.5. It can be
written as:

eapp(t) = −ω(2)(t)(∆t)2/8. (23)

We want to perform a linear interpolation of
the IF values in such a way that the calcu-
lation savings (i.e., wide interpolation inter-
vals) do not cause a significant increase of the
MSE. To this aim we decided to keep the error
epp(t), caused by the introduced interpolation,
less than a portion of the IF estimation bias
E{∆ω(t)} value:
∣∣∣∣

epp(t)

E{∆ω(t)}

∣∣∣∣ =
∣∣∣∣
ω(2)(t)(∆t)2/8

kbω(2)(t)h2

∣∣∣∣ ≤ η. (24)

>From (24) follows ∆t ≤ h
√
8ηkb. For ex-

ample, for the rectangular window kb = 1/40
and maximal error introduced by the inter-
polation equal to 10% of the bias, we have
η = 0.1, ∆t ≤ h/5

√
2. We have set the in-

terpolation interval length to the first smaller
value that corresponds to a window length
from the set (14). It is ∆t = h/8 and it
will produce an integer number of skipped in-
stants. With ∆t = h/4 maximal interpolation
error is 31.2% of the bias. This is the rea-
son why, in the proposed algorithm modifica-
tion, we have used the interpolation interval
length equal to ĥ(t)/8, where ĥ(t) is the adap-
tive window length. Narrower interpolation in-
tervals would produce small improvements of
accuracy, but they would reduce calculation
savings. Wider interpolation intervals would
mean a significant influence of the interpola-
tion error. For rectangular window the step
size of ĥ(t)/8 produces an error of 7.8% of
the bias |eapp(t)| = 0.078E{∆ω(t)}, while for
other windows from Table I this step will pro-
duce an interpolation error slightly higher than
10%.
Therefore, we can use linear interpolation,

without a significant increase of the estimation

error, within the interval s = ĥ(t)/8, where

ĥ(t) is the optimal window length of the esti-

mator in the considered point.
Algorithm:
1. Consider instant t0, i = 0.
2. Determine the IF estimate ω̂(ti) and

adaptive window ĥ(ti) by using the presented
statistical approach. If i �= 0 then interpolate
the IF within the interval t ∈ [ti−1, ti] by using
(21).
3. Next time instant is ti+1 = ti+ si, where

si = ĥ(ti)/8 is the interval for parametric in-
terpolation. Go to 2.

Note: In the presented analysis we have
used only the dominant term in the bias and
in the approximation error. It is proportional
to the second IF derivative ω(2)(t). In gen-
eral, the bias depends on all even order deriv-
atives, E{∆ω(t)} = ∑

∞

l=1 klω(2l)(t)h2l. The
approximation error contains all IF deriva-
tives, eapp =

∑
∞

l=2 qlω
(l)(t)(∆t)l. At some

points it can happen that all ω(2l)(t) are very
small, meaning small bias, while ω(2l+1)(t)
are large, meaning large approximation error.
From analysis that we performed for this case
we have concluded that, in order to treat the
problems related to this effect, we should not
allow the step size to increase more than twice
between two consecutive points. In the pre-
sented algorithm it means: if ĥ(ti)/8 > 2si−1
then si = 2si−1. This kind of problem can also
be reduced by using higher order TF represen-
tations, like for example PWVD.

A. Calculation Complexity

The calculation complexity of the WD with
window length N is N (3 + log2N) /4 complex
multiplications, and (N log2 N)/2 complex ad-
ditions [15]. By assuming that the complex
multiplication can be obtained by using 4 real
multiplications, and two real additions, as well
as that complex addition represents two real
additions, we can conclude that the calcula-
tion of the WD takes N(3 + log2N) real mul-
tiplications, and 3N(1 + log2N)/2 real addi-
tions. If the adaptive window in the consid-
ered point is ĥ(t) = 2Kh(t0), then applica-
tion of the presented statistical approach re-
quires calculation of K + 1 WDs. In order to
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avoid error caused by the discrete nature of
frequency, zero-padding to the widest window
from the set H is done [3]. In addition, the IF
estimation by using position of maxima needs
N−1 comparisons, while (20) needs additional
K comparisons.
Thus, overall calculation complexity of the

algorithm based on the confidence intervals in-
tersection is:

(K + 1)N(3 + log2N) real multiplications,

(K + 1)3N(1 + log2N)/2 real additions,

and (K + 1)(N − 1) +K comparisons, (25)

for a considered point. The proposed ap-
proach has the same calculation complexity
for the instant where the IF estimation is per-
formed by this statistical approach. However,
this approach results in skipping of the next
2Kh(t0)/8T points, since the interpolation is
done in (2Kh(t0)/8T − 1) points. Interpola-
tion of the IF needs 4 real additions, 2 real
multiplications and 1 real division for each in-
stant. An average calculation complexity of
the algorithm for that interval is:

(K + 1)N(3 + log2N) + 2(2Kh(t0)/8T − 1)
2Kh(t0)/8T

real multiplications,

(K+1)3N(1+log2N)/2+4(2Kh(t0)/8T−1)
2Kh(t0)/8T

real additions

2Kh(t0)/8T − 1
2Kh(t0)/8T

real divisions,

and
(K + 1)(N − 1) +K

2Kh(t0)/8T
comparisons. (26)

Assume, for example, the case when the
widest window length isN = 512 samples, and
the narrowest window length is N = 4, as well
as that the optimal window length for a consid-
ered instant is N = 32. This optimal window
length means that we can skip next 32/8 = 4
instants, and use the parametric model within
this interval of 4 instants. By using the pro-
posed algorithm we will get approximately 4

times lower calculation complexity than by us-
ing the presented statistical approach at each
instant. For the assumed values, according to
(25) and (26), the IF estimation in the consid-
ered instant, needs:
-22528 × 4 real multiplications, 27684 × 4

real additions, and 2047 × 4 comparisons, for
a direct application of the specific statistical
approach in these 4 instants, or
-22528 + 6 real multiplications, 27684 + 12

real additions, 2047 comparisons, and 3 real di-
visions for performing the proposed algorithm
for the IF estimation in this interval of 4 in-
stants.
Of course, in real data analysis the calcu-

lation complexity depends on the signal and
noise characteristics. It can be analyzed only
statistically (Section IV). Note that the pro-
cedure for the WDs calculation (with different
window lengths) can be parallelized. Thus, in
multiprocessor systems all WDs can be calcu-
lated in parallel for the same amount of time.
Also, calculation of the WD with a narrow
window contains a large number of zero val-
ues. It can be simplified in the first latices of
the FFT algorithm. This fact can be used for
a reduction of calculation complexity in mono-
processor systems.

IV. E�����


In order to illustrate the algorithm we
have considered the WD based IF esti-
mator and four signals with: ω1(t) =
a1t, ω2(t) = a2t

2, ω3(t) = a3|t|, and
ω4(t) = a4sgn(t). Parameter values are
(a1, a2, a3, a4) = (256π, 576π, 256π, 128π). In
all examples the SNR is 20 log10(A/σ) =
15[dB]. The considered interval is t ∈
[−0.5, 0.5], with Nt = 512 samples. Since the
error caused by a discrete frequency grid can
be significant, zero-padding to the widest win-
dow length N = 512 has been done. The IF
estimates are shown in Fig.2, as well as the
adaptive window lengths produced by the sta-
tistical approach. The mean absolute IF esti-
mation error for the WD: a) with a constant
window length from the set H producing min-
imal mean absolute error (which is not known
in advance); b) with the adaptive algorithm for
each point, and c) for the adaptive algorithm
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Fig. 2. The IF estimates (first row), and adaptive window length (second row): a) ω1(t), b) ω2(t), c) ω3(t),
d) ω4(t). Asterisks denote points where the nonparametric IF estimation by using the WD is done. The
interpolation is performed between these points.

TABLE II

IF 
��
���
�� �� ��
�� ��
 WD. Nc - ��
 	������� �
���� �
��� ��
	� �����	
� ��
 �
�
��� �
��

�������
 
����. I��
�
� �
���
: c - 
��
���
�� �
�� Nc; a - 
��
���
�� �
�� ��
 �����
#


�����
���; i - 
��
���
�� �
�� ��
 ������
� �����
���. Kmean - �#
���
 ����
� �� ��
��� ��
�


��
 IF 
��
���
�� ��� �

� ���
. STAT - �#
���
 ����
� �� ��
 WD 	��	����
��� ��� ��
 ��
	
�
	

����
��
	�� ������	�; PROP - �#
���
 ����
� �� ��
 WD 	��	����
��� ��� ��
 ������
� �����
���.

Estimator Wigner distribution

Signal ω1(t) ω2(t) ω3(t) ω4(t)

Nc 256 32 32 8

E{|∆ω̂c|} 0.08 1.28 1.29 11.02
E{|∆ω̂a|} 0.08 1.28 0.99 0.80
E{|∆ω̂i|} 0.15 1.15 0.61 1.13

Nt/Kmean 30.12 3.97 13.20 9.88

STAT 4096 2560 3654 3756

PROP 264 645 327 422

with interpolation, proposed here, is shown in
rows 4, 5 and 6 of Table I, respectively. In
all examples 25 trials are performed. Also,
the ratio between number of samples where
the IF is calculated by the standard algorithm
and the average number of points for the pro-
posed algorithm, Nt/Kmean , is given. An av-
erage number of the WDs calculated for the
IF estimation by the specific statistical ap-
proach (STAT) and by the proposed algorithm
(PROP) is also given in Table II. A decrease in
calculation complexity by using the proposed

algorithm is evident (Table II, last row).

V. C��	���
��

The method for linear interpolation of the
estimated IF values, based on the WD, is in-
troduced. The interpolation interval is deter-
mined by using the optimal lag window length
at the considered instant. In this way, an accu-
rate and numerically efficient IF estimation al-
gorithm is obtained. The method can be gen-
eralized in a straightforward manner for the
application on the PWVD and other higher
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order TF representations by using polynomial
interpolation forms.
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