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Parametric Estimation of the FM
Signals Using Wigner

Distribution-based Maximum
Likelihood Estimator
Igor Djurovíc, Akira Ohsumi, Hiroshi Ijima

Abstract– Parametric estimation of the
monocomponent noisy signals is considered in
this paper. The Wigner distribution-based
maximum likelihood (ML) estimator is used as
estimation tool. Various types of the FM sig-
nals and noisy environments are considered.

I. I������	�
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The Wigner distribution (WD), after 70
years of its introduction in quantummechanics
[1], and after 55 years of the first application
in the field of spectral analysis [2], remains a
very useful tool for the time-frequency (TF)
signal analysis. We want to mention the re-
cent book [3] as a comprehensive overview of
the WD applications. The instantaneous fre-
quency (IF) estimation is one of the most im-
portant applications of the WD [4]. It can be
used in both parametric and non-parametric
methods for the IF estimation [4]-[8]. Some of
the non-parametric methods for the IF estima-
tion are described in [4], [5]. Combinations of
the WD with Radon or Hough transformation
are the common tool for parametric IF estima-
tion [6]-[8]. These methods can be considered
as projections of the TF values along assumed
IF lines. In this paper we consider the para-
metric IF estimation by using the WD-based
maximum likelihood (ML) estimator. This es-
timator has been applied in [9] for determina-
tion of the signal position and duration. The
IF estimation in various noisy environments is
considered. Estimation of signal parameters is
done based on the maximum of the proposed
sub-optimal log-likelihood function.
The paper is organized as follows. An
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overview of the WD behavior in noisy envi-
ronment and the ML estimator are discussed
in Section II. Determination of the WD auto-
covariance matrix in various noisy environ-
ments is presented in Section III. Algorithm
for the IF estimation is given in Section IV.
Numerical examples are presented in Section
V.

II. W
��
� D
���
���
�� �� N�
��

S
�����

Consider a FM signal f(t) =A exp(jφ(t;a)),
where a is a set of signal parameters that
should be estimated, embedded in the white
noise ν(t) with variance σ2ν :

x(t) = f(t) + ν(t) = A exp(jφ(t;a)) + ν(t).
(1)

The signal sampling rate is ∆t, x(n) =
x(n∆t). The WD can be represented in the
following form:

WDxx(n, k) =

N−1∑

m=0

x(n+m)x∗(n−m)e−j4πmk/N . (2)

Mean value of the WD is E{WDxx(n, k)} =
WDff (n, k) + σ2ν , and the auto-covariance is

R(n1, k1, n2, k2) =

E{WDxx(n1, k1)WD∗

xx(n2, k2)}
−E{WDxx(n1, k1)}E{WD∗

xx(n2, k2)}
= 2σ2ν cos(2πk2(n2 − n1)/N)

×Re
{
N−1∑

m=0

f(n1 +m)×
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f∗(2n2 − n1 +m)e−
j4π(k1−k2)m

N

}

+
N−1∑

m1=0

N−1∑

m2=0

E{ν(n1 +m1)ν
∗(n1 −m1)

×ν∗(n2 +m2)ν(n2 −m2)}
×e−j(4πk1m1−4πk2m2)/N − σ4ν . (3)

The sum used for calculation of the WD (2)
usually contains a large number of terms x(n+
m)x∗(n −m)e−j4πmk/N (N = 128, N = 256,
...). Therefore, the central limit theorem may
be applied to the WD and its values can be
treated asymptotically as the Gaussian ran-
dom field. Thus, the joint pdf of the WD val-
ues can be written as:

p{w} = |R|− 1
2

(2π)N2/2
×

exp{−1
2(w−m)

T
R
−1(w−m)}, (4)

where w is the vector consisting of WD val-
ues, w = [W00,W01, ...,WN−1,N−1]

T , Wij =
WDxx(ni, kj), ni, kj ∈ [0, N), m = [E{Wij}]
and R is the auto-covariance matrix R = [rij ]
where rij = E{[w(i) −m(i)][w(j) −m(j)]},
w(i) and m(i) represent the ith elements of
the vectors w and m, respectively. The WD-
based ML estimator is applied in [9] for the
estimation of position and duration of signal.
Two hypotheses are introduced in order to test
if the x(n) contains signal f(n) with the para-
meter vector a:

H1 : WDxx(n, k;a)− signal and noise case,

H0: WDνν(n, k) - noise only case. (5)

Estimation of the signal parameters can be
done by using the log-likelihood ratio:

L(a) = ln p{w|H1}/p{w|H0}, (6)

where the likelihood function p{w|Hi} is given
as:

p{w|Hi} = |Ri|−1/2
(2π)N2/2

× exp{−1
2(w−mi)

T
R
−1
i (w−mi)} (i = 0, 1)

(7)

and mi and Ri are the mean value and the
auto-covariance matrix under Hi hypothesis.
Since the auto-covariance matrix is of large
dimension N2 × N2, the determination of
this matrix and its inverse can be very time-
consuming process. Therefore, it will be rather
preferable to take a faster procedure for deter-
mination of the log-likelihood ratio. At this
stage, it should be noted that the maximiza-
tion of the likelihood ratio L(a) with respect to
the unknown vector a is equivalent to the max-
imization of ln p{w|H1} since p{w|H0} does
not contain any component of the parameter
vector a. Instead of L(a), given with (6), the
following form of the log-likelihood ratio will
be used:

L̃(a) =
∑N−1

n=0
ln p{wn|H1}/p{wn|H0}, (8)

where wn represents the WD values at the in-
stant n, wn = [Wn0,Wn1, ...,Wn,N−1]

T , n ∈
[0, N), with:

p{wn|Hi} = |Rn,i|−1/2
(2π)N/2

×exp{−1
2(wn−mn,i)

T

R
−1
n,i(wn −mn,i)} (i = 0, 1), (9)

whilemn,i andRn,i are the vector of the mean
values and the auto-covariance matrix of the
WD values at instant n under Hi. The auto-
covariance matrix Rn,i has dimensions N×N ,
and the demands for its inverse-matrix calcu-
lation are reasonable.

III. A���-C����
��	
 M���
�

An overview of the auto-covariance matrix
determination is given in this section for var-
ious noisy environments. The simplest cases
are presented first, followed by the more com-
plex ones.

A. Complex Gaussian Noise

The auto-covariance matrixRn follows from
(3) for n1 = n2 = n. For a signal with constant
amplitude A embedded in a complex Gaussian
noise it is given as [10]:

R(k1, k2) = Nσ2ν(2A
2 + σ2ν)δ(k1 − k2). (10)
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In this case the auto-covariance matrix is diag-
onal with well-known expression for variance of
the WD [10], [11]. Its determinant is given as
|Rn,i| = [Nσ2ν(2A

2 ·i+σ2ν)]N , while the inverse
R
−1
n,i is diagonal with 1/Nσ2ν(2A

2 · i+ σ2ν) val-

ues. The value ∆n,i = (wn−mn,i)
T
R
−1
n,i(wn−

mn,i) can be calculated as:

∆n,i =

N−1∑

k=0

[WDxx(n, k)− i ·WDff (n, k)− σ2ν ]
2

Nσ2ν(2A
2 · i+ σ2ν)

.

(11)

B. Complex Noise

In the case of complex noise with inde-
pendent real and imaginary parts the auto-
covariance matrix has the following form:

R(k1, k2) = αiδ(k1 − k2) + β, (12)

where αi = Nσ2ν(2A
2 · i + σ2ν), and β =

E{|ν(n)|4} − 2σ4ν . In this case the auto-
covariance matrix has value [αi+β] on its main
diagonal and β elsewhere. Its inverse matrix
has the same form as R(k1, k2) given by (12):

R
−1
n,i = (ai − bi)δ(k1 − k2) + bi (13)

with ai = [αi+(N−1)β]/[α2i+αiβ(N+1)] and
bi = −β/[α2i + αiβ(N + 1)]. The determinant
is |Rn,i| = αNi +NαN−1i β. Calculation of ∆n,i
can be done as:

∆n,i = (ai − bi)×
N−1∑

k=0

[WDxx(n, k)− i ·WDff (n, k)− σ2ν ]
2

+bi

[
N−1∑

k=0

[WDxx(n, k)−

i ·WDff (n, k)− σ2ν
]2
. (14)

C. Real Gaussian Noise

In the case of the real Gaussian noise the
auto-covariance matrix is:

R(k1, k2) = αiδ(k1 − k2)+

γδ(k1 + k2) + F (k1, k2), (15)

where

F (k1, k2) =
∑N−1

m=0
f2(n+m)e−j4πm(k1+k2)/N .

(16)
To simplify our procedure we will use
R̃(k1, k2) = αiδ(k1 − k2) + γδ(k1 + k2), ne-
glecting the term F (k1, k2). Thus, the ma-
trix R̃(k1, k2) has αi along the main diago-
nal and γ = Nσ4ν along the anti-diagonal.
Calculation of R−1n,i under H1 and H0 is dif-
ferent. The inverse-matrix of the (15) un-
der H1 is of the same shape as (15) with
a = [2A2 + σ2ν ]/[4A

2N(A2 + σ2ν)] at the main
diagonal and b = −1/[4A2N(A2 + σ2ν)] along
the anti-diagonal. The determinant of Rn,1 is

|Rn,1| =
∑N/2
l=0

(
N/2
l

)
a2lbN−2l. So, the value

∆n,1 can be obtained as:

∆n,1 = a
N−1∑

k=0

[WDxx(n, k)−WDff (n, k)−σ2ν ]2

+ b
N−1∑

k=0

[WDxx(n, k)−WDff (n, k)− σ2ν ]

×[WDxx(n,N − k − 1)−

WDff (n,N − k − 1)− σ2ν ]. (17)

For H0, it is assumed that there is no sig-
nal and that only Gaussian noise is received.
The auto-covariance matrix of the real signal
is symmetric: R(k1, k2) = R(k1, N −1−k2) =
R(N − 1 − k1, k2) = R(N − 1 − k1,N −
1 − k2). Thus, instead of the entire matrix
R(k1, k2), under H0 one uses its sub-matrix Γ
of N/2 × N/2-dimension with k1 < N/2 and
k2 < N/2. Then, p{wn|H0} can be calculated
as p{wn|H0} = p2, where

p =
|Γ|− 1

2

(2π)
N
4

×

exp
{
−1
2(wn−mn,0)

T
Γ
−1(wn −mn,0)

}
.

(18)
Vectors wn and mn,0 are reduced on their
parts with k < N/2. Since Γ has diago-
nal shape, the calculation of Γ−1 can be ob-
tained similarly as in the case of the complex
Gaussian noise.
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D. Real Noise

In this case the matrix R̃(k1, k2) has a form:

R̃(k1, k2) = αiδ(k1−k2)+γδ(k1+k2)+β, (19)

where β = E{[ν(n)]4} − 3σ4ν . Under H1 the
inverse matrix has the same shape as (19):

R
−1
n,1 = (a−c)δ(k1−k2)+(b−c)δ(k1+k2)+c,

(20)
where:

a =

α21 + 2β
2 + 2α1β + (N − 1)α1γ +Nγβ

α1(α1 + 2β)(α1 +Nβ + 2γ)
,

(21)

b = − γ

(α1 + 2β)(α1 +Nβ + 2γ)
, (22)

c = −α21 + 2β
2 + 2α1β + 3α1γ + γ2(N − 1)

α1(α1 + 2β)(α1 +Nβ + 2γ)
.

(23)
Similar procedure as in the case of the real
Gaussian noise can be performed for calcula-
tion of p{wn|H0}. The only difference is in the
shape Γ. Namely, its shape is now as in the
complex noise case stated in Subsection III.B.

E. Real Signal and Real Noise

This is a very realistic case. It can be
fully reduced to the case of the complex sig-
nal embedded in the complex noise (Subsec-
tion III.B). The only difference is that instead
of the Rn,i one should use the sub-matrix for
k1 < N/2 and k2 < N/2, and that instead of
wn,i and mn,i one should use the correspond-
ing sub-vectors. Therefore, the calculation de-
mands are reduced.

F. Other TF Representation

In the case of other TF representations, be-
longing to the Cohen class of distributions,
noise is strongly signal-dependent. Therefore,
the calculation of auto-covariance matrix and
vector of the mean values should be performed
for each instant [12]. This fact increases cal-
culation demands of the algorithm and again
shows that the WD possesses some very im-
portant advantages with respect to the other
TF distributions.

IV. A����
���

Algorithm for the estimation of the FM sig-
nal’s parameters can be summarized as fol-
lows:
1. Calculation of the WDxx(n, k).
2. Estimation of the noise variance and sig-

nal amplitude. The noise variance can be es-
timated as:

σ̂2ν =
1

0.6745
√
2
[R2 + jI2], (24)

R = median{|real(x(n)−x(n−1))|n ∈ [1, N)}
(25)

I = median{|imag(x(n)−x(n−1))|n ∈ [1, N)}
(26)

while the amplitude estimation is: Â2 =
1
N

∑
n |x(n)|2 − σ̂2.

3. Under H0 the mean value of the WD
is E{WDxx(n, ω)} = σ2ν , and estimation of
mn,0 is given as m0 = σ̂2ν . Estimation of the
auto-covariance matrix Rn,0 depends on the
considered noise case.
4. Under H1 we have mn,1 =

WDff (n, ω;a) + σ̂2ν , while calculation of Rn,1

depends on noise case.
5. Determination of log-likelihood ratio

L̃(a) for each a from the considered set.
6. Maximum of L̃(a) determines the IF pa-

rameters [9]:

â = arg
{
max
a

L̃(a)
}
. (27)

V. E���!�
�

Example 1: Consider a linear FM signal:
f(t) = A exp(jat2/2+jbt), with parameter set
a = (a, b) = (32π, 16π). Signal is considered
within t ∈ [−1, 1], with the sampling rate∆t =
1/128. The WD of noise-free signal is shown in
Figure 1a. Signal is embedded in a white com-
plex Gaussian noise with SNR = −10[dB].
The WD of noisy signal is shown in Figure
1b. Estimation is performed with proposed al-
gorithm, where the set of the considered para-
meters was Lab = {[−64π, 64π]×[−64π, 64π]}.
Log-likelihood ratio L̃(a) is shown in Figure
1c. From this figure one can readily see the
estimate of the signal parameters.

Example 2: Consider a sinusoidal FM sig-
nal: f(t) = A exp(ja sin(ω0t/a)), with para-
meters a = (ω0, a) = (16π, 16π). Signal is
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Fig. 1. Parametric estimation of the linear FM signal corrupted with complex Gaussian noise (left column) and
sinusoidal FM signal embedded in complex uniform noise (right column): a), d) WDs of noise-free signal;

b), e) WDs of noisy signal; c), f) L̃(a).

considered within the same time-interval and
with the same sampling rate as in the previous
example. The WD of this signal is shown in
Figure 1d. Signal is corrupted with the white
uniform complex noise with SNR = −10[dB].
The WD of the noisy signal is shown in Fig-
ure 1e. Signal parameters are estimated within
Lω0a = {[0, 32π]× [0, 32π]}. Procedure for es-
timation of the auto-correlation matrix from

Section III.B is used. The value E{|ν(n)|4} is
estimated as E{|ν(n)|4} ≈ −9σ̂4ν/5 by using
the property of the uniform noise. Estimation
of the signal parameters is shown in Figure 1f.

Example 3: Signal with parabolic IF is
considered: f(t) = A exp(jat3/3 + jbt2/2 +
jct), where a = (a, b, c) = (32π, 0, 16π). In
order to simplify the visual presentation, the
search is performed over parameter subspace
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Fig. 2. Parametric estimation of the parabolic FM signal embedded in real Gaussian noise (left column), and
real linear FM signal embedded in real Gaussian noise (right column): a), d) WDs of noise-free signal; b),

e) WDs of noisy signal; c), f) L̃(a).

for b = 0, Lac = {[−64π, 64π] × [−64π, 64π]}.
Signal is corrupted by a real Gaussian noise
with SNR = −10[dB]. The determination of
signal’s parameters is performed according to
Subsection III.C and Section IV. The WD of
the noise-free signal is shown in Figure 2a,
while the WD of noisy signal is shown in Fig-
ure 2b. Log-likelihood function L̃(a) is shown
in Figure 2c.

Example 4: Real linear FM signal: f(t) =
A cos(at2/2 + bt) is considered. Signal para-

meters are the same as in Example 1 with
SNR = −5[dB]. Due to spectral symmetry,
the search is performed in the modified para-
meter space Lab = {[0, 64π]× [0, 64π]}. Corre-
sponding WDs and log-likelihood function are
shown in Figures 2d-2f.

VI. C��	���
��

The ML estimator for the IF estimation is
proposed in this paper. The WD is used as
a tool for the IF estimation. Algorithm for



PARAMETRIC ESTIMATION OF THE FM SIGNALS USING WD-BASED ML ESTIMATOR 575

the IF estimation is presented. Determina-
tion of the algorithm parameters in various
noisy environments is discussed. An advan-
tage of the WD application, compared with
other TF representation from the Cohen class,
is noted. Numerical examples confirm our the-
oretical analysis.
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