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An Algorithm for the Wigner
Distribution Based Instantaneous

Frequency Estimation in a High Noise
Environment

Igor Djurovíc, LJubiša Stanković

Abstract– Estimation of the instantaneous
frequency (IF) in a high noise environment, by
using the Wigner distribution (WD), is consid-
ered. In this case the error is of impulse nature.
An algorithm for the IF estimation, which com-
bines the nonparametric method based on the
WD maxima with the minimization of the IF
variations between consecutive points, is pro-
posed. The off-line and on-line realizations are
presented. The on-line realization is an in-
stance of the (generalized) Viterbi algorithm.
Application of this algorithm on the monocom-
ponent and multicomponent frequency modu-
lated signals is demonstrated. For multicompo-
nent signals, the algorithm is applied on other
(reduced interference) distributions. Numeri-
cal examples, including statistical study of the
algorithm performance, are given.

I. I������	�
��

Time-frequency analysis is an important re-
search area in signal analysis [1]-[7]. Instanta-
neous frequency (IF) estimation is one of its
application fields [8]-[12]. The Wigner distri-
bution (WD) is a widely used tool for the IF
estimation of signals with fast variations of the
spectral content [13]. The most common esti-
mation technique is based on the WD maxima
positions [13], [15], [16]. The error sources in
this IF estimator can be divided into the fol-
lowing categories: (a) Bias; (b) Error due to
small variations of the WD maxima within the
signal’s auto-term; (c) Error caused by the fre-
quency discretization [16], [17], [18]; (d) Error
caused by a high noise which can move theWD
maxima outside the auto-term. The bias and
small deviation of the WD maxima are consid-
ered in [16], [18]. It has been shown that the
mean squared error (MSE) of the IF estima-
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tion, caused by these two sources, can be min-
imized by using a specific statistical approach
for the adaptive window width determination.
The error caused by the discrete nature of fre-
quency can be decreased by using interpola-
tion or displacement techniques [17], [19], [20].
An analysis of the high noise influenced error
is done in [21]. This error occurs when some
points outside the signals’ auto-term surpass
values inside the auto-term, due to the influ-
ence of a relatively high noise. It has been
shown that this kind of error, when it appears,
dominates over other sources of error [21].

This paper is focused on the last mentioned
source of error. A new algorithm which can
significantly reduce the error caused by a high
noise is proposed. Monocomponent FM signal
with constant amplitude in a complex, white,
additive, Gaussian noise with independent real
and imaginary parts (i.i.d.) is considered. The
key criteria that is used in the algorithm is:
the IF should pass through as many as possi-

ble points of the WD with highest magnitudes,

while the IF variation between two consecutive

points should not be too fast. The basic idea
for this algorithm comes from the graph the-
ory and algorithms for edge-following [22]. We
proposed both on-line and off-line algorithm
realizations. The on-line realization is an in-
stance of the (generalized) Viterbi algorithm
[23]. The algorithm can be used in the case of
multicomponent signals and other types of ad-
ditive or multiplicative noise. These cases will
be illustrated on examples. Although we have
restricted the analysis to the WD, this method
can be applied on any time-frequency repre-
sentation that concentrates auto-term around
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the IF. The proposed algorithm estimates the
IF based on signal independent (non-adaptive)
form of time-frequency representations. Signal
adaptive time-frequency representations usu-
ally adapt parameters, based on the measures
of time-frequency concentration or based on
the projections in the ambiguity domain [24]-
[28]. An example with these representations
shows that, in a high impulse noise environ-
ment, these methods can adjust their para-
meter values to very high noise components
(impulses), neglecting signal components with
significantly lower amplitudes than those of
the noise. In our numerical studies we have
decided to use signal independent representa-
tions.
The paper is organized as follows. An

overview of the WD based IF estimator for a
signal embedded in a high noise is given in Sec-
tion II. The algorithm for the IF estimation in
a high noise environment is derived in Section
III. Some numerical examples are given in this
section, as well. Statistical study of the pro-
posed algorithm is done in Section IV. Finally,
the conclusions are presented in Section V.

II. W
��
� D
���
���
�� �� �� IF
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�����

Consider a signal f(t) = Aejφ(t), corrupted
by an additive, complex, white, Gaussian i.i.d.
noise ν(t) with variance 2σ2 (variance of the
real and imaginary part is σ2). Noisy sig-
nal x(t) is of the form x(t) = f(t) + ν(t) =
Aejφ(t) + ν(t). The IF is defined as the first
derivative of the phase ω(t) = φ′(t). The WD
of a discrete-time signal is given by

WD(t, ω) =

∑

k

wh(kT )x(t+ kT )x∗(t− kT )e−j2ωkT , (1)

where the window function wh(kT ) has the
width h,

∑
k wh(kT ) = 1, and T is the sam-

pling interval.
The WD is highly concentrated around the

signal’s IF. Thus, it has been shown that the
position of the WD maxima is an appropriate
tool for the IF estimation [13], [15]:

ω̂(t) = arg
[
max
ω

WD(t, ω)
]
. (2)

Influence of the high noise to the IF estima-
tor (2) is considered in [21]. By neglecting
other sources of error probability that some
WD points outside IF of the linear FM signal
are higher than value on the IF is equal to [21]:

PE = 1−

∫ ∞

−∞

(
1− 0.5erfc

(
ξ√
2σWD

))N−1
p(ξ)dξ,

(3)
where: σ2WD = 4Nσ2(A2 + σ2), p(ξ) =

e−(ξ−NA
2)/2σ2WD/

√
2πσWD is probability den-

sity function for the WD values along the IF,
and N is window width. Probabilities of the
IF error in the case of the linear FM signal
and N = 256, for various σ/A, are given in
Table I. It can be seen that the probability of
error is a rapidly increasing function with re-
spect to σ/A . For values σ/A > 2 it is very
close to 100%. When this error appears, there
is an equal chance that any value of ω is taken
as the IF estimate. Thus, we can write the IF
estimation as:

ω̂(t) = ω(t) with probability 1− PE, (4)

and ω̂(t) = ω ∈ Qω, ω �= ω(t) with probabil-
ity PE. The probability of error is uniformly
distributed over N −1 samples outside the IF.
The WD value at the IF is the j-th largest

WD value, at the considered instant, with the
probability:

P (j) =

∫
∞

−∞

Qj−1(ξ) (1−Q(ξ))N−j p(ξ)dξ,

(5)
where Q(Ξ) = 0.5erfc

(
Ξ/
√
2σWD

)
. For two

values of the signal to standard deviation ra-
tio, A/σ, this probability is shown in Figure
1a,b. From these figures it can be concluded
that it is highly probable that the WD value
along the IF is one of the largest distribution
values at the considered instant. Probability
P (j) almost linearly decreases with j in a high
noise environment, as it is illustrated in Fig-
ure 1c. These facts will be used in the next
section for development of the IF estimation
algorithm.
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Fig. 1. Probability that the WD value at the IF is the j-th largest value at the considered instant: a)
A/σ = 1/1.25; b) A/σ = 1/1.75; c) 1/P (j) for A/σ = 1/1.75 and A/σ = 1/2.25.

TABLE I

E���� ������
�
�� �� ��
 IF 
��
���
��.

σ/A 0.25 0.50 0.75 1.00 1.25
PE 1.90·10−138 5.55·10−22 1.98·10−7 4.71·10−3 1.37·10−1
σ/A 1.50 1.75 2.00 2.25 2.50
PE 4.49·10−1 6.97·10−1 8.33·10−1 9.02·10−1 9.37·10−1
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The IF itself is usually a slow varying func-
tion. In the case of a high noise the esti-
mation errors are dominantly of impulse na-
ture (4). Thus, this kind of error can be re-
duced by applying the median filter, directly
to the estimated IF [30]. From filter theory
it is known that the median filter can elimi-
nate impulses whose occurrence frequency is
up to 50%. However, in our experiments we
could not get the expected results by using the
median filter approach. Namely, the errors in
the IF estimation are not statistically indepen-
dent. If a large error occurs in the considered
point, there is a high probability that the er-
ror exists in the neighboring points. This fact
significantly reduces the efficiency of a direct
median filter application. It clearly shows that
for the IF estimation in the high noise environ-
ment we need a more accurate tool. Also, from
Table I it can be seen that, for σ/A > 1.7, the
probability of error is higher than 70%. In that
case the median filter cannot be successfully
used.

In order to develop a more sophisticated al-
gorithm for the IF estimation in a high noise
environment, we will assume the following:

(1) If the WD maximum at the considered

instant is not at the IF point, there is a high
probability that the IF is at a point having one
of the largest WD values (for example second,
third..., but not as far as, for example, the
hundredth position). This has been confirmed
numerically in Figure 1a,b. Thus, based on the
WD values we will form a weighting function
which assumes greater values for smaller values
of the WD, and vice versa;

(2) The second factor is based on the as-
sumption that the IF variation between two
consecutive points is not extremely large.

According to these two assumptions, we can
define the algorithm. The basic idea for this
algorithm comes from the problem of edge-
following in digital image processing [22]. The
problem in [22] was to find out a line that
passes through pixels with as high as possi-
ble values of the edge detector, and such that
variations of the edge direction are as small as
possible. Roughly speaking, our algorithm is
similar to the algorithm for connecting points
at the map such that the path length and the
altitude variations are as small as possible. It
can also be related to finding the most prob-
able hidden state. That problem is solved re-
cursively by using the well known Viterbi al-
gorithm.
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A. Algorithm

Consider time interval n ∈ [n1, n2]. Let all
paths between n1 and n2 belong to a set K.
Assume that all paths from the set K can take
only discrete frequency values which belong to
the set Qω.
We form the IF estimate as a path that min-

imizes the expression:

ω̂(n) = arg min
k(n)∈K

[
n2−1∑

n=n1

g(k(n), k(n+ 1))

+
n2∑

n=n1

f(WD(n, k(n)))

]

= arg min
k(n)∈K

p(k(n);n1, n2), (6)

where p(k(n);n1, n2) is a sum of the penalty
functions g(x, y) and f(x), along the line k(n),
from the instant n1 to n2. Function g(x, y) =
g(|x− y|) is a nonincreasing one, with respect
to the absolute difference between x and y (be-
tween the IF values in the consecutive points
x = k(n) and y = k(n − 1)), while f(x) is a
nondecreasing function of x = WD(n, k(n)).
In this way the larger values of the WD are
more important candidates for the position of
the IF at the considered instant. For a con-
sidered n, the function f(x) can be formed as
follows. The WD values, WD(n, ω), ω ∈ Qω,
are sorted into the nonincreasing sequence:

WD(n, ω1) ≥WD(n, ω2) ≥

.... ≥WD(n, ωj) ≥ ...

≥WD(n, ωM), ωj ∈ Qω, j ∈ [1,M ], (7)

where j = 1, 2, ...,M , is the position within
this sequence. Then, the function f(x) is
formed as:

f(WD(n,ωj)) = j − 1. (8)

Thus, we have a function which realizes our
idea that the points with large WD values will
be more important candidates for the IF esti-
mates. Motivation to use this form of function
f(x) is in the behavior of the WD. Namely, in
an extremely high impulse noise environment,

probability that the WD is on the j-th position

decreases almost linearly with j, Figure 1c.
Note that the function f(x) is not formed di-
rectly by using values of the WD, since the sig-
nal and noise parameters can be time-varying.
It means that a particular distribution value
at the considered instant may highly probably
belong to the signal term, while in other points
it can be influenced by noise. In the Viterbi
algorithm the path penalty function is usually
determined as the logarithm of the correspond-
ing probabilities [23]. For precise determina-
tion of the WD probability, it is necessary to
have an accurate information about the signal
and noise parameters, which are not available.
For g(x, y) = const, the IF estimation (6)

is reduced to the position of the WD maxima,
i.e., the function f(x) completely determines
minimum of (6). In this paper we will use a lin-
ear form of g(x, y), for the difference between
two points greater than an assumed threshold
∆:

g(x, y) =

{
0 |x− y| ≤ ∆

c(|x− y| −∆) |x− y| > ∆.
(9)

The reasonable choice for∆ would be the max-
imal expected value of the IF variation be-
tween consecutive points. It means that there
is no additional penalty due to this function
for small IF variation (within∆ points, for two
consecutive instants). In the realization we ob-
tained good results by taking ∆ which corre-
sponds to a few neighboring points (for exam-
ple, values around ∆ = 3). For ∆ → ∞ esti-
mation given by (6) will reduce to the estima-
tion based on the WD maxima. Note that this
is one possible form of the penalty functions
f(x) and g(x, y). Proposed form of g(x, y)
gives also an opportunity for efficient elimina-
tion of non-optimal paths within the on-line al-
gorithm realization. It will be demonstrated in
the next subsection. Accuracy of the proposed
algorithm, for the described penalty functions,
is demonstrated on the examples and within
the numerical study.

B. Implementation

There are several ways to implement algo-
rithm (6). Here, we will describe two of them:
off-line realization, and on-line realization.
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III.B.1 Off-line realization
Off-line realization starts with the WD cal-

culation for the considered interval, and the IF
estimation based on the WD maxima. In this
way the initial estimate ω(0)(n), n ∈ [n1, n2] is
obtained. The second step is in determination
of the path penalty functions for the initial
IF estimate, and the instants with the largest
path penalty function gain. Then, we look for
the values of the IF estimate, in the selected
points, which can decrease the path penalty
function value. The procedure is performed
recursively until we are no longer able to find
a new point that can decrease this value. This
algorithm is very efficient in the case of a rela-
tively small number of wrongly detected points
(below 20%). In the case of a large number of
wrongly detected points, the algorithm conver-
gence could be quite slow.

III.B.2 On-line realization
Let the time-frequency plane contains

M frequencies and Q time-instants, T =
{(ni, ωj)|i ∈ [1, Q], j = [1,M ]}. The total
number of paths between two ending points
is MQ. This fact makes a direct search for
the optimal path impossible. Fortunately the
algorithm can be realized recursively, as an
instance of the generalized Viterbi algorithm
[23]. Its realization can be described by the
following fundamental steps.
(a) Let optimal paths, which connect the in-

stant n1 and all points to the instant ni, are de-
termined. Those paths, denoted as πi(n;ωj),
n ∈ [n1, ni] for j ∈ [1,M ] can be written as:

πi(n;ωj) = arg min
k(n)∈Kij

p(k(n);n1, (ni, ωj)), j ∈ [1,M ], (10)

where the set Kij contains all paths be-
tween the instant n1 and the point (ni, ωj),
while p(k(n);n1, (ni, ωj)) is a sum of the path
penalty functions for the line k(n). In the
Viterbi algorithm terminology, paths (10) are
known as the partial best paths. Current IF
estimate, within the interval [n1, ni], can be
written as:

ω̂(i)(n) = arg min
πi(n;ωj),j∈[1,M]

p(πi(n;ωj);n1, (ni, ωj)), (11)

for the interval [n1, ni].
(b) The partial best paths at the next in-

stant ni+1 can be represented as concatena-
tion of (10) with the points at the new instant
πi+1(n;ωj) = [πi(n;ωl),(ni+1, ωj)], j ∈ [1,M ],
for l ∈ [1,M ], that produce the minimal value
of:

p(πi(n;ωl);n1, (ni, ωl))+

g(ωl, ωj) + f(WD(ni+1, ωj)), (12)

for each ωj , j ∈ [1,M ]. Note that the func-
tion f(WD(ni+1, ωj)) is constant for the con-
sidered partial best path. Generally, for the
considered point it is necessary to search over
M paths, M2 for the entire instant, and QM2

for the entire plane.
In order to further reduce search space for

partial best paths (12), procedure could be
performed in the following way using the fact
that g(ωl, ωj) is an increasing function of the
distance |ωj − ωl|:
(b1) Set ρ = ∆;
(b2)

l̂ = arg min
l∈[j−ρ,j+ρ]

[p(πi(n;ωl);n1, (ni, ωl)) + g(ωl, ωj)],

π′i+1(n;ωj) = [πi(n;ωl̂), (ni+1, ωj)];

(b3) If

p(πi(n;ωl̂);n1, (ni, ωl̂)) + g(ωl̂, ωj)

< g(ωj+ρ+1, ωj) +min[πi(n;ωj), j = 1,M ]

set πi+1(n;ωj) = π′i+1(n;ωj) as the partial
best path and further procedure could be
stopped. Elsewhere ρ = ρ + 1 and goto step
(b2).
Step (b) should be repeated for each point.
In this way, we got significant calculation

savings, in our examples. They were even
greater than 50%. Again, from the considered
partial best paths, the current estimate is the
one producing the smallest penalty function.

Example: In order to illustrate algorithm
following synthetic example is used. Consider
a time-frequency plane with M = 3 and
Q = 8 points, with assumed values of fij =
f(WD(ni, ωj)), given in Figure 2a. The func-
tion g(ωi, ωj) = gij is given by (9), where
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c = 2.5 and ∆ = 1. Connections from each
point, at the considered instant, with 3 near-
est points from the previous instant, produces
gij = 0, i.e., gij = 0 for |i − j| ≤ 1. With an
increase of |i− j| the function gij increases for
the value of c = 2.5. The partial best paths at
the instant n2 are marked in Figure 2a. Cur-
rent IF estimate is the path which connects
the points (1,5) and (2,5). It is represented by
a thick line. Search for the optimal path at
the next instant is shown in Figure 2b. Val-
ues written for the second instant points, f ′2j ,
j = 1, 2, ..., 8, represent path penalty functions
of the partial best paths to those points:

f ′2j = min
l=1,8

[f1l + glj ] + f2j . (13)

Consider the point (3,4). For this point, three
points from the previous instant ((2,3), (2,4)
and (2,5)) produce gij = 0. The optimal path
between these three points and (3,4) is (2,5)-
(3,4), since f ′25 = 1. Its value is smaller than
f ′24 and f ′23. Furthermore, paths between (3,4)
and any other point from the previous instant
produce gij ≥ 2.5, what is greater than f ′25.
Thus, for the considered point (3,4) search for
the partial best path could be stopped after
only three points. Consider now the point
(3,8). Only two points, (2,7) and (2,8), give
gij = 0 for their paths to the point (3,8). Cur-
rent estimate for the partial best path to the
point (3,8) is (2,7)-(3,8), since f ′27 = 9 < f ′28 =
10.5. However, the connection between (2,6)
and (3,8) is better than the connection (2,7)-
(3,8), since f ′26 + g68 = 4 + 2.5 = 6.5 < 9.
Therefore, the path between (2,5) and (3,8) is
the best, since f ′25+g58 = 1+5 = 6 < 6.5. Fur-
ther search could be stopped since gk8 ≥ 7.5
for k ≤ 4. This illustrates that the search pro-
cedure can be relatively fast. In the consid-
ered case, the optimal path (IF estimate) links
the points (1,1), (2,1) and (3,2). Path penalty
function for this path assumes the value of 3.
It can be easily seen that this path is obtained
by linking the partial best path to the point
(2,1) and the point (3,2). Note that the new
estimate could perform an update of the old
ones.

C. Examples

Example 1. The linear FM signal f(t) =

ejat
2/2 with N = 256 samples within inter-

val t ∈ [−0.5, 0.5] will be used as a statistical
model. The value of parameter a = 64π is
chosen such that the IF lies at the discrete
frequency grid on the diagonal of the time-
frequency plane. The IF variation between
consecutive points is 1. We chose the para-
meter ∆ in (9) to be equal to 3. Three values
of the standard deviation σ =

√
1.5,

√
2.5 and

2, are considered, while A = 1 is used in all
examples. The input SNR, A2/2σ2, is equal
to 1/3, 1/5 and 1/8, i.e., −4.8[dB], −7[dB]
and −9[dB], respectively. In the first case the
number of errors is approximately 10% (Table
I), in the second one it is greater than 50%,
while in the third case it is greater than 80%.
The IF estimates by using: the WD, the me-
dian filter of lengths 3 and 5 applied directly to
the IF estimation, and the proposed algorithm
for σ =

√
1.5 are shown in Figures 3a-d. Re-

sults for higher noise, σ =
√
2.5 and σ = 2, are

depicted in Figures 3e,f. It can be seen that
the median filter in this case depicted by dash-
dot lines cannot perform any improvement in
this case. The proposed algorithm performs
well in all trials in the first two cases, while in
the third case, for σ = 2, it performs well in
75% of trials. More details on the statistical
performance of the algorithm are given in the
next section.

Example 2. The proposed algorithm is
successfully applied on the nonlinear FM sig-
nals. Signal with the IF of a sinusoidal shape
is used in this example. The inner interference
effect, that appears in the case of a nonlinear
FM signal, is reduced by using the Hanning
window of the length 256 samples. Any re-
duced interference distributions from the Co-
hen class can be used for reducing this effect.
This smoothing of the WD values prevents the
algorithm from taking values significantly in-
fluenced by the inner interferences. However,
smoothing of the signal auto-term can disturb
the performance of the algorithm with respect
to the noise influence, as it will be seen in
the next section. Signal to noise ratio was
A2/2σ2 = 1/2, i.e., −3[dB]. The IF estima-
tions based on: the WDmaxima, the proposed
algorithm, and the true IF are shown in Figure
4. The maximal variation between consecutive
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Fig. 2. Illustration of the instantaneous frequency estimation in 3x8 time-frequency plane. a) Partial best paths
for n2; b) Partial best paths for n3; c) The IF estimate.

IF samples was 2. We assumed ∆ = 3 in the
algorithm. Because the WD of this signal is
not ideally concentrated, the ratio of the WD
maxima and the distribution standard devia-
tion is lower than in the case of the linear FM
signals. This fact causes that our algorithm
performs worse for this signal than for the lin-
ear FM signal.

Example 3. Consider the signal from Ex-
ample 1, embedded in a noise that exhibits
impulse nature:

ν(t) = 0.65(ν31(t) + jν32(t)), (14)

where νi(t), i = 1, 2 are Gaussian white noises
with unitary variances. The noisy signal is
shown in Figure 5a. The IF estimation in
an impulse noise environment is considered in
[30], [33]-[35]. The IF estimates, performed
by using the proposed algorithm and the WD,
are shown in Figure 5b. It is obvious that the
WD can be used as a basis for the IF esti-
mation in the case of the impulse noise envi-
ronment, as well. Note that many excellent
signal-adaptive methods are proposed for the
IF estimate, even in the noisy environment
[24]-[28]. However, in a very high noise en-
vironment, being the topic of this paper, these
methods can recognize high noise values as the
main components and adjust their parameters
to them, ignoring the signal. This effect is

demonstrated within this example, where the
signal-adaptive method based on the radially
Gaussian kernel is applied [26]. The normal-
ized kernel volume α = 2 is used. The adaptive
time-frequency representation recognizes noise
impulses as the signal components, Figure 5c.
The corresponding IF estimate is shown in the
Figure 5d.

Example 4. In this example we considered
real-life underwater biological signal represent-
ing sounds produced by marine fauna. Cur-
rently very active research filed is autonomous
passive tomography for tracking natural un-
derwater activities (tectonic motion, underwa-
ter fauna) or artificial signals (submarines).
This approach has numerous advantages but
it requires very sophisticated signal process-
ing methods for signal detection and parame-
ters estimation. We considered 6600 samples
long signal representing sound of an underwa-
ter mammal (approximately 0.14sec)1 . The
WD of this signal is shown in Figure 6a. The
WD is calculated by using the Hanning win-
dow of the length 256 samples with additional

1Signal is provided is provided by ENSIETA (Ecole
Nationale Superieure d’Ingenieurs des Etudes et Tech-
niques d’Armaments), Brest-FRANCE . It is recorded
during an underwater biological signal recording cam-
paign, organized in 2000 by GESMA (Groupe d’Etudes
Sous-Marinnes d’Atlantique) in cooperation with EN-
SIETA.
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Fig. 3. The IF estimation for the linear FM signal: a) Based on the WD maxima SNR=-4.8[dB]; b) Median filter
of length 3 applied to the IF estimate; c) Median filter of length 5 applied to the IF estimate; d) Proposed
algorithm (solid line) and WD maxima (dotted line); e) SNR=-7[dB], Thick line - proposed algorithm;
Dotted line - WD maxima; Dash-dot line - Median filter of length 5; f) SNR=-9[dB], Thick line - proposed
algorithm; Dotted line - WD maxima; Dash-dot line - Median filter of length 5.
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Fig. 4. IF estimation for the sinusoidal FM signal based on: WD maxima - dotted line; Proposed algorithm -
thick line; True IF - thin line.
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Fig. 5. IF estimation of the signal in an impulse noise environment: a) Noisy signal; b) IF estimation based
on the proposed algorithm - thick line; WD maxima - dotted line; c) Signal-adaptive distribution; d) IF
estimation based on maxima of the signal adaptive distribution.

smoothing along frequency coordinate. The
IF estimators based on the proposed algorithm
and the WD maxima are applied on this sig-
nal (Figure 6b). Dotted line represents the
WD maxima while solid line is for the pro-
posed estimator. Strong short component in
the zone around t = 0.13sec moves the IF es-
timate outside the auto-term of the useful sig-
nal. The proposed algorithm neglected this
component and tracked accurately the IF of
useful signal. In the second experiment the ar-
tificial Gaussian noise with the same variance
as the power of the original signal is added.
The WD of this signal is given in Figure 6c
while the IF estimates are given in Figure 6d.
The WD maxima based estimator is accurate
only in the range where considered signal is
very strong (t ∈ [0.04, 0.09]sec) while outside
this region it is behaves poorly. The proposed
estimator is accurate in the entire considered
interval.

D. Algorithm Application on Multicomponent

Signals and Other Time-Frequency Repre-

sentations

The algorithm can be applied, in a straight-
forward manner, on any other time-frequency
representation. Note that out of the Cohen

class of distributions, the WD produces the
best auto-term to distribution standard devi-
ation ratio for signals with varying IF [21].
This is the reason why the proposed algorithm,
based on the WD for monocomponent signals,
performs best. However, the WD exhibits very
emphatic cross-terms in the case of multicom-
ponent signals. They can make the IF estima-
tion impossible. This is the reason why distri-
butions with reduced interferences should be
used [31], [32]. Here, the weighted pseudo-
WD, known as the S-method [32], [36], [37],
will be used. It can produce the auto-terms
close to those in theWD, but with significantly
reduced cross-terms.

Algorithm for the IF estimation of the mul-
ticomponent signals can be summarized as fol-
lows.

(a) The IF estimation by using the proposed

algorithm ω̂(0)(n), i = 0. This IF corresponds
to the highest signal component.

(b) Forming a new time-frequency repre-
sentation by taking zero-values in the re-
gion around determined IF estimate [ω̂(i)(n)−
δ, ω̂(i)(n) + δ].

(c) Repeating the algorithm for this time-
frequency representation, and obtaining the
next IF estimate i = i+ 1, ω̂(i)(n). Steps (b)
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Fig. 6. IF estimation of signal produced by underwater mammal: (a) Wigner distribution of recorded signal;
(b) IF estimation of recorded signal: dotted line - WD maxima; solid line: proposed algorithm; (c) Wigner
distribution of signal embedded in artificial noise; (d) IF estimation of signal embedded in artificial noise:
dotted line - WD maxima; solid line - proposed algorithm.

and (c) should be repeated for each compo-
nent.

This procedure works well for the compo-
nents separated in the time-frequency plane.
For signal components which intersect in the
time-frequency plane, the proposed algorithm
can switch components after the crossing
point. For the illustration, consider two multi-
component signals that consist of a linear and
a sinusoidal FM signal. We assume that both
signal components have the same amplitude
A = 1. In the first example, Figures 7a,b, the
signal components are well separated, while in
the second example, Figures 7c,d, the compo-
nents intersect. In both instances we consid-
ered two cases: noiseless and noisy signal with
variance 2σ2 = 2. After the IF estimation of
the first component is performed, we neglect
the zone of five samples around it, and identify
the optimal path in the remaining part of the

time-frequency plane. In both cases we esti-
mated the IF of the signal components. In the
last example (Fig.7d), the algorithm, in the
first pass, tracks the sinusoidal FM signal and
after components intersection it follows the lin-
ear FM signal (it is depicted with solid line).
This component switching can be avoided for
signals with smooth IFs by introducing addi-
tional constraint that minimizes the first deriv-
ative of the IF estimate.

IV. S���
��
	�� A�����
�

Statistical analysis of the algorithm perfor-
mance with respect to the amount of noise,
and the considered time intervals for the IF
estimation, is presented next. We have com-
pared performance of the WD with the Born-
Jordan distribution, as basic distributions for
the proposed IF estimation algorithm.
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Fig. 7. IF estimation for the multicomponent signals: a) Nonnoisy signal with separated components; b) Noisy
signal with separated components; c) Nonnoisy signal with intersected components; b) Noisy signal with
intersected components. Thick line - First estimated signal component; Dotted line - Second component.

A. Noise Influence

Consider the linear FM signal from Exam-
ple 1 embedded in a Gaussian additive noise.
The standard deviation of noise from the range
σ ∈ [0, 3] is considered, with a step of 0.05. For
each σ we have performed 25 trials. The WD
with N = 256 samples is used. The IF esti-
mation is obtained in N = 256 instants. We
assume that the algorithm works successfully
when the resulting mean absolute error (MAE)
of the IF estimation is at least 10 times lower
than the MAE in the estimation based on the
WDmaxima. In Example 1, when PE → 1, for
the WD based estimator, 10% of the expected
MAE is approximately 9.6.

The experiment outcomes are summarized
in Table II. For σ ≤ 0.9 we did not get a single
error in the estimation based on the WD max-
ima. For σ ∈ [0.95, 1.75] we did not get a single
wrong result in the IF estimation by using the
proposed algorithm. Note that for σ = 1.75
the noise variance is equal to 2σ2 = 6.125, i.e.,
the SNR is −7.87[dB]. For σ ∈ [1.8, 1.95] we
got 23−24 trials where the proposed algorithm
produces good results. For σ ∈ [2, 2.15] al-
gorithm works successfully in 18 − 19 trials,
or 75% of trials. For σ ∈ [2.2, 2.3] algorithm
works well in 50% cases. We can conclude

that the limit for the algorithm application is
roughly σ ≈ 2.3, i.e., SNR=−10.24[dB].

As it has been mentioned earlier, this ap-
proach can be applied to any other time-
frequency representations concentrated along
the IF. The reduced interference distributions
would reduce the noise influence but, at the
same time, they would disturb the auto-term
quality [38]. Therefore, in general, behavior
of these distributions with respect to the noise
influence would not be better than in the WD
case. It is illustrated by the seventh column
in Table II, where the MAE values are given
for the case of the algorithm application to the
Born-Jordan distribution. It can be seen that
in this case algorithm preforms significantly
worse than in the case of the WD as the al-
gorithm base. Importance of the reduced in-
terference distributions application for this al-
gorithm is primarily in reduction of the cross-
terms and inner interferences as it is shown
within the examples. Detailed comparison of
various non-parametric techniques for IF esti-
mation is presented in [14]. The cross-Wigner
distribution (XWD) outperforms other tech-
niques considered in [14] in term of the noise
amount for which produces satisfactory re-
sults. In order to prove efficiency of our ap-
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procah we compared our technique with the
XWD (for details on realization of the XWD
based IF estimator please refer to [14]). The
MAE of the XWD is given in the last col-
umn of Table I. It can be seen that this tech-
nique works well for SNR≥ −5[dB] but worse
than the proposed algorithm. However, for
SNR≤ −5[dB] it cannot produce satisfactory
results while our approach produces accurate
results in each trial until SNR≈ −8[dB].

B. MAE and Interval Length

The interval of N = 256 is divided into
nonoverlapped subintervals and the algorithm
is applied on each subinterval separately. The
MAE obtained with different interval lengths
is calculated. Results for different lengths of
subintervals are given in Table III. It can be
seen that for the subinterval length of 16 in-
stants we got the error of the same order of
magnitude as for the interval of 256 instants.
Note that the memory demand significantly
decreases when narrower subintervals are used.
Namely, for the original algorithm we should
keep in memory N = 256 with 256 instants,
i.e., 65536 in total. For subinterval of length
16, one path with (256 − 16) instants and
256 paths with 16 instants, i.e., 4336 in to-
tal, should be memorized. Note that the time-
frequency representations can be memory de-
manding and any savings can be helpful. Fur-
thermore, on the shorter segment, paths with
extremely high value of the penalty function
can be neglected from further consideration,
with a very small probability to produce an
error. This is not possible for a wide segment.
In this way the calculation complexity can be
slightly reduced.

V. D
�	���
�� ��� C��	���
��
R
���"�

In this paper we have presented a new ap-
proach for the IF estimation based on the WD
(or any other time-frequency distribution) in
a high noise environment. Algorithm uses two
assumptions: the IF is placed at the position of
the time-frequency representation with a high
magnitude; and the IF is a slow-varying func-
tion. The proposed algorithm is relatively re-
sistive to the variations of its parameters. It

has been shown that the considered time inter-
val can be divided into nonoverlapped subin-
tervals without significant increase of error.
This reduces memory demand. Other possible
approaches and penalty functions are open for
further research. The algorithm can be applied
not only on the WD, but on any other time-
frequency distribution. Procedures for realiza-
tion of the proposed algorithm are presented.
Recursive, on-line realization is based on the
generalized Viterbi algorithm. The algorithm
can also be used for the IF estimation of signal
components in multicomponent signals.
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