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Abstract– Instantaneous frequency (IF) esti-
mation through the estimation of peak loca-
tions in the time-frequency plane is an impor-
tant approach for signals contaminated with ad-
ditive white Gaussian noise. In this paper, the
forementioned analysis is carried out for con-
tinuous wavelet transform. The analysis of the
scalogram as the instantaneous frequency esti-
mator is performed for any FM signal regard-
less of the mother wavelet. Accurate expres-
sions for the bias and the variance of the es-
timator are derived, and reveal that the bias
and the variance are signal dependent. Results
are statistically confirmed through the numer-
ical analysis for several mother wavelets, and
among considered wavelets, the Morlet wavelet
produces the smallest estimation error. Fur-
thermore, the performance of the IF estimator
based on the scalogram and the spectrogram
were compared through analysis of mean square
error. These results showed that the scalogram
with the Morlet wavelet exhibited good perfor-
mance for the sample linear FM signal and the
sample hyperbolic FM signal in comparison to
the spectrogram.

I. I������	�
��

Instantaneous frequency, usually defined as
the derivative of the phase of a signal, is a
fundamental concept present not only in com-
munications (e.g. frequency modulation), but
is also present in nature (e.g. changing color of
light) [1], [2]. There are several approaches for
the instantaneous frequency estimation, and
extensive review of the topics is presented in
[2], [3]. Some of these methods are parametric
and some are nonparametric. In general, para-
metric methods use a signal model, and the
goal is to estimate some parameters in order
to obtain an estimate of the instantaneous fre-
quency. Nonparametric methods on the other
hand, do not require full knowledge of the sig-
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nal and the time-frequency based approach is
one of them. Originally, the basis for using the
time-frequency distributions for the instanta-
neous frequency estimation is their first mo-
ment property [2], [4], [5]. However, the pres-
ence of noise leads to serious degradation of the
first moment estimate [6]. As a consequence,
the peak detection of time-frequency distrib-
ution is used instead and it is based on the
detection of distribution peak positions.

Wavelet transform is a mathematical tech-
nique which decomposes a signal into both
time and scale [7]. The transform uses specific
analyzing functions, called wavelets, for the
signal’s decomposition, and the main property
of these analyzing functions is that they are lo-
calized in time [8]. The scale decomposition is
obtained by dilating or contracting the chosen
analyzing wavelet before convolving it with the
signal [9]. The parameter scale in the wavelet
analysis is similar to the scale used in maps.
As in the case of maps, high scales correspond
to a non-detailed global view (of the signal),
and low scales correspond to a detailed view.
Similarly, in terms of frequency, low frequen-
cies (high scales) correspond to global informa-
tion of a signal (that usually spans the entire
signal), whereas high frequencies (low scales)
correspond to detailed information of the hid-
den pattern in a signal (that usually lasts a
relatively short time). The limited time sup-
port of wavelets is important because then the
behavior of the signal at infinity does not have
a role. Therefore the wavelet analysis or syn-
thesis can be performed locally on the signal,
as opposed to the Fourier transform which is
inherently nonlocal due to the space-filling na-
ture of the trigonometric functions [10]. In ad-
dition, the wavelet transform has been applied



624 TIME-FREQUENCY SIGNAL ANALYSIS

in many different fields, such as biomedical ap-
plications [11], pattern recognition [12], power
quality analysis [13], and computer graphics
[14], to name a few.

The instantaneous frequency estimation
based on the wavelet analysis was previously
considered in several publications [15]-[20].
These works rely on the idea presented in [15],
where an asymptotic approximation of the
continuous wavelet transform using stationary
phase approximation is considered. The au-
thors showed that this asymptotic approxima-
tion can be used for the extraction of some
characteristics of the analyzed signal, such as
frequency and amplitude modulation laws. In
order to estimate the instantaneous frequency
of a signal, a so called ridge is used, which
is essentially a peak in the time-frequency do-
main [16], [17]. For such an asymptotic ap-
proximation of the continuous wavelet trans-
form, Cramer-Rao bounds for the instanta-
neous frequency variance at each time instant
for the Morlet mother wavelet are investigated
in [20]. The results depicted that in a spe-
cific case of the continuous wavelet transform
with the Morlet mother wavelet, the transform
achieved a performance close to the Cramer-
Rao bounds especially at a low signal-to-noise
ratio. The instantaneous frequency estima-
tion from the phase of the continuous wavelet
transform is also considered [18]. However, the
results showed to be very unstable in practi-
cal situations when a signal is contaminated
with noise. However, in all these works no at-
tempts have been made to provide a general
framework for the analysis of the scalogram
as an instantaneous frequency estimator. Fur-
thermore, the existing works usually only con-
sidered the behaviour of the Morlet wavelet.

The main contribution in this paper is a gen-
eral analysis of the scalogram as the instanta-
neous frequency estimator for any FM signal.
Expressions for bias and variance of such an
estimator are derived regardless of the mother
wavelet used in the analysis. These theoretical
results are compared with the statistical data,
i.e., the results of numerical analysis and high
agreement between them is noticed. In ad-
dition, performances of the instantaneous fre-
quency estimator based on the scalogram and

spectrogram are compared through the magni-
tude of mean square errors. It is important to
point out that the analysis of the scalogram
based estimator is carried out based on de-
termining the direct relationship between the
scale and (Fourier) frequency for the mother
wavelet. This is an important difference in
comparison to the previous works, which as-
sumed that the ridge actually corresponded to
the IF of the signal, which is not necessarily
the case.

This paper is organized as follows: In the
next section a brief review of the wavelet trans-
form is provided. Section III illustrates the
performance of the instantaneous frequency
estimator based on the wavelet transform,
with in depth analysis of the bias and the
variance of the estimation. In Section III-
B bias and variance of the estimation error
are derived for several commonly used mother
wavelets. The obtained results are checked nu-
merically and statistically in Section IV. Fi-
nally, conclusions are drawn in Section V.

II. B�	
������ T�����

A. Wavelet transform

The continuous wavelet transform (CWT)
correlates the signal with families of waveforms
that are well concentrated in time and fre-
quency, and these families of waveforms are ob-
tained by the dilations and translations of an
analyzing wavelet, ψ (t). Therefore, the CWT
of a continuous signal x(t) is defined as [7], [8],
[10]:

CWTc(t, s) =

+∞∫

−∞

x(u)
1√
s
ψ∗
(

u− t

s

)
du (1)

with ψ (t) being the mother wavelet function,
ψ ∈ L2(R), where the mother wavelet satisfies
the following condition

∫ +∞

−∞
ψ (t) dt = 0. (2)

If u− t = τ and

Ψ(t, s) =
1√
s
ψ

(
t

s

)
(3)
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are substituted in (1), then the CWT can be
rewritten as:

CWTc(t, s) =

+∞∫

−∞

x(t+ τ)Ψ∗(τ , s)dτ. (4)

In order to accurately relate the scale to the
frequency, more precise relationships between
the scale and the frequency were derived [21]-
[23]. In particular, it has been shown that for
a simple complex sinusoid, a relationship be-
tween the scale and the (Fourier) frequency
can be found, so that the scale is a function of
the frequency [21], [22], that is,

s = f(ω) (5)

and derivations for a general case are shown in
Appendix A. Inherently, this relationship pro-
duces a time-frequency representation which is
an unbiased estimator of the frequency for the
simple sinusoids for non-noisy signals. Using
the mentioned relationship the CWT can be
rewritten as

CWTc(t, ω) =

+∞∫

−∞

x(t+ τ)Ψ∗(τ , ω)dτ. (6)

The continuous wavelet transform of the dis-
crete sequence x(nT ), sampled with a period T
in τ , is defined as a convolution of the discrete
sequence with a scaled and translated version
of ψ (nT ):

CWTd(t, ω) = T
∑

n

x(t+nT )Ψ∗(nT, ω). (7)

In the analysis using the short time Fourier
transform, a spectrogram is defined as the
square of amplitude of the time-frequency
transformation of the signal, i.e., it is a
time-frequency energy density function [4].
Similarly, in the wavelet analysis, the time-
frequency energy density representation ob-
tained by the wavelet transform is called scalo-
gram, and it is defined as the square of ampli-
tude of the wavelet transform:

W (t, ω) = CWTd(t, ω)CWT ∗d (t, ω) =

= T 2
∑

n1

∑

n2

{x(t+ n1T )x
∗(t+ n2T )∗

∗Ψ∗(n1T, ω)Ψ(n2T,ω)} . (8)

B. Scalogram and IF estimation

Consider noisy discrete-time observations

x(nT ) = f(nT ) + ε(nT ) (9)

where f(nT ) is a sampled version of the con-
tinuous signal f(t) = Aejφ(t) with T being
a sampling interval, and ε(nT ) is a complex-
valued white Gaussian noise with i.i.d. real
and imaginary parts. Thus, Re (ε(nT )) and
Im (ε(nT )) are N (′, σ∈/∈), and the total vari-
ance of the noise is equal to σ2ε . By definition,
the instantaneous frequency of the considered
signal is ω(t) = dφ(t)/dt. It should be as-
sumed that ω(t) is an arbitrary smooth differ-
entiable function of time with bounded deriv-
atives

∣∣ω(r)(t)
∣∣ =

∣∣∣φ(r)(t)
∣∣∣ ≤Mr(t), r ≥ 1.

The value of ω(t) can be estimated in the
time-frequency plane as following [2], [6], [24]:

ω̂(t) = arg

[
max
ω∈Qω

W (t, ω)

]
(10)

with Qω = {ω : 0 ≤ ω ≤ π/T} being a basic
interval along the frequency axis. Before pro-
ceeding further, W (t, ω) for the signal f(t)
should be considered. Using the fact that the
signal has a slow-varying amplitude and Taylor
series expansion of the phase differences f(t+
n1T )f

∗(t + n2T ) = A2ejφ(t+n1T )−jφ(t+n2T ),
W (t, ω) can be expressed as

W (t, ω) =

= T 2
∑

n1

∑

n2

{
A2ejΦ(n1T,n2T,t)+j∆φ(n1T,n2T,t)∗

∗Ψ∗(n1T, ω)Ψ(n2T, ω)} (11)

where Φ(n1T, n2T, t) represents the Taylor se-
ries approximation of the phase with first M
terms, that is, k = 0, . . . ,M ,

Φ(n1T, n2T, t) ≈
M∑

k=0

φ(k)(t)
(n1T )

k − (n2T )
k

k!

(12)
and

∆φ(n1T, n2T, t) =

∞∑

k=M+1

φ(k)(t)
(n1T )k − (n2T )k

k!
, (13)
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where ∆φ(n1T, n2T, t) represents a residue of
the phase. Usually ∆φ(n1T,n2T, t) represents
the third and higher order terms. The esti-
mation error, that is, the difference between
ω(t) and estimated peak frequencies, at a time-
instant, t, is defined as

�ω̂(t) = ω(t)− ω̂(t) (14)

and due to the presence of the white Gaussian
noise, the estimation error, �ω̂(t), can be con-
sidered to be a random variable as well, char-
acterized by its bias and variance.

III. P��������	� A�����
� �� ��� IF

���
�����

The estimate of the IF, ω̂(t), is defined by
the stationary point of W (t, ω) [25]. It can be
found by setting the derivative ∂W (t, ω) /∂ω
to zero, that is, ∂W (t, ω) /∂ω = 0 , where

∂W (t, ω)

∂ω
=

= T 2
∑

n1

∑

n2

{x(t+ n1T )x
∗(t+ n2T )∗

∗
[
∂Ψ∗(n1T, ω)

∂ω
Ψ(n2T,ω)+

+Ψ∗(n1T, ω)
∂Ψ(n2T, ω)

∂ω

]}
. (15)

In order to perform the estimation error analy-
sis, we linearize ∂W (t, ω)/∂ω around the sta-
tionary point with respect to small estimation
error�ω̂(t), phase residue�φ and noise ε [25]-
[32]:

∂W(t, ω)

∂ω
|0 +

∂2W (t, ω)

∂ω2
|0 � ω̂(t)+

+
∂W(t, ω)

∂ω
|0δ�φ

+
∂W (t, ω)

∂ω
|0δε = 0 (16)

where |0 indicates that the derivatives are cal-

culated at the point ω = φ(1)(t), �φ = 0,
and ε = 0. The terms ∂W (t, ω)

/
∂ω|0δ�φ

and ∂W (t, ω) /∂ω|0δε represent variations of
the derivative ∂W (t, ω) /∂ω caused by small
∆φ(n1T, n2T, t) and noise ε(nT ), respectively
[27].

The terms from (16) are defined as [26]:

∂W (t, ω)

∂ω
|0 = 2T 2A2Re {P (t, ω)E(t, ω)}

(17)
∂2W (t, ω)

∂ω2
|0 =

= −2T 2A2
[
R(t, ω)E(t, ω)− |P (t, ω)|2

]
(18)

∂W (t, ω)

∂ω
|0δ�φ

= 2T 2A2Re {Q(t)F (t)} (19)

whereas ∂W (t, ω) /∂ω|0δε will be given sepa-
rately. The functions E(t, ω), F (t, ω), P (t, ω),
Q(t, ω), and R(t, ω) are also calculated at the

point ω = φ(1)(t) and are defined by

E(t, ω) =
∑

n

e−jωnTΨ(nT, ω) (20)

F (t, ω) =
∑

n

e−jωnT−j∆φ(nT,t)Ψ(nT, ω)

(21)

P (t, ω) =
∑

n

ejωnT+jφ
(2)(t) (nT )

2

2
∂Ψ∗(nT, ω)

∂ω

(22)

Q(t, ω) =
∑

n

{
ejωnT+jφ

(2)(t) (nT )
2

2 +j∆φ(nT,t)

×∂Ψ∗(nT, ω)

∂ω

}
(23)

R(t, ω) =
∑

n

ejωnT
∂2Ψ∗(nT, ω)

∂ω2
(24)

where for M = 2, the approximation

ej
∑2

k=0 φ
(k)(t) (nT )

k

k! ∼=

∼= ej(φ(t)+φ
(1)(t)(nT ))

(
1 + jφ(2)(t)

(nT )2

2

)

(25)
is used to simplify the above expression.

A. IF Estimation Bias and Variance

Using the derived equations (17)-(19), the
equation (16) is rewritten in a general form as
(eq. 26)
Theorem III.1: Let ω̂(t) be a solution of

(10) and T → 0, then the bias of the IF es-
timation error �ω̂(t) is given by eq. 27
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�ω̂(t) =
2T 2A2Re {P (t, ω)E(t, ω)}+ 2T 2A2Re {Q(t, ω)F (t, ω)}+ ∂W(t,ω)

∂ω |0δε
2T 2A2

[
R(t, ω)E(t, ω)− |P (t, ω)|2

] . (26)

bias (�ω̂(t)) =
4T 2A2Re {P (t, ω)E(t, ω)}+ 2T 2A2Re {Q(t, ω)F (t, ω)}+ σ2T 2 (B1 +B2)

2T 2A2
[
R(t, ω)E(t, ω)− |P (t, ω)|2

]

(27)

where

B1 =
∑

n

∂Ψ∗(nT,ω)

∂ω
Ψ(nT,ω) (28)

B2 =
∑

n

Ψ∗(nT, ω)
∂Ψ(nT, ω)

∂ω
. (29)

Proof: The general expression of the estima-
tion error is given by (26), and the only ran-
dom term is ∂W (t, ω) /∂ω|0δε . Therefore, the
expected value of the estimation error, that is,
the bias is given by eq. 30

The expected value of ∂W (t, ω) /∂ω|0δε is
given by eq. 31which results in

The above equation is equal to (27), which
proves the second part of the theorem. �
Special Case: A linear FM signal f(t) =

Aej
a
2 t

2

corrupted by a stationary, complex, ad-
ditive, white Gaussian noise yields the IF bias:

bias (�ω̂(t)) =

=
6A2Re {P (t, ω)E(t, ω)}+ σ2 (B1 +B2)

2A2
[
R(t, ω)E(t, ω)− |P (t, ω)|2

]

(33)
since ∆φ(n1T, n2T, t) = 0 resulting in varia-
tions of the derivative ∂W (t, ω) /∂ω caused by
small ∆φ(n1T, n2T, t) being equal to (17).
Theorem III.2: Let ω̂(t) be a solution of

(10) and T → 0, then the variance of the IF
estimation error �ω̂(t) is given by where

B3 =
∑

n

∂Ψ∗(nT, ω)

∂ω

∂Ψ(nT, ω)

∂ω
(35)

B4 =
∑

n

Ψ(nT, ω)Ψ∗(nT, ω) (36)

Ω(t, ω) =

= T 4σ2 (4B1 + 2B2)P (t, ω)E(t, ω)+

+T 4σ2 (2B1 + 4B2)E
∗(t)P ∗(t)

+2T 4σ2B4 |P (t, ω)|2 + 2T 4σ2B3 |E(t, ω)|2

−4σ2T 4A2Re {P (t, ω)E(t, ω)} (B1 +B2) .
(37)

Proof: By definition, the variance is given
by

var (�ω̂(t)) = E
{
(�ω̂(t))2

}
−E {�ω̂(t)}2

(38)
where the first term is equal to eq. 39, and the
second term is equal to eq. 40. By simple al-
gebraic manipulation of the above equations,
the variance can be written as eq 41. It can be
shown that eq 42. By substituting the above
equation in the previous equation, we will ob-
tain the expression for variance given by (34).
�

B. IF Estimation With Specific Wavelets

The expressions for the bias and the vari-
ance in the case of any wavelet may be ob-
tained as special cases of (27) and (34). Let us
write these expressions for several important
mother wavelets given by:
• a Mexican hat [7]:

ψ(t) =
2

π1/4
√
3ζ

(
t2

ζ2
− 1

)
exp

(
− t2

2ζ2

)

(43)
where ζ = 1;
• a modified Morlet wavelet [10]:

ψ(t) =
1√
2π

exp(jηt− t2/2) (44)

where η = π
√
2/ ln(2);

• a Cauchy wavelet [9]:

ψ(t) =
1

2π

1

(1− jt)2
. (45)

Using the procedure outlined in Appendix
A, the scale to frequency relations for the three
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E {�ω̂(t)} =
2T 2A2Re {P (t, ω)E(t, ω)}+ 2T 2A2Re {Q(t, ω)F (t, ω)}+E

{
∂W (t,ω)
∂ω |0δε

}

2T 2A2
[
R(t, ω)E(t, ω)− |P (t, ω)|2

] .

(30)

E

{
∂W (t, ω)

∂ω
|0δε
}

= E

{

T 2
∑

n1

∑

n2

x(n1T + t)x∗(n2T + t)
∂Ψ∗(n1T, ω)

∂ω
Ψ(n2T, ω)

}

+E

{

T 2
∑

n1

∑

n2

x(n1T + t)x∗(n2T + t)Ψ∗(n1T, ω)
∂Ψ(n2T, ω)

∂ω

}

= T 2
∑

n1

∑

n2

A2ejΦ(n1T,n2T,t)

×
[
∂Ψ∗(n1T,ω)

∂ω
Ψ(n2T, ω) + Ψ∗(n1T,ω)

∂Ψ(n2T, ω)

∂ω

]

+ T 2σ2
∑

n

[
∂Ψ∗(nT, ω)

∂ω
Ψ(nT, ω) + Ψ∗(nT, ω)

∂Ψ(nT, ω)

∂ω

]

=
∂W (t, ω)

∂ω
|0 + σ2T 2 (B1 +B2) (31)

E {�ω̂(t)} = 4T 2A2Re {P (t, ω)E(t, ω)}+ 2T 2A2Re {Q(t, ω)F (t, ω)}+ σ2T 2 (B1 +B2)

2T 2A2
[
R(t, ω)E(t, ω)− |P (t, ω)|2

] .

(32)

TABLE I

S	��� �� �������	� �����
����
�� ��� ���

	���
����� ��������.

Wavelet Relation

Mexican hat s =
√
10

2ζω

Morlet s =
η+
√
η2+2

2ω
Cauchy s = 3

2ω

considered wavelets are summarized in Table
I.

Before proceeding further on, it is worth-
while to closely examine terms B1 and B2. As

T → 0, we have

TB1 →
∫ +∞

−∞

∂Ψ∗(τ , ω)

∂ω
Ψ(τ , ω)dτ (46)

TB2 →
∫ +∞

−∞
Ψ∗(τ , ω)

∂Ψ(τ , ω)

∂ω
dτ (47)

and for the three considered wavelets, it can
be shown that

B1 = B2 = 0. (48)

Since the considered wavelets are Hermitian
functions, it is also straightforward to show
that B1 is a complex conjugate of B2, that is,
B1 = B∗

2 . Hence, for any wavelets that are
Hermitian functions, it is sufficient to find one
of the values.

var (�ω̂(t)) =
Ω(t, ω) + T 4σ4B2

1 + 4T 4σ4B1B2 + 2T 4σ4B3B4 + T 4σ4B2
2

4T 4A4
[
R(t, ω)E(t, ω)− |P (t, ω)|2

]2 (34)
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Therefore, the bias and variance of estima-
tion error are equal to

bias (�ω̂(t)) =

=
2Re {P (t, ω)E(t, ω)}+Re {Q(t, ω)F (t, ω)}[

R(t, ω)E(t, ω)− |P (t, ω)|2
]

(49)

var (�ω̂(t)) =

=
σ2B4 |P (t, ω)|2 + σ2B3 |E(t, ω)|2 + σ4B3B4

2A4
[
R(t, ω)E(t, ω)− |P (t, ω)|2

]2 .

(50)
Similarly, as for B1 and B2, we can find values
for B3 and B4 as T → 0 and these are summa-
rized in Table II. It is clear that B3 ∼ 1

/
Tω2 ,

while B4 ∼ 1 /T for the three considered
wavelets.

E
{
(�ω̂(t))

2
}
=

[(
∂W (t, ω)

∂ω
|0
)2

+

(
∂W (t, ω)

∂ω
|0δ�φ

)2
+E

{(
∂W (t, ω)

∂ω
|0δε
)2}

+ 2
∂W(t, ω)

∂ω
|0

∂W (t, ω)

∂ω
|0δ�φ

+ 2
∂W(t, ω)

∂ω
|0E

{
∂W (t, ω)

∂ω
|0δε
}

+ 2
∂W (t, ω)

∂ω
|0δ�φ

E

{
∂W (t, ω)

∂ω
|0δε
}]/(

∂2W(t, ω)

∂ω2
|0
)2

(39)

E {�ω̂(t)}2 =
[(

∂W (t, ω)

∂ω
|0
)2

+

(
∂W (t, ω)

∂ω
|0δ�φ

)2
+E

{
∂W (t, ω)

∂ω
|0δε
}2

+ 2
∂W (t, ω)

∂ω
|0

∂W (t, ω)

∂ω
|0δ�φ

+ 2
∂W (t, ω)

∂ω
|0E

{
∂W (t, ω)

∂ω
|0δε
}

+ 2
∂W (t, ω)

∂ω
|0δ�φ

E

{
∂W (t, ω)

∂ω
|0δε
}]/(

∂2W (t, ω)

∂ω2
|0
)2

. (40)

var (�ω̂(t)) =

E

{(
∂W(t,ω)
∂ω |0δε

)2}
−E

{
∂W (t,ω)
∂ω |0δε

}2

(
∂2W(t,ω)
∂ω2 |0

)2

=

E

{(
∂W(t,ω)
∂ω |0δε

)2}
−
(
∂W (t,ω)
∂ω |0 + σ2T 2 (B1 +B2)

)2

(
∂2W(t,ω)
∂ω2 |0

)2 . (41)

E

{(
∂W (t, ω)

∂ω
|0δε
)2}

=

(
∂W (t, ω)

∂ω
|0
)2

+ T 4σ2 (4B1 + 2B2)P (t, ω)E(t, ω)

+ T 4σ2 (2B1 + 4B2)E
∗(t, ω)P∗(t, ω) + 2T 4σ2B4 |P (t, ω)|2 + 2T 4σ4B2

1

+ 2T 4σ2B3 |E(t, ω)|2 + 2T 4σ4B1B2 + 2T 4σ4B3B4 + 2T 4σ4B2
2 . (42)
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TABLE II

V����� �� B3 ��� B4 ��� ��� 	���
�����

��������.

Mexican hat Morlet Cauchy

B3
5

2ω2T
η2+1

4ω2T
√
π

3
32πTω2

B4
1
T

1
2T
√
π

1
8πT

IV. N����
	�� A�����
�

In this section the performance of the scalo-
gram based IF estimator is checked numeri-
cally. The goal of the numerical analysis is
to examine whether the theoretical expressions
derived in the previous section correspond to
the actual results of simulations. Also, the
mean square error (MSE) of the IF estima-
tion for the scalogram using the considered
wavelets will be compared to the MSE ob-
tained by the spectrogram [26], [28]. The pur-
pose of this part of the study is to examine how
the results obtained by the scalogram com-
pare to the results obtained by other classical
method.

A. Comparison among different wavelets

In this section, the performance of the
IF estimator is examined using two classes
of signals. A linear FM signal f1(t) =
exp

(
j128πt+ j α2 t

2
)
is considered for 0 < α ≤

16π and a hyperbolic FM signal f2(t) =
exp (jβsign(t) ln(|t|+ 1)) is considered for 0 <
β ≤ 256π. The sampling period used is
T = 1/256 with 512 data points, and the vari-
ance of the noise used in the analysis is set to
σ2ε = 0.1. The results of the numerical analysis
along with the theoretical values are depicted
in Figs. 1 and 2, and they represent the bias
and the variance for the lag at t = 0.5, that is,
W (0.5, ω).

Theoretical values are produced by applying
the derived expressions (27) and (34) for the
particular signals, while the statistical data are
obtained by 10000 realizations. The vertical
axis represents the magnitude of the estima-
tion bias and variance, while the horizontal
axis represents the values of variables (α and
β).

A very high agreement between the theoreti-

cal and statistical results for the linear FM sig-
nal can easily be observed in Fig. 1 for all cases
except for the bias obtained by the scalogram
with the Morlet wavelet. The reason for dis-
agreement in the case of this particular wavelet
is the amplitude of the bias. The biggest bias
is obtained for α = 16π and is of order of 10−4,
which is 1000 times smaller than the variance
of the noise used in the numerical analysis.

For the hyperbolic class of signals, the theo-
retical values of the bias and the variance also
have high agreement with the results of the nu-
merical analysis. While for all mother wavelets
the values of the bias and the variance are in-
creasing for the linear FM signal, here it can
be noticed that the Morlet wavelet produces
decreasing values of the bias.

We have examined how the estimation bias
and variance behave for two classes of sig-
nals and several wavelets. In order to further
gain understanding of the differences among
wavelets, the MSE of the estimation is ex-
amined as well for the given scenarios. The
MSE is obtained as a sum of the variance and
squared bias, and the results are depicted in
Figs. 3(a) and (b).

From these figures, it is clear that the Mor-
let wavelet produces significantly lower MSE in
comparison to other wavelets for both classes
of signals. For the linear FM signals and hy-
perbolic class of signals, the Cauchy wavelet
produces the biggest error.

B. Comparison of Scalogram with Spectrogram

In this section, the MSE of the IF estima-
tor obtained by the scalogram, W (t, ω), and a
spectrogram is examined using two signals. A
linear FM signal f3(t) = exp

(
j60πt+ j α2 t

2
)
is

considered for α = 30π and a hyperbolic FM
signal f4(t) = exp (jβsign(t) ln(|t|+ 1)) is con-
sidered for β = 64π. The sampling period used
is T = 1/256 with 512 data points. The sig-
nals are contaminated with a white Gaussian
noise, and the signal to noise ratio (SNR) is
given by SNR = 10 log10(A

2/σ2) with A = 1
being a signal’s amplitude and σ2 being the
variance of the noise. The SNR is varied from
0 dB to 15 dB by a 1-dB step. For each SNR
value, 1000 realizations are used. The estima-
tion is performed using position of maxima of
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Fig. 1. IF bias and variance obtained theoretically (solid) and statistically (dashed) as a function of α: (a)
bias and variance for the Mexican hat wavelet; (b) bias and variance for the Cauchy wavelet; (c) bias and
variance for the Morlet wavelet.

the scalograms and spectrogram [28]. In cal-
culation of the spectrogram, a Gaussian win-
dow is used for several values of σ given by
σ = {0.005, 0.01, 0.015}.

Figs. 4 and 5 represent the results of such
an analysis. The horizontal axis represents
the SNR (in decibels), and the vertical axis
represents the MSE for the instantaneous fre-
quency estimation. For the linear FM signal,
the results depict an expected situation. The
spectrogram generally provides lower MSE in
comparison to the scalogram due to the fact
that with a proper choice of a window func-
tion it can provide a more concentrated time-
frequency representation than the scalogram.
It is worthwhile noting that the scalogram with
the Morlet mother wavelet also provides good
performance in comparison to the spectrogram
for the chosen linear FM signal.

For the hyperbolic signal, the best perfor-
mance is exhibited by the scalogram with the

Morlet mother wavelet. This performance is
expected, since the scalograms are usually ca-
pable of achieving higher concentration of hy-
perbolic signals in the time-frequency domain
than the spectrograms due to their variable
resolution property.

Even though the presented numerical analy-
sis provided hints about the performance of
both the spectrogram and the scalogram, fur-
ther generalizations should be avoided unless
a rigorous comparative analysis is completed.
As stated previously, Figs. 4 and 5 depict ex-
pected results for the sample signals. These
results are expected based on the properties
of the implemented time-frequency representa-
tions, i.e., an ability to provide good localiza-
tion of energy concentration for specific classes
of signals.
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Fig. 2. IF bias and variance obtained theoretically (solid) and statistically (dashed) as a function of β: (a)
bias and variance for the Mexican hat wavelet; (b) bias and variance for the Cauchy wavelet; (c) bias and
variance for the Morlet wavelet.
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Fig. 3. MSE of the IF estimation (variance plus squared bias) for the Mexican hat wavelet (dashed), the Cauchy
wavelet (dashdot) and the Morlet wavelet (solid lane) as a function of: (a) α; (b) β.
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Fig. 4. Comparison of the MSE for linear FM signal for several different mother wavelets and STFT with three
different window widths.
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Fig. 5. Comparison of the MSE for several different mother wavelets and STFT with several different window
widths.

V. C��	���
��

In this paper, a general analysis of the scalo-
gram as the instantaneous frequency estimator
for FM signals contaminated with the additive
white Gaussian noise was performed. Expres-
sion for the bias and the variance of such an es-
timator were derived regardless of the mother
wavelet used in the analysis. The analysis
of the estimator was performed without using

the asymptotic approximation of the contin-
uous wavelet transform and is based on de-
termining the direct relationship between the
scale and (Fourier) frequency for the mother
wavelet. Several mother wavelets were consid-
ered including Morlet wavelet, Cauchy wavelet
and Mexican hat wavelet. The theoretical re-
sults were compared with the results of nu-
merical analysis and high agreement between
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them was noticed. By comparing the results
of the analysis, it was noticed that the scalo-
gram with the Morlet wavelet exhibited the
best performance for linear FM signals and hy-
perbolic FM signals. In addition, the perfor-
mance of the instantaneous frequency estima-
tor based on the scalogram and the spectro-
gram were compared through the magnitude
of MSE. These results also depicted that the
scalogram with the Morlet wavelet exhibited
good performance for the sample linear FM
signal and the sample hyperbolic FM signal in
comparison to the spectrogram.

A�����
" A

In order to understand how to find the re-
lationship given by (5), consider the signal
x(t) = A exp(jωot). Then the CWT of the
signal for the wavelet ψ (t) is given by (1). In
order to find an analytical expression of the
CWT, we express the CWT in terms of the
Fourier transforms of the signal, X(ω), and
mother wavelet, Φ(ω), as

CWTx(t, s) =

√
s

2π

+∞∫

−∞

X(ω)Φ∗ (sω) exp(jωt)dω

=

√
s

2π

+∞∫

−∞

2πAδ(ω − ωo)Φ
∗ (sω) exp(jωt)dω

= A
√
sΦ∗ (sωo) exp(jωot) (51)

Then,

|CWTx(t, s)|2 = A2sΦ(sωo)Φ
∗ (sωo) . (52)

To find the scale of maximum correlation, we
set the derivative of (52) with respect to s
equal to zero:

∂ |CWTx(t, s)|2
∂s

= 0. (53)

The solution of (53) which provides s > 0 is
the solution we use. This type of scale to fre-
quency relation provides us, as mentioned be-
fore, with an unbiased instantaneous frequency
estimator for pure sinusoid without noise.
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