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Instantaneous Frequency Estimation
Using The S-transform

Ervin Sejdíc, LJubiša Stanković, Miloš Dakovíc, Jin Jiang

Abstract– Instantaneous frequency (IF) is a
fundamental concept that can be found in many
disciplines such as communications, speech and
music processing. In this letter, analysis of an
IF estimator, based on a time-frequency tech-
nique known as S-transform, is performed. The
performance analysis is carried out in a white
Gaussian noise environment, and expressions
for the bias and the variance of the estimator
are determined. The results show that the bias
and the variance are signal dependent. This has
been statistically confirmed through numerical
simulations of several signal classes.

I. I������	�
��

frequency (IF), defined as the derivative of
the phase of a signal, is a fundamental concept
present not only in communications (e.g. fre-
quency modulation), but also in nature (e.g.
changing color of light) [1]. The estimation of
IF is important in signal analysis with time-
frequency analysis being one of the tools for
IF estimation [2].

The S-transform is conceptually a hybrid of
short-time Fourier analysis and wavelet analy-
sis. It employs a variable window length, but
preserves the phase information by using the
Fourier kernel in the signal decomposition [3].
As a result, the phase spectrum is absolute in
the sense that it is always referred to a fixed
time reference. The real and imaginary spec-
trum can be localized independently with reso-
lution in time in terms of basis functions. The
changes in the absolute phase of a certain fre-
quency can be tracked along the time axis and
useful information can be extracted. For this
reason, the S-transform has already found ap-
plications in many fields such as geophysics [5],
cardiovascular time series analysis [6], pattern
recognition [7], signal processing for mechani-
cal systems [8] [9] and power engineering [10].
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The IF of a noiseless signal can be deter-
mined from the phase of the signal representa-
tion obtained by the S-transform. It is given
by a partial derivative of the phase with re-
spect to time [3]. However, in previous works,
it has not been demonstrated how well the S-
transform performs when a signal is contami-
nated by noise. Hence, the main contribution
of this paper is the derivation of accurate ana-
lytical expressions for instantaneous frequency
estimation error using the S-transform. Such
an analysis is performed for signals in the pres-
ence of white Gaussian noise. Results of nu-
merical analysis confirm the derived expres-
sions.

This paper is organized as follows: In Sec-
tion II, a review of the S-transform followed
by derivations of the bias and the variance for
the IF estimation algorithm are given. Section
III illustrates the performance of the proposed
scheme through an example. Finally, conclu-
sions are drawn in Section IV.

II. P�������	� A�����
� � ���

S-�������� ����� IF ���
�����

A. S-transform

The S-transform of a signal x(t) is defined
by [3]:

Sc(t, ω;w(τ , ω)) =

= e−jωt
∫ +∞

−∞

x(t+ τ)w(τ , ω)e−jωτdτ (1)

where the window function is

w(τ , ω) =
|ω|

(2π)1.5
e−

τ2ω2

8π2 . (2)

If the discrete samples of the continuous sig-
nal are available, the integral form of the S-
transform can be discretized. By sampling (1)
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in τ with a sampling period T , a discretized
S-transform can be defined as follows1 :

Sd(t, ω;w(nT, ω)) =

= e−jωtT
∑

n

x(t+ nT )w(nT, ω)e−jωnT . (3)

Due to the fact that the window is a function of
both time and frequency, it can be noted that
the window is wider in the time domain for
lower frequencies, and narrower for higher fre-
quencies. In other words, a wide time-domain
window implies good localization in the fre-
quency domain for low frequencies, while a
narrow window provides good localization in
the time domain for higher frequencies.
In order to illustrate the advantage of

the variable window length used in the S-
transform, let us compare the time-frequency
representations obtained by the short-time
Fourier transform (STFT), pseudo Wigner-
Ville distribution (PWVD), and the S-
transform for the following signal:

x(t) =

{
e−j10π ln(−25t+1) −2 ≤ t ≤ 0
ej10π ln(25t+1) 0 < t < 2

(4)

where the IF of the signal is given by ω(t) =
250π/(25|t|+1) for−2 ≤ t < 2. This is only an
illustrative example, more thorough investiga-
tion of hyperbolic FM signals and other signal
classes will be presented in Section III.
The Gaussian window is also used for the

STFT and the PWVD, with the standard de-
viations of the window being 0.01 and 0.25, re-
spectively. The sampling interval is T = 1/256
seconds. The advantage of the S-transform as
the instantaneous frequency estimator can be
seen from Fig. 1. In order to obtain good
concentration at higher frequencies, a narrow
window in the time domain should be used
for the STFT. However, the narrow window
in the time domain significantly diminishes
the concentration of the lower frequencies con-
tents of the signal as shown in Fig. 1(b).
Even though the PWVD provides improve-
ment over the Wigner-Ville distribution and
achieves higher concentration for all frequen-
cies than the STFT, it still suffers from some

1
∑

n
≡
∑+∞

n=−∞
unless otherwise stated.

TABLE I

M��� ������ ����� �� ��� IF ���
���
�� �����

�� ��� ����� �
��-������	� �����������
���

����� ����� ��
�� ������.

TFR σ2 = 0 σ2 = 0.1 σ2 = 0.2
STFT 7.0975 7.1106 7.3632
PWVD 0.9108 0.9365 1.1525
S-transform 0.1120 0.1253 0.1403

inner interference effects and cross-terms. The
S-transform provides much better representa-
tion of the sample hyperbolic signal as shown
in Fig. 1(d).
It is also important to examine the

mean square error (MSE) of the IF estima-
tor based on the STFT, the PWVD, and
the S-transform. The MSE is defined as
E
{

(ω(t)− ω̂(t))
2
}
, where ω(t) is the IF of the

signal and ω̂ (t) is its estimate. The IF is es-
timated based on the peak of the magnitude
of each transform with the additive complex
white Gaussian noise with the total variance
of σ2 added to the signal. The MSE in Ta-
ble I represent an average of 1000 realizations.
These results demonstrate that MSE of the IF
estimator based on the S-transform is signif-
icantly lower than those based on STFT and
PWVD.

B. Performance Analysis

In order to perform a statistical analysis of
the estimator, discrete-time observations

x(nT ) = f(nT ) + ε(nT ) (5)

will be used, where n is an integer, f(nT ) is
a sampled version of a continuous analytical
signal f(t) = Aejφ(t) with T being a sampling
interval, and ε(nT ) is a complex-valued white
Gaussian noise with independent and iden-
tically distributed real and imaginary parts.
Thus, �(ε(nT )) and �(ε(nT )) ∼ N(0, σ2ε/2)
and the total variance of the noise is equal to
σ2ε .
By definition, the instantaneous frequency

of the considered continuous signal is ω(t) =
dφ(t)/dt, and it is assumed that ω(t) is an ar-
bitrary smooth differentiable function of time
with bounded derivatives

∣∣ω(r)(t)
∣∣ <∞; where
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Fig. 1. Four time-frequency representations of a sample hyperbolic signal: (a) ideal time-frequency representa-
tion; (b) STFT; (c) PWVD; (d) S-transform.

r ≥ 1 and ω(r) (t) denotes an rth derivative of
ω (t). The value of ω(t) can be estimated in
the time-frequency domain as following [2] [11]
[12]:

ω̂(t) = arg

[
max
ω∈Qω

Λ(t, ω)

]
(6)

with Qω = {ω : 0 ≤ ω ≤ π/T} being a basic
interval along the frequency axis, and where

Λ(t, ω) = SdS
∗

d =

= T 2
∑

n1

∑

n2

x(t+ n1T )x∗(t+ n2T )

×w(n1T, ω)w∗(n2T, ω)e−jω(n1−n2)T . (7)

Before proceeding further, let’s consider
Λ(t, ω) for some signal f(t). Using the
fact that the signal has a slow-varying am-
plitude and Taylor series expansion of the
phase differences f(t + n1T )f∗(t + n2T ) =
A2ejφ(t+n1T )−jφ(t+n2T ), Λ(t, ω) of f(t) can be
expressed as

Λ(t, ω) =

= T 2
∑

n1

∑

n2

A2ejΦ(n1T,n2T,t)+j∆φ(n1T,n2T,t)

×w(n1T, ω)w∗(n2T, ω)e−jω(n1−n2)T (8)

where Φ(n1T, n2T, t) equals the Taylor series
expansion of the phase difference evaluated
for the first M desired terms, that is, k =
0, 1, . . . ,M ,

Φ(n1T, n2T, t) =
M∑

k=0

φ(k)(t) (n1T )
k
−(n2T )

k

k!

(9)
and ∆φ(n1T, n2T, t) equals the Taylor series
expansion of the phase difference evaluated for
k = M + 1,M + 2, . . . ,∞:

∆φ(n1T, n2T, t) =
∞∑

k=M+1

φ(k)(t) (n1T )
k
−(n2T )

k

k!

(10)

with φ(k)(t) representing a kth derivative of
φ(t). In this paper, ∆φ(n1T, n2T, t) represents
the third and higher order terms, i.e., M = 2.
As a measure of the quality of estimation,

at a given instant t, the estimation error can
be defined as

�ω̂(t) = ω(t)− ω̂(t) (11)

where ω(t) is the IF of the signal and ω̂(t) is its
estimate from the noisy observations of the sig-
nal. Due to the presence of the white Gaussian
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noise, the estimation error, �ω̂(t), is also a
random variable characterized by its bias and
variance.
Proposition: Let ω̂(t) be a solution of (6),

then the bias and the variance of the IF esti-
mation error �ω̂(t) are given by

bias (�ω̂(t)) =
2 Re {P (t, ω)E(t, ω)}

4π2T−1ω−2E(t, ω)− |P (t, ω)|
2

+
Re {Q(t, ω)F (t, ω)}+ (8T )−1A−2π−3/2σ2

4π2T−1ω−2E(t, ω)− |P (t, ω)|2

(12)

and

var (�ω̂(t)) =

×
2σ2 Re {P (t, ω)E(t, ω)}

16π3/2TA2
[
|P (t, ω)|2 − 4π2T−1

ω2 E(t, ω)
]2

+
σ2
(

2ω |P (t, ω)|2 + 1.5+4π2

ω |E(t, ω)|
2
)

16π3/2TA2
[
|P (t, ω)|

2 − 4π2T−1

ω2 E(t, ω)
]2

+
σ4
(
1 + π2

)

16π3T 2A4
[
|P (t, ω)|2 − 4π2T−1

ω2 E(t, ω)
]2

(13)

where

E(t, ω) =
∑

n

e−jφ
(2)(t) (nT )

2

2 w(nT, ω) (14)

F (t, ω) =
∑

n

e−jφ
(2)(t) (nT )

2

2 −j∆φ(nT,t)w(nT, ω)

(15)

P (t, ω) =
∑

n

ejφ
(2)(t) (nT )

2

2
∂w(nT, ω)

∂ω

−
∑

n

ejφ
(2)(t) (nT )

2

2 jnTw(nT, ω) (16)

Q(t, ω) =
∑

n

ejφ
(2)(t) (nT )

2

2 +j∆φ(nT,t) ∂w(nT,ω)

∂ω

+
∑

n

ejφ
(2)(t) (nT )

2

2 +j∆φ(nT,t) (−jnTw(nT, ω))

(17)

with ω = φ(1)(t).

Proof: The IF is located at the stationary
points of Λ(t, ω), which is defined by the zero
value of the derivative ∂Λ(t, ω)/∂ω, given by

∂Λ(t, ω)

∂ω
=

jT 2
∑

n1

∑

n2

x(t+ n1T )x(t+ n2T )(n2 − n1)

×Tw(n1T, ω)w∗(n2T, ω)e−jω(n1−n2)T

+T 2
∑

n1

∑

n2

x(t+ n1T )x(t+ n2T )
∂w(n1T, ω)

∂ω

×w∗(n2T, ω)e−jω(n1−n2)T

+T 2
∑

n1

∑

n2

x(t+ n1T )x(t+ n2T )w(n1T, ω)

×
∂w∗(n2T, ω)

∂ω
e−jω(n1−n2)T (18)

To perform the estimation error analysis,
∂Λ(t, ω)/∂ω is linearized around the station-
ary point with respect to small estimation er-
ror �ω̂(t), phase residue �φ, and noise ε [2]
[11] [12]:

∂Λ(t, ω)

∂ω
|0 +

∂2Λ(t, ω)

∂ω2
|0 � ω̂(t)

+
∂Λ(t, ω)

∂ω
|0δ�φ

+
∂Λ(t, ω)

∂ω
|0δε = 0 (19)

where |0 indicates that the derivatives are
evaluated at the point ω = φ′(t), �φ = 0,
and ε = 0. The terms ∂Λ(t, ω)

/
∂ω|0δ�φ

and ∂Λ(t, ω) /∂ω|0δε represent variations of
the derivative ∂Λ(t, ω) /∂ω caused by small
∆φ(n1T, n2T, t) and noise ε(nT ), respectively.
It can be shown that the terms in (19) are
equal to

∂Λ(t, ω)

∂ω
|0 = 2T 2A2�{P (t, ω)E(t, ω)} (20)

∂2Λ(t, ω)

∂ω2
|0 =

2TA2

ω2

[
Tω2 |P (t, ω)|

2
− 4π2E(t, ω)

]
(21)

Similarly, the effects of a phase residue, that
is, third and higher order terms in a Taylor
expansion of the phase φ(t), are given by

∂Λ(t, ω)

∂ω
|0δ�φ

= 2T 2A2�{Q(t, ω)F (t, ω)}

(22)
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The expected value of the last term in (19) is
given by

E

{
∂Λ(t, ω)

∂ω
|0δε

}
=
∂Λ(t, ω)

∂ω
|0 +

σ2T

4π3/2
(23)

and the expected value of its square is given
by

E

{(
∂Λ(t, ω)

∂ω
|0δε

)2}

=

(
∂Λ(t, ω)

∂ω
|0

)2
+

+
3T 2σ4

32π3
+
T 3σ2A2ω

2π3/2
|P (t, ω)|

2

+
2T 3σ2

(
3 + 8π2

)
A2

8π3/2ω
|E(t, ω)|2

+
12T 3A2σ2

8π3/2
Re {P (t, ω)E(t, ω)}

+
T 2σ4

(
3 + 8π2

)

32π3
(24)

Having obtained the expressions for all the
terms in (19), it can be written as

�ω̂(t) =

−∂Λ(t,ω)
∂ω |0 −

∂Λ(t,ω)
∂ω |0δ�φ

− ∂Λ(t,ω)
∂ω |0δε

∂2Λ(t,ω)
∂ω2 |0

. (25)

By substituting (20)-(23) in (25), an expres-
sion for the bias of the estimation is obtained
as:

bias (�ω̂(t)) =
2 Re {P (t, ω)E(t, ω)}

4π2T−1ω−2E(t, ω)− |P (t, ω)|2

+
Re {Q(t, ω)F (t, ω)}+ (8T )−1A−2π−3/2σ2

4π2T−1ω−2E(t, ω)− |P (t, ω)|2

(26)

which is equal to (12). To determine the vari-
ance of the estimation, the following relation
is used:

var (�ω̂(t)) = E
{

[�ω̂(t)]2
}
−E2 {�ω̂(t)}

(27)
The equations (25) and (26) are substituted in
(27), and after some algebraic manipulations,
the following expression is obtained:

var (�ω̂(t)) =

=

E

{(
∂Λ(t,ω)
∂ω |0δε

)2}
−E

{
∂Λ(t,ω)
∂ω |0δε

}2

(
∂2Λ(t,ω)
∂ω2 |0

)2

=
2σ2 Re {P (t, ω)E(t, ω)}

16π3/2TA2
[
|P (t, ω)|2 − 4π2T−1

ω2 E(t, ω)
]2

+
σ2
(

2ω |P (t, ω)|2 + 1.5+4π2

ω |E(t, ω)|
2
)

16π3/2TA2
[
|P (t, ω)|2 − 4π2T−1

ω2 E(t, ω)
]2

+
σ4
(
1 + π2

)

16π3T 2A4
[
|P (t, ω)|2 − 4π2T−1

ω2 E(t, ω)
]2

(28)

It is clear that (28) is equal to (13).

III. E������

In the analysis, three classes of signals are
used. A simple complex sinusoidal (CS) signal
f1(t) = exp (jωt), a linear FM (LFM) signal
f2(t) = exp

(
j80πt+ j α2 t

2
)
and a hyperbolic

FM (HFM) signal f3(t) = exp (jβ ln(t+ 1))
are considered. The sampling interval used is
T = 1/256 with 2048 data points, and the
variance of the noise used in the analysis is
set to σ2ε = 0.1. The results of the numeri-
cal analysis along with the theoretical values
are depicted in Fig. 2, and they represent
the bias and the variance for S(1, ω). Values
from the analytical expressions are produced
by applying the derived expressions (12) and
(13) for the particular signals, while the sta-
tistical data are obtained by 100000 realiza-
tions. The vertical axis represents the mag-
nitude of the estimation bias and variance,
while the horizontal axis represents the values
of variables (ω, α and β) normalized with the
Nyquist frequency for the sampling interval T
(ωn = ωT/π, αn = αT/π and βn = βT/π).
A good agreement between the theoretical

results (dashed line) and the statistical results
(solid line) can be observed. For all three
classes of the signals as the frequency of the
signals increases, the variance of the of the IF
estimation error increases too. For the com-
plex sinusoids, the variance exhibits linear be-
haviour, while for the rest the variance be-
haves in a nonlinear manner. The bias lin-
early increases for the complex sinusoids and
the LFM signals. However, as β increases the
bias linearly decreases for the HFM signals
due to the fact that the S-transform achieves
higher energy concentration of the signal for
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Fig. 2. Performance of IF estimator using the S-transform: (a) the bias of the estimator for CS signal; (b) the
variance of the estimator for CS signal; (c) the bias of the estimator for the LFM signal; (d) the variance of
the estimator for the LFM signal; (e) the bias of the estimator for the HFM signal; and (f) the variance of
the estimator for the HFM signal.

the given sampling interval. Hence, the peak
location, that is, the instantaneous frequency,
is estimated more accurately. This essentially
means that a linear time-frequency representa-
tion such as the S-transform could be poten-
tially used for accurate estimation of the in-
stantaneous frequency for certain higher order
signals which previously has been only accom-
plished with bilinear representations.

IV. C��	���
��

In this paper, the analysis of an IF estima-
tion based on the S-transform has been per-
formed. Such an analysis has been carried out
for signals in the presence of white Gaussian
noise. Accurate analytical expressions for in-
stantaneous frequency estimation error using
the S-transform have been derived. These ex-
pressions have been confirmed through numer-
ical analysis. Furthermore, the analysis has
shown that the bias and the variance are signal
dependent. For the considered signal classes,
the S-transform showed favorable performance
for the HFM signals.

A	!��"���#����

Ervin Sejdíc is grateful to Professor Ser-
guei Primak from the Department of Electrical
and Computer Engineering at the University
of Western Ontario for his valuable comments.

R�����	��

[1] B. Boashash, “Estimating and interpreting the in-
stantaneous frequency of a signal - part 1: Fun-
damentals,” Proceedings of the IEEE, vol. 80,
pp. 520—538, Apr. 1992.

[2] V. N. Ivanovíc, M. Dakovíc, and LJ. Stankovíc,
“Performance of quadratic time-frequency distri-
butions as instantaneous frequency estimators,”
IEEE Transactions on Signal Processing, vol. 51,
pp. 77—89, Jan. 2003.

[3] R. G. Stockwell, L. Mansinha, and R. P.
Lowe, “Localization of the complex spectrum:
The S-transform,” IEEE Transactions on Signal
Processing, vol. 44, pp. 998—1001, Apr. 1996.

[4] S. Theophanis and J. Queen, “Color display of
the localized spectrum,” Geophysics, vol. 65,
pp. 1330—1340, July/Aug. 2000.

[5] C. R. Pinnegar and L. Mansinha, “The S-
transform with windows of arbitrary and vary-
ing shape,” Geophysics, vol. 68, pp. 381—385,
Jan./Feb. 2003.

[6] G. Livanos, N. Ranganathan, and J. Jiang, “Heart
sound analysis using the S-transform,” in Com-



622 TIME-FREQUENCY SIGNAL ANALYSIS

puters in Cardiology 2000, (Cambridge, MA),
pp. 587—590, Sept. 24—27, 2000.

[7] E. Sejdíc and J. Jiang, “Selective regional cor-
relation for pattern recognition,” IEEE Transac-
tions on Systems, Man and Cybernetics - Part A,
vol. 37, pp. 82—93, Jan. 2007.

[8] P. D. McFadden, J. G. Cook, and L. M. Forster,
“Decomposition of gear vibration signals by the
generalized S-transform,” Mechanical Systems
and Signal Processing, vol. 13, pp. 691—707, Sept.
1999.

[9] A. G. Rehorn, E. Sejdíc, and J. Jiang, “Fault
diagnosis in machine tools using selective re-
gional correlation,” Mechanical Systems and Sig-
nal Processing, vol. 20, pp. 1221—1238, July 2006.

[10] P. K. Dash, B. K. Panigrahi, and G. Panda,
“Power quality analysis using S-transform,” IEEE
Transactions on Power Delivery, vol. 18, pp. 406—
411, Apr. 2003.

[11] V. Katkovnik and LJ. Stankovíc, “Instantaneous
frequency estimation using the Wigner distri-
bution with varying and data-driven window
length,” IEEE Transactions on Signal Process-
ing, vol. 46, pp. 2315—2326, Sept. 1998.

[12] LJ. Stankovíc, V. N. Ivanovíc, and M. Dakovíc,
“Performance of spectrogram as IF estimator,”
Electronics Letters, vol. 37, pp. 797—799, June
2001.


