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Instantaneous Frequency Estimation
Using Robust Spectrogram with
Varying Window Length

Vladimir Katkovnik, Igor Djurović, LJubiša Stanković

Abstract– Robust M-periodogram is defined
for the analysis of signals with heavy-tailed dis-
tribution noise. In the form of a robust spec-
trogram it can be used for the analysis of non-
stationary signals. In this paper a robust spec-
trogram based instantaneous frequency (IF) es-
timator, with a time-varying window length, is
presented. The optimal choice of the window
length, based on asymptotic formulae for the
variance and bias, can resolve the bias-variance
trade-off in the robust spectrogram based IF es-
timation. However, it depends on the unknown
nonlinearity of the IF. The algorithm used in
this paper is able to provide the accuracy close
to the one that could be achieved if the IF, to
be estimated, were known in advance. Simula-
tions show good accuracy ability of the adaptive
algorithm and good robustness properties with
respect to rare high magnitude noise values.

I. I������	�
��

A key-model of the instantaneous frequency
(IF ) concept is the complex-valued harmonic
with a time-varying phase. It is an important
model in the general theory of time-frequency
distributions. This model has been utilized to
study a wide range of signals, including speech,
music, acoustic, biological, radar, sonar, and
geophysical ones [20]. An overview of the
methods for the IF estimation, as well as the
interpretation of the IF concept itself, is pre-
sented in [2]. One possible approach to the
IF estimation is based on time-frequency rep-
resentations [3], [4], [5], [23], [24]. The spec-
trogram is a commonly applied distribution
within this approach.

In this paper we combine and develop two
different ideas: the robust M−periodogram
and the nonparametric approach [9]-[13] for
selection of the time-varying adaptive slid-
ing window length in the corresponding pe-
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riodogram. The robust M−periodogram is
developed as a generalization of the standard
periodogram for analysis of stationary signals
corrupted with heavy tailed distribution noise
[14], [16]. Its form applied to the analysis of
nonstationary signals will be referred to as the
robust spectrogram. Recall that the heavy
tailed distribution noise is used as a model of
an impulse noise environment (e.g. [18]). The
approach which exploits the intersection of
confidence interval rule [6] was used in [12] and
[17] for the standard periodogram based esti-
mator with varying adaptive window length.
It uses only the formula for the variance of
the estimate, which does not require informa-
tion about the IF to be known in advance.
Simulations based on the discrete robust spec-
trogram, with several noisy signal examples,
show a good robustness and accuracy ability
of the presented adaptive algorithm, as well
as an improvement in the spectrogram based
time-frequency representation of signals with
the nonlinear IF . Finally, the Huber’s mini-
max loss functions are used for design of robust
spectrograms with the adaptive window size.

The structure of the paper is as follows. The
robust spectrogram as an IF estimator is con-
sidered in Section II. The asymptotic bias and
variance of the IF estimate, along with the
optimal window length, are presented in this
section, as well. The adaptive estimate of the
IF with a time-varying and data-driven win-
dow length is developed in Section III. Numer-
ical examples, along with simulation results,
are discussed in Section IV. A generalization
of the robust spectrogram is proposed in Sec-
tion V.
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II. B�	
������ T�����

A. Robust Spectrogram

Standard spectrogram IS(t, ω) definition, of
a signal x(t), is based on the standard short-

time Fourier transform Ĉh(t, ω)

Ĉh(t, ω) =
1∑

nwh(nT )
×

∑

n

wh(nT )x(t+ nT ) exp(−jωnT ), (1)

IS(t, ω) =
∣∣∣Ĉh(t, ω)

∣∣∣
2

.

where the window wh(nT ) = T
hw(nT/h)

≥ 0 has h > 0 as a window length, and∑
nwh(nT ) → 1 as h/T → ∞. Sampling in-

terval is denoted by T .
The standard short-time Fourier transform

Ĉh(t, ω) may be derived as a solution of the
following optimization problem [14]:

Ĉh(t, ω) = argmin
C

J(ω,C), (2)

where
J(ω,C) =

∑

n

wh(nT )×

|x(t+ nT )−Ch(t, ω) exp(jωnT )|2 . (3)

Here, the weighed square absolute error

F (e) = |e(nT )|2 =

= |x(t + nT )−Ch(t, ω) exp(jωnT )|2 (4)

is used as a loss function and minimized, by
determining C. From

∂J(ω,C)

∂C∗
= 0

definition (1) follows.
In [14] it has been shown that the loss func-

tions of other forms than F (e) = |e|2 can be
more efficient in the optimization procedure
(2). In particular, it has been shown that the
loss function of the form F (e) = |e| can pro-
duce very good results in the case of a signal
corrupted with heavy tailed distribution noise.
The periodogram obtained using this loss func-
tion is called the robust M−periodogram. Its

corresponding robust spectrogram is given in
the form

IA(t, ω) =
∣∣∣Ĉh(t, ω)

∣∣∣ , (5)

Ĉh(t, ω) = argmin
C

J(ω,C),

J(ω,C) =
∑

n

wh(nT )×

|x(t+ nT )−Ch(t, ω) exp(jωnT )| .
By minimizing J(ω,C) we get a solution in the
form

Ĉh(t, ω) =
1∑

n d(nT )
×

∑

n

d(nT )x(t+ nT ) exp(−jωnT ),

d(nT ) = γ(nT )/
∑

n

γ(nT )

γ(n) = wh(nT )×
|x(t + nT )−Ch(t, ω) exp(jωnT )|−1 .

These three equations represent a set of non-
linear equations with unknown Ch(t, ω). It can
be solved using the following iterative proce-
dure [14]:

Step 0. Initialization (standard short time
Fourier transform calculation):

C
(0)
h (t, ω) =

1∑
nwh(nT )

×

∑

n

wh(nT )x(t+ nT ) exp(−jωnT ), (6)

γ(0)(n) = wh(nT )×
∣∣∣x(t+ nT )−C

(0)
h (t, ω) exp(jωnT )

∣∣∣
−1

(i) Step k, k = 1, 2, ..,K:

C
(k)
h (t, ω) =

1∑
n γ(n)(k−1)

×

∑

n

γ(k−1)(n)x(t + nT ) exp(−jωnT ),

γ(k)(n) = wh(nT )×
∣∣∣x(t+ nT )−C

(k)
h (t, ω) exp(jωnT )

∣∣∣
−1
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with the stopping rule

k̂ = min
k
{k :

|C(k)h (t, ω)−C
(k−1)
h (t, ω)|

|C(k−1)h (t, ω)|
≤ η,

k ≤ K},

where η > 0 and K are given.
(ii). Setting the robust spectrogram

IA(t, ω) as

IA(t, ω) = |Ch(t, ω)|2 ,
where

Ch(t, ω) = C
(k̂)
h (t, ω).

Experiments have showed a good conver-
gence of the algorithm. Provided η = 0.1 a
usual number of iteration was about k̂ = 3÷ 5
and never exceeded 15.

B. Instantaneous Frequency Estimation

Consider now the problem of IF estima-
tion, using the robust spectrogram, from the
discrete-time observations

x(nT ) = m(nT ) + ε(nT ),

with m(t) = Aejϕ(t) (7)

where n is an integer, T is a sampling interval
and ε(nT ) is a complex-valued circular white
noise E(ε(nT )) = 0, E(|ε(nT )|2) = σ2. By
definition, the IF is the first derivative of the
phase

Ω(t) = ϕ′(t). (8)

Its estimate can be found as

ω̂h(t) = arg max
ω∈Qω

IA(t, ω) (9)

Let us remind that the window wh(nT ) imple-
ments the idea of nonparametric estimation of
the IF as the time-varying Ω(t) is fitted by the
constant ω within the narrow window around
the time-instant t [9], [10], [15].
The asymptotic accuracy analysis of the

robust IF estimator (9) has been done in
[16]. According to that analysis, with the con-
straints as stated, the asymptotic formulae for

the variance and bias of the IF estimation er-
ror

∆ω̂h(t) = Ω(t)− ω̂h(t),

are given by

var(∆ω̂h(t)) =

V (F,G) · T

A2h3
Wω + o(T/h3), (10)

and

E(∆ω̂h(t)) = Bωh
2Ω(2)(t) + o(h2), (11)

where o(x) denote a small value such that
o(x)/x→ 0 as x→ 0.
The following notation has been used

Wω =

∫∞
−∞

w2(u)u2du

(
∫∞
−∞

w(u)u2du)2
, (12)

Bω =
1

3!
∫∞
−∞w(u)u2du

∫ ∞

−∞

w(u)u4du, (13)

V (F,G) =
∫

(F (1)(v))2dG(v)/(

∫
F (2)(v)dG(v))2. (14)

with T → 0, h → 0, T/h4 → 0, Ω(1)(t) �= 0,
Ω(2)(t) �= 0, G is the noise ε(nT ) probability
distribution function, and F (1) and F (2) are
the derivatives of F.

Comments:
1. Let the noise distribution be Gaussian,

ε ∼ N(0, σ2/2), and the loss function F is
quadratic F (e) = e2, then V (F,G) = σ2/2.
Substituting this V (F,G) = σ2/2 in (10) gives
the known formulae for the variance of the
short-time periodogram IF estimates. In par-
ticular these formulae can be obtained as a
special case from more general results pro-
duced in [10] and [13].
In a similar way we obtain for F (e) = |e|

that V (F,G) = πσ2/2.
2. We wish to note that V (F,G) appears

as a factor only in the formula for the vari-
ance. Thus a choice of the loss function F
influences only the variance of estimation but
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Fig. 1. a) Standard spectrogram of the signal, with N = 128, b) Adaptive window length for the robust
spectrogram, c) Mean square error versus window lenght, d) Robust spectrogram with adaptive window
length.

not the bias. The similar result has a place for
the LPA robust regression estimation [25].
The formulae for the bias are the same for

the robust and nonrobust estimates [17].
3. Let us consider the mean squared error

(MSE) of the estimation. From (10) and (11)
follows that for small h the main terms of the
MSE can be given in the form

E((∆ω̂h(t)
2)) = V (F,G) · T

A2h3
Wω+

(
Bωh

2Ω(2)(t)
)2

. (15)

Decreasing of the window length h results in
decreasing of the bias and in increasing of the
variance, and vice versa. The optimal window
width is given as

hopt(t) =

(
3V (F,G) · TWω

4A2
(
BωΩ(2)(t)

)2

)1/7
.

It gives an optimal bias-variance trade-off,
usual for nonparametric estimations. Opti-

mal length depends on the signal-to-noise ratio
A/σε, the sampling interval T , noise distribu-
tion G, selected loss function F , and the sec-
ond IF derivative Ω(2)(t). Thus the optimal,
or even reasonable choice of length h, depends
on the IF second derivative Ω(2)(t), which is
naturally unknown because the IF itself is to
be estimated.

III. A����
��� �� D���-D�
���
W
���� L����� C��
	�

A. Basic Idea ([12],[17],[22])

The basic idea follows from the IF estima-
tion error analysis. Namely, at least for the as-
ymptotic case, the estimation error can be rep-
resented as a sum of the deterministic compo-
nent (bias) and random component, with the
variance given by (10). The estimation error
can be written as

|Ω(t)− ω̂h(t)| ≤ |bias(t, h)|+ κσ(h), (16)



INSTANTANEOUS FREQUENCY ESTIMATION USING ROBUST SPECTROGRAM... 551

Fig. 2. a)-g) IF estimation of the signal using robust spectrogram with the constant window lengths
N = {8, 16, 32, 64, 128, 256, 512}, respectively; h) IF estimation using robust spectrogram with the adaptive
window length.

with σ2(h) = var(∆ω̂h(t)). Inequality
(16) holds with probability P (κ), where κ
is the corresponding quantile of the stan-
dard Gaussian distribution N(0, 1). The usual
choice κ = 2 gives P (κ) = 0.95.
It follows from (11) that |bias(t, h)| → 0 as

h→ 0. Now, let h = hs be so small that

|bias(t, hs)| ≤ κσ(hs), (17)

then
|Ω(t)− ω̂hs(t)| ≤ 2κσ(hs). (18)

It is obvious that, for a set of such small hs,
all of the segments

Ds = [ω̂hs(t)− 2κσ(hs),

ω̂hs(t) + 2κσ(hs)], (19)

have a point in common, namely Ω(t).

Consider an increasing sequence of hs, h1 <
h2 < .... Let hs+ be the largest of those hs for
which the segments Ds−1 and Ds have a point
in common. Let us call this window length hs+
‘optimal’ and determine the IF estimates with
data-driven optimal window length as ω̂h

s+
(t).

The basic idea behind this choice is as fol-
lows: If the segmentsDs−1 andDs do not have
a point in common it means that at least one of
the inequalities (18) does not hold, i.e. the bias
is too large as compared with the standard de-
viation in (17). Thus, the statistical hypothe-
ses to be tested for the bias is given in the
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Fig. 3. a)-g) IF estimation of the signal using robust spectrogram with the constant window lengths
N = {8, 16, 32, 64, 128, 256, 512}, respectively; h) IF estimation using robust spectrogram with the adaptive
window length.

form of the sequence of inequalities (18) and
the largest length hs for which these inequali-
ties have a point in common is considered as a
bias-variance compromise, when the bias and
variance are of the same order. Details on
this two-segments intersection approach may
be found in [21], [22].

B. Algorithm

Let us initially assume that the amplitude A
and the standard deviation σ of the noise are
known. Let H be an increasing sequence of
the window length values

H = {hs | h1 < h2 < h3 < ... < hJ}. (20)

In general, any reasonable choice of H is
acceptable. In particular, the lengths with
dyadic numbers Ns = 2Ns−1 of observations
within the window length, until the largest
hJ is reached, will be assumed. This scheme
corresponds to the radix-2 FFT algorithms.
Note that the relation between the window
length and the number of observation within
that length is hs = NsT. However, we want to
emphasize that the minimum window size h1
should not be too small (say h/T > 20 ÷ 40)
in order to preserve the property of algorithm
to be robust with respect to the heavy-tailed
distribution noise.
The following steps are generated for each t.
1. The robust spectrogram is calculated for
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Fig. 4. a) Adaptive window length for the robust spectrogram, b) Mean square error versus window lenght, c)
Robust spectrogram with adaptive window length, c) IF estimation using proposed adaptive algorithm and
robust spectrogram.

Fig. 5. a) The standard spectrogram with constant window length N = 128. The spectrogram values are
limited to the expected maximal value equal to 1. b) IF estimation using standard spectrogram.
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Fig. 6. a) Signal corrupted with the Cauchy noise, b) Adaptive window length for the robust spectrogram, c)
Mean square error versus window lenght, d) Robust spectrogram with adaptive window length.

all of hs ∈ H. Thus, we obtain a set of robust
spectrograms for a fixed time instant t

{IA(ω, t;hs)}, hs ∈ H.

The IF estimates are found as

ω̂hs(t) = arg[max
ω∈Qω

IA(ω, t;hs)]. (21)

2. The upper and lower bounds of the con-
fidence intervals Ds in (19) are built as follows

Us(t) = ω̂hs(t) + 2κσ(hs),

Ls(t) = ω̂hs(t)− 2κσ(hs). (22)

The variance σ2(hs) is estimated by σ̂
2(hs) =

σ̂2(hJ)h3J/h
3
s, where σ̂

2(hJ) is the variance es-
timation obtained by using the widest window
hJ , according to

σ̂2(hJ) =
1

N

N∑

i=1

|x(t+ iT )|2 − Â2,

while Â is the estimated amplitude of signal.
It can be obtained applying the methods de-
scribed in [21] on signal x(t + nT )/e(t + nT ),
where e(t + nT ) is the error (4).

3. The optimal window length hs+ is deter-
mined as the largest s = s+ (s = 1, 2, ..., J)
when

∣∣ω̂hs−1(t)− ω̂hs(t)
∣∣ ≤ 2κ(σ(hs−1) + σ(hs))

is still satisfied,

ĥ(t) = hs+(t), (23)

and ω̂ĥ(t)(t) is the adaptive IF estimator with

the data driven window for a given instant t.

4. The robust spectrogram with the optimal
window length is

I+(ω, t) = IA(ω, t; ĥ(t)). (24)

Steps 1 through 4 are repeated for each con-
sidered time-instant t.



INSTANTANEOUS FREQUENCY ESTIMATION USING ROBUST SPECTROGRAM... 555

Fig. 7. a)-g) IF estimation of the signal corrupted with the Cauchy noise using robust spectrogram with
the constant window lengths N = {8, 16, 32, 64, 128, 256, 512}, respectively; h) IF estimation using robust
spectrogram with the adaptive window length.

IV. E ��!��"

Example 1: Signal with the IF given as

Ω(t) =

{
180π − 126π|t| |t| < 1
52π + 2π|t| |t| ≥ 1

(25)

is considered. The signal is embedded with a
high amount of heavy tailed noise

εH(nT ) = 1.5(ε3R(nT ) + jε3I(nT ))/
√

2, (26)

where εR(nT ) and εI(nT ) are mutually inde-
pendent white Gaussian noises N(0, 1). In this
case standard spectrogram is useless for IF
estimation, Fig.1. Application of the robust
spectrogram, Section II, along with the algo-
rithm from Section III resulted in the adaptive

window length that is shown in Fig.1b. Ro-
bust spectrogram calculated using the adap-
tive window length is shown in Fig.1d. It
is easy to conclude that, in contrast to the
standard spectrogram, the robust adaptive one
is almost not influenced by the heavy tailed
noise. Mean square error of the IF estimation,
using the robust spectrogram, versus window
length is shown in Fig.1c. The straight line
shows mean square error for the IF estimation
using adaptive robust spectrogram. We may
conclude that the adaptive estimation pro-
duces smaller mean square error than the best
constant window length, which is also a pri-
ori unknown. The IF estimates using differ-
ent window lengths in the robust spectrogram,
along with the adaptive one, are shown in
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Fig.2. Obviously, for slow IF changes adaptive
algorithm takes wider window length, while
for faster changes it takes narrower window
length, as expected.

Example 2: Consider now a signal with
highly nonlinear IF

Ω(t) = 20πasinh(12.5t) + 128π (27)

The signal is embedded with same kind of
noise as in the previous example. The IF
estimates are shown in Fig.3. The adaptive
window length, mean square error, the robust
spectrogram with adaptive window length,
and the IF estimate using the proposed algo-
rithm and the robust spectrogram are shown
in Fig.4.
Next, consider signal (27) corrupted with

noise εC(nT ) = εR(nT ) + jεI(nT ), where
εR(nT ) and εI(nT ) are independent Cauchy
noises. The probability density function of the
Cauchy noise is

g(x) =
a

π(1 + (ax)2)

Note, that the Cauchy noise can be simulated
as εR(nT ) = ε1(nT )/ε2(nT ), where εi(nT )
, i = 1, 2, is the Gaussian white noise with vari-
ance σi, and a = σ2/σ1. Signal (27) corrupted
with the Cauchy noise with a = 0.5 is shown in
Fig.6a. Standard spectrogram could not pro-
duce any reasonable result for this noise. The
standard spectrogram with constant window
length N = 128 and the IF estimate based on
it are shown in Fig.5. The adaptive window
length is shown in Fig.6b. The mean square
error is shown in Fig.6c, while the robust spec-
trogram with adaptive window length is shown
in Fig.6d. The IF estimators are shown in
Fig.7. Obviously the robust spectrogram pro-
duced very accurate results, in this case, as
well.
Finally, consider signal (27) with mixed

Gaussian and heavy tailed distribution noise
(26). Two cases will be considered:
(A) One being a sum of these two noises

ε(nT ) = (1− β)εG(nT ) + βεH(nT )

where εG(nT ) is a white complex Gaussian
noise with variance σ2ε, and independent

TABLE I

M��� "$���� ����� ��� ��� "�������

"!�	������� �
�� 	��"���� ��� ���!�
��

�
���� ������" ��� ��� ��
"� 
� 	�"� (�)

β N = 64 Adaptive

0 0.6856 0.1455

0.2 1.0392 0.5467

0.4 5.1502 4.6032

0.6 1060.9 253.22

0.8 3964.3 1434.3

1 5503.6 2819.2

TABLE II

M��� "$���� ����� ��� ��� ��'�"� "!�	�������

�
�� 	��"���� ��� ���!�
�� �
���� ������" ���

��� ��
"� 
� 	�"� (�)

β N = 64 Adaptive

0 0.7124 0.1968

0.2 0.8974 0.1930

0.4 1.0478 0.2363

0.6 1.0602 0.2356

0.8 1.0843 0.2721

1 1.4888 0.2851

real and imaginary parts. Real and imag-
inary parts of the heavy tailed noise are
given as Re{εH(nT )} = (Re{εG(nT )})3 and
Im{εH(nT )} = (Im{εG(nT )})3.
(B) The other case when the probability

density function is of the form

p(ε) = (1− β)pG(ε) + βpH(ε), (28)

where pG(ε) is the Gaussian probability den-
sity N(0, σ), pH(ε) is the probability density
of an heavy tailed distributed noise, while
1 ≥ β ≥ 0 determines a proportion of these
random noises in the mixed noise with the
probability density p(ε).
Different proportions β = {0, 0.2, 0.4,

0.6, 0.8, 1} are considered. The IF estima-
tors with standard and robust spectrogram are
compared for different β in cases (A) and (B),
Tables I,II,III,IV. In both cases similar conclu-
sions hold. For β = 0 (pure Gaussian noise)
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TABLE III

M��� "$���� ����� ��� ��� "������� "!�	������� �
�� 	��"���� ��� ���!�
�� �
���� ������" ���

��� ��
"� 
� 	�"� (')

β 0 0.2 0.4 0.6 0.8 1

N=8 1807.4 6440.6 7865.7 9231.7 9551.5 12581

N=16 52.897 4098.3 4965.5 5690.4 6452.0 8856.3

N=32 5.8204 2316.8 2223.4 3706.6 4715.8 5485.9

N=64 0.6187 1287.4 1699.1 1865.1 2608.8 3625.6

N=128 1.0585 8.4956 234.84 750.23 1261.4 1386.5

N=256 10.011 395.22 520.47 966.21 1182.8 269.60

N=512 32.244 1777.0 2748.3 2725.9 2700.1 222.92

Adaptive 0.1973 227.18 498.03 665.69 1221.7 1442.0

TABLE IV

M��� "$���� ����� ��� ��� ��'�"� "!�	������� �
�� 	��"���� ��� ���!�
�� �
���� ������" ���

��� ��
"� 
� 	�"� (')

β 0 0.2 0.4 0.6 0.8 1

N=8 3019.8 4763.9 4095.0 4914.0 5473.8 6869.1

N=16 130.89 255.20 141.88 364.21 779.45 726.77

N=32 61.585 15.397 13.625 10.599 9.3672 8.8703

N=64 0.7643 1.0887 1.0104 0.9121 0.8122 1.3339

N=128 0.7484 2.0492 1.3116 1.1158 1.4329 1.5898

N=256 9.6263 9.2244 8.9314 8.9170 8.9780 9.4466

N=512 31.821 33.203 32.380 33.558 33.117 32.471

Adaptive 0.2152 0.4152 0.5998 0.5502 0.1435 0.1914

both of the spectrograms show similar results,
first rows in Tables I and II. The standard
spectrogram is just slightly better than the ro-
bust spectrogram. By increasing of β the IF
estimation error for the standard spectrogram
significantly increases, while the robust spec-
trogram based IF estimation error remains
low and close to the case of the Gaussian noise
only. The mean square IF estimation errors
for the standard spectrogram with N = 64
(this spectrogram have the smallest IF with
constant window width) and adaptive window
length, for various β, are given in Tables I and
II. Note that the quantization error for all ex-
amples is 0.08333, defining the lower accuracy
limit. It can be seen that as the amount of
the heavy tailed noise, i.e., β, increases the

error increases significantly. The similar re-
sults are presented for the standard and ro-
bust spectrogram in Tables III and IV. The
standard spectrogram becomes useless for the
estimation when β ≥ 0.4 in case (A) and for
β ≥ 0.2 in case (B). From the last column of
Table II or the last row of Table IV we can see
that the mean square error remains low and
of the same order for all proportions between
Gaussian and heavy tailed noise, when the ro-
bust adaptive spectrogram is used for the IF
estimation. However, when the standard spec-
trogram is used that is not the case, the last
column of Table I or the last row of Table III.
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V. F������ ������!����

The L2−norm in (3) results in the estimate
Ĉh(t, ω) linear on observations and the con-
ventional power spectrogram (1). It is well
known that linear estimates give good results
and good filtering of observation errors pro-
vided they are subjected to the Gaussian dis-
tribution. However, the heavy-tailed distribu-
tion errors are able to destroy any linear esti-
mate and, in particular, can result in a com-
plete degradation of the beamformer power
function.
If a noise distribution is known the maxi-

mum likelihood (ML) method is a powerful
universal tool in order to design the best es-
timates for the given distribution. However,
for many cases these ML estimates are quite
sensitive with respect to a deviation from the
parametric model and the hypothetical distri-
bution. Even a slight deviation from the hy-
pothesis can result in a strong degradation of
the ML estimate. In particular, this high-
sensitivity with respect to the distribution hy-
potheses has a place for the Gaussian noise.
The minimax robust approach has been devel-
oped in statistics as an alternative to the con-
ventional ML in order to decrease the men-
tioned above sensitivity of the ML estimates
to the hypothetical distribution and to im-
prove their efficiency in an environment of er-
rors with the heavy-tailed distributions (see.
[1], [7], [8], [19]). Loss function F (e) = |e| is
just an example of a function that enables ro-
bust estimation in some classes of heavy-tailed
distributions. More classes of the robust dis-
tributions, as well as more details about the
minimax robustness concept can be found in
[1], [8], [19].
Here we wish to present a loss function for

which the IF estimation algorithm is slightly
different from the considered one. Based on
the previous results (Tables I-IV) we can con-
clude that a combination of loss functions
F (e) = e2 for small errors and F (e) = |e|
for large error would further improved results.
This loss function can be defined as

F (e) =

{
e2/2 |e| ≤ ∆
∆|e| −∆2/2 |e| > ∆

(29)

It is optimal in the minimax sense over the

class of distributions (28). The adjustable pa-
rameter ∆ in (29) depends on the noise para-
meters [8]. It has been used, for example, in
the robust multiuser detection in nonGaussian
channels in [26].
For the loss function (29) the complex val-

ued amplitude Ĉh(t, ω) can be calculated as a
solution of the equation:

Ĉh(t, ω) =
Ph(t, ω)

wm
(30)

where
Ph(t, ω) =

∑

n,|e|≤∆

wh(nT )x(t+ nT ) exp(−jωnT )+

∑

n,|e|>∆

wh(nT )e−1(nT )x(t + nT ) exp(−jωnT )

wm =
∑

n,|e|≤∆

wh(nT )+
∑

n,|e|>∆

wh(nT )e−1(nT )

|e| = |x(t+ nT )−Ch(t, ω) exp(jωnT )|
From (29) it is clear that when error val-
ues e(nT ) are greater than ∆ values of signal
x(t + nT ) are decreased by e−1(nT ). Calcula-
tion of this modified robust spectrogram can
be done according to the previously described
recursive procedure for the robust spectro-
gram, Section II. In our simulations we use
∆ = 1. The experiments show fast conver-
gence of the algorithm.
As an example, consider the IF estimation

of the signal (27) with noise (28) using the
modified robust spectrogram. Table V gives
the IF estimation errors for the modified ro-
bust spectrogram with constant (N = 64) and
for the adaptive window length. The modified
robust spectrograms have smaller IF estima-
tion errors than corresponding robust spectro-
grams, Table IV. For this kind of noise stan-
dard spectrogram [17] is not able to produce
any acceptable result.

VI. C��	��"
��

The robust spectrogram, being time-varying
form of the robust M−periodogram, with the
varying adaptive window size is developed.
The intersection of confidence intervals rule



INSTANTANEOUS FREQUENCY ESTIMATION USING ROBUST SPECTROGRAM... 559

TABLE V

M��� "$���� ����� ��� ��� ���
�
�� ��'�"�

"!�	������� �
�� 	��"���� ��� ���!�
��

�
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β N = 64 Adaptive

0 0.6714 0.1632

0.2 1.0021 0.3752

0.4 0.9866 0.5751

0.6 0.9235 0.5493

0.8 0.7726 0.1344

1 1.2568 0.1846

is applied for varying window size selection.
Simulation demonstrates that the new spec-
trogram gives the estimates of the varying IF
which are strongly robust with respect to the
noise having a heavy-tailed distribution.
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