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Performance of Quadratic
Time-Frequency Distributions as
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Abstract– General performance analysis of
the shift covariant class of quadratic time-
frequency distributions (TFDs) as instanta-
neous frequency (IF) estimators, for an arbi-
trary frequency-modulated (FM) signal, is pre-
sented. Expressions for the estimation bias and
variance are derived. This class of distributions
behaves as an unbiased estimator in the case of
monocomponent signals with a linear IF. How-
ever, when the IF is not a linear function of
time, then the estimate is biased. Cases of
white stationary and white nonstationary ad-
ditive noises are considered. The well-known
results for the Wigner distribution (WD) and
linear FM signal, and the spectrogram of sig-
nals whose IF may be considered as a constant
within the lag window, are presented as special
cases. In addition, we have derived the variance
expression for the spectrogram of a linear FM
signal that is quite simple but highly signal de-
pendent. This signal is considered in the cases
of other commonly used distributions, such as
the Born-Jordan and the Choi-Williams distri-
butions. It has been shown that the reduced
interference distributions outperform the WD
but only in the case when the IF is constant or
its variations are small. Analysis is extended to
the IF estimation of signal components in the
case of multicomponent signals. All theoretical
results are statistically confirmed.

I. I������	�
��

Instantaneous frequency (IF) estimation is
an important research topic in signal analysis
[2], [3], [14]-[22], [28]-[29]. There are several
approaches to this problem. Time-frequency
distribution (TFD)-based approach is one of
them [14]-[16], [18], [28], [29]. The basis for
using TFDs in the IF estimation is their first
moment property, [3], [4], [12]. The first-order
TFD moment, with respect to frequency, pro-
vides an acceptable IF definition for a time-
varying signal. The TFD, which is used to

IEEE Transactions on Signal Processing, Vol.51,
No.1, Jan. 2003.

recover the IF as its first moment, provides
an unbiased estimate. The presence of noise,
however, leads to a serious degradation of the
first moment estimate due to the absence of
any averaging in its definition. In other words,
the first moment may have a high statistical
variance, even for high values of input signal-
to-noise ratio (SNR) [22]. TFDs concentrate
the energy of a signal at and around the IF in
the time-frequency plane, [3], [18], [22], [23].
Consequently, the peak detection of the TFDs
is used as an IF estimator, as a natural alter-
native to the first moment.

The IF estimation based on TFDs maxima
is analyzed in [3], [5], [14]-[17], [21], [22], [28],
and [29]. Out of the quadratic class of TFDs,
only the most frequently used ones are consid-
ered there: the Wigner distribution (WD) for
linear frequency-modulated (FM) signal and
the spectrogram for signals with constant fre-
quency. It has been shown that in the case of
noisy signals, this estimate highly depends on
the SNR, as well as on the window width.

In this paper, we present a general analy-
sis of an arbitrary shift covariant quadratic
TFD as an IF estimator for any FM signal.
Expressions for the bias and variance of this
IF estimator are derived. When the IF is a
nonlinear function of time, then its estimate
is biased for all TFDs from this class (Cohen
class of TFDs-CD), whereas they behave as
unbiased estimators in the case of monocom-
ponent signals with linear IF. The exact ex-
pressions for the IF estimator variance in the
cases of white stationary and white nonsta-
tionary noises are derived. The correspond-
ing expressions for some frequently used TFDs
from the CD are obtained as special cases as
well. We have presented the well-known re-
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sults for the pseudo WD and linear FM sig-
nal and for the spectrogram of signals whose
IF may be considered as a constant. In addi-
tion, we have derived the variance expression
for the spectrogram of a linear FM signal. This
signal is considered in the cases of other com-
monly used TFDs, such as Born-Jordan (BJD)
and Choi-Williams distribution (CWD). It has
been shown that the reduced interference dis-
tributions (RID) outperform the pseudo WD
but only in the case when the IF is constant
or its variations are small. For highly nonsta-
tionary signals, the pseudo WD can produce
better results. The analysis is extended to the
multicomponent signals. It has been shown
that the results obtained for monocomponent
signals remain valid for the multicomponent
ones when TFDs from RID class are used and
signal components are well separated. For the
pseudo WD-based IF estimation, the variance
of each component depends on the total power
of all signal components.

The paper is organized as follows. After this
introduction, the IF estimator is defined, and
the problem is described. In Section III, analy-
sis of the estimation error is performed. The
bias and variance of the estimation error in
the cases of commonly used quadratic TFDs
are derived in Section IV. The IF estimation
of multicomponent signals is considered in Sec-
tion V. The obtained results are checked nu-
merically and statistically in Section VI.

II. B�	
������ T�����

Consider discrete-time observations

x(nT ) = f(nT ) + ε(nT ),

f(t) = A(t) exp(jφ(t)) (1)

where n is an integer, T is a sampling inter-
val, ε(nT ) is a white noise, and A(t) is a slow-
varying amplitude of the analyzed signal. By
definition, [6], [16], [18], the IF is a first deriv-
ative of the signal phase

ω(t) = φ′(t) ≡ dφ(t)

dt
. (2)

Assume that ω(t) is an arbitrary smooth differ-
entiable function of time with bounded deriv-
atives

∣∣ω(r)(t)
∣∣ =

∣∣∣φ(r+1)(t)
∣∣∣ ≤ Sr(t), r ≥ 1.

The general form of the quadratic shift-
covariant TFDs (CD) is, [4], [6], [12], [13], [30]

Cx(t, ω; c) =
1

2π

∞∫

−∞

∞∫

−∞

∞∫

−∞

c(θ, τ)

×x(u+ τ

2
)x∗(u− τ

2
)e−jθ(t−u)−jωτdθdudτ. (3)

Its discrete-time domain form is

Cx(t, ω; c) =
T 2

π

∞∑

n=−∞

∞∑

k=−∞

∫ ∞

−∞

c(θ, 2nT )

×x(kT +nT )x∗(kT −nT )e−jθ(t−kT )−j2ωnTdθ.
(4)

After the integration over θ, and substitution
kT − t = mT , we get

Cx(t, ω;ϕ) =
∞∑

n=−∞

∞∑

m=−∞

ϕ(mT,nT )

×x(t+mT+nT )x∗(t+mT−nT )e−j2ωnT (5)

with

ϕ(mT,nT ) =
T 2

π

∫ ∞

−∞

c(θ, 2nT )ejθmT dθ.

Suppose that ϕ(t, τ) has a finite width along
time and lag directions ϕ(t, τ) = 0 for |t| >
1/2, |τ | > 1/2. This is then the pseudo (win-
dowed) form of a TFD. In numerical realiza-
tion, finite limits must be used. The notation
ϕh(mT,nT ) = (T/h)2ϕ(mT/h, nT/h) will be
used for a finite width h, h > 0, of the ker-
nel in both directions. The finite width h is
used in definition of the TFDs from CD in or-
der to localize the estimate. The factor (T/h)2

is used so that the integral (sum) of ϕh(t, τ)
over time and lag is h independent. Of course,
constant factor (T/h)2 does not influence the
IF estimation analysis in any way. Note that
for most of commonly used TFDs, the kernel
is a symmetric function in both time and lag
axes. The kernel, which has been represented
in its time-lag (ϕ(t, τ)) or ambiguity domain
(c(θ, τ)), determines the TFD characteristics.
Different kernels produce different TFDs [4],
[12], such as the WD, together with its pseudo
and smoothed forms, spectrogram, and the
TFDs from the RID class [4], [12], [13], [23].
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Let us analyze an arbitrary quadratic TFD
of the signal f(t). Using the fact that the
signal has a slow-varying amplitude f(t +
mT ±nT )ϕh(mT,nT ) ∼= A(t) exp[jφ(t+mT ±
nT )]ϕh(mT,nT ), and expanding φ(t +mT ±
nT ) into a Taylor series around t (up to the
third order term in order to enable one to per-
form the estimation error analysis in the case
of FM signals whose IF is not constant), we
get

Cf (t, ω;ϕh)

= |A(t)|2
∞∑

n=−∞

∞∑

m=−∞

ϕh(mT,nT )×

e−j[2(ω−φ
′(t))(nT )−2φ(2)(t)(mT )(nT )−�φ(t,mT,nT )]

(6)
where 	φ(t,mT,nT ) is a residue of the phase.
It can be represented as

	φ(t,mT, nT )

=
∞∑

s=3

φ(s)(t)

s!
[(mT + nT )s − (mT − nT )s]

=
∞∑

s=3

φ(s)(t)

s!

s∑

k=0

(
s

k

)
(mT )s−k(nT )k[1−(−1)k].

(7)
Note that TFDs from the CD would have a
maximum at ω = φ′(t) if φ(s)(t) = 0 for s ≥
2. Thus, the IF estimate can be defined as a
solution of the following problem, [16], [22]:

ω̂h(t) = arg[max
ω∈Qω

{Cx(t, ω;ϕh)}] (8)

where Qω = {ω : 0 ≤ |ω| < π/2T} is a ba-
sic frequency interval. The estimation error,
produced at a time-instant t, is

	ω̂h(t) = ω(t)− ω̂h(t). (9)

III. A�����
� �� ��� E��
���
�� E����

Since the estimate of IF ω̂h(t) is defined by
the stationary point of Cx(t, ω;ϕh), it is deter-
mined by the zero value of ∂Cx(t, ω;ϕh)/∂ω.
Linearization of ∂Cx(t, ω;ϕh)/∂ω = 0 with re-
spect to [16]

1) small estimation error 	ω̂h(t);
2) small residual of the phase deviation 	φ;
3) noise ε;

4) squared noise ε2, which gives

∂Cx(t, ω;ϕh)

∂ω
|0 +

∂2Cx(t, ω;ϕh)

∂ω2
|0	ω̂h(t)

+
∂Cx(t, ω;ϕh)

∂ω
|0δ�φ +

∂Cx(t, ω;ϕh)

∂ω
|0δε

+
∂Cx(t, ω;ϕh)

∂ω
|0δε2 = 0 (10)

where |0 means that the above derivatives
are calculated at the point ω = φ′(t), ε =
0, and 	φ(t,mT, nT ) = 0. The last three
terms in (10) determine the variations of
∂Cx(t, ω;ϕh)/∂ω caused by 	φ, ε, and ε2, re-
spectively.

The terms from (10) are [16]

∂Cx(t, ω;ϕh)

∂ω
|0 = 0

∂2Cx(t, ω;ϕh)

∂ω2
|0 = −4 |A(t)|2Rh(t)

∂Cx(t, ω;ϕh)

∂ω
|0δ�φ ∼= 2 |A(t)|2 Ph(t)

∂Cx(t, ω;ϕh)

∂ω
|0δε2

= 2
∞∑

n=−∞

∞∑

m=−∞

ϕh(mT,nT )

×ε(t+mT + nT )ε∗(t+mT − nT )

×(−jnT )e−j2φ′(t)nT (11)

whereas ∂Cx(t, ω;ϕh)/∂ω|0δε will be given
separately. The functions Rh(t) and Ph(t) are
defined by

Rh(t) =
∞∑

n=−∞

∞∑

m=−∞

ϕh(mT,nT )(nT )2

×ej2φ(2)(t)(mT )(nT ) (12)

Ph(t) =
∞∑

n=−∞

∞∑

m=−∞

ϕh(mT,nT )

×	φ(t,mT,nT )(nT )ej2φ
(2)(t)(mT )(nT ). (13)

Note that ∂Cx(t, ω;ϕh)/∂ω|0 = 0 follows from
the symmetry of the kernel ϕh(mT,nT ). Us-
ing the notation

Qh =
∂Cx(t, ω;ϕh)

∂ω
|0δε +

∂Cx(t, ω;ϕh)

∂ω
|0δε2

(14)
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we have

	ω̂h(t) =
1

2Rh(t)
(Ph(t) +

Qh

2 |A(t)|2
). (15)

In order to get the exact value of the IF esti-
mator variance, the term ∂Cx(t, ω;ϕh)/∂ω|0δε
will be expressed by using the inner-product
form of the CD [1], [8], [24]

Cx(t, ω;ϕh) =
∞∑

n=−∞

∞∑

m=−∞

ϕ̃h(mT,nT )

×[x(t+mT )e−jωmT ][x(t+nT )e−jωnT ]∗ (16)

where ϕ̃h(mT,nT ) = ϕh((m + n)T/2, (m −
n)T/2). Consequently

∂Cx(t, ω;ϕh)

∂ω
|0δε

= j
∞∑

n=−∞

∞∑

m=−∞

ϕ̃h(mT,nT )(n−m)T

×[f(t+mT )ε∗(t+nT )+f∗(t+nT )ε(t+mT )]

×e−jω(m−n)T |0. (17)

We can conclude that for the white noise
ε(nT )

E

{
∂Cx(t, ω;ϕh)

∂ω
|0δε

}
= 0,

and

E

{
∂Cx(t, ω;ϕh)

∂ω
|0δε2

}
= 0.

Thus, E{Qh} = 0. Therefore, the estimation
error bias and variance are

E{	ω̂h(t)} =
Ph(t)

2Rh(t)
(18)

var{	ω̂h(t)} =
var{Qh}

16 |A(t)|4 |Rh(t)|2
(19)

where Rh(t) is defined by (12). By expanding

exponential function exp(j2φ(2)(t)(mT )(nT ))
into a power series, we may represent Rh(t) as

Rh(t) =
∞∑
i=0

(−1)i(2φ(2)(t))2i
(2i)!

Bh(2i, 2i+ 2)

(20)

where
Bh(k, l)

=
∞∑

n=−∞

∞∑
m=−∞

ϕh(mT,nT )(mT )k(nT )l (21)

are the moments of ϕh(mT,nT ). From the
kernel ϕh(mT,nT ) symmetry, it follows that
the moments Bh(k, l) are different from zero
only for even indexes k, l. By using the most
significant terms in (20), Rh(t) may be approx-
imated as

Rh(t) ∼= Bh(0, 2)− 2(φ(2)(t))2Bh(2, 4). (22)

Note that when T → 0, we have:

Bh(k, l)→ hk+lbk,l

= hk+l
1/2∫

−1/2

1/2∫

−1/2

ϕ(t, τ)tkτ ldtdτ . (23)

Now, expressions for the bias and variance,
given in general case by (18) and (19), will
be analyzed.

A. IF Estimation Variance

In the sequel, we will consider the non-
stationary, complex-valued, white, Gaussian
noise ε(nT ) with the auto-correlation Rεε(t+
mT, t + nT ) = I(t +mT )δ(m − n), I(t) ≥ 0.
The stationary noise can be obtained as a
special form of the nonstationary one, with
I(t) = σ2ε.
Proposition 1: Let ω̂h(t) be a solution of

(8). For small estimation error and an FM
signal f(t) = A(t) exp(jφ(t)), the IF estima-
tion variance is

var{	ω̂h(t)}

=
2CI(t, 0;

∣∣ϕh1
∣∣2) +Cf (t, φ

′(t); Φ̃h)

8 |A(t)|4 |Rh(t)|2
(24)

where Cf (t, φ
′(t); Φ̃h) is a quadratic TFD

(with the new kernel Φ̃h = −Ψ̃hItΨ̃
∗
h) of

the analyzed signal f(t) at its IF, and Ψ̃h =
An−m . ∗ ϕ̃h. Here, ϕ̃h is a matrix with ele-
ments ϕ̃h(mT,nT ), whereas An−m is a matrix
with elements A(m,n) = n − m, for m,n =
1, 2, ..., N (N represents assumed finite limits
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for m,n). The operator .∗ denotes element-
by-element matrix multiplication. The matrix
It is a diagonal matrix, with I(t + nT ) be-

ing its elements. In addition, CI(t, 0;
∣∣ϕh1

∣∣2)
represents a quadratic TFD of I(t) with a

new kernel
∣∣ϕh1(mT,nT )

∣∣2, ϕh1(mT,nT ) =
ϕh(mT,nT )(nT ), [24].

Special Case: A linear FM signal1 f(t) =

A(t)ejat
2/2 corrupted by a stationary, com-

plex, white, Gaussian noise, produces the IF
independent variance

var{	ω̂h(t)} =
σ2ε[2σ

2
εWh +Cf (0, 0;−Ψ̃2

h)]

8 |A(t)|4 |Rh(t)|2
(25)

where

Wh =
∞∑

n=−∞

∞∑

m=−∞

|ϕh(mT,nT )|2 (nT )2.

(26)
The proof of Proposition 1 is given in the

Appendix.

B. IF Estimation Bias

Proposition 2: Let ω̂h(t) be a solution of
(8). For small estimation error, the IF esti-
mation bias is

E{	ω̂h(t)}

=
1

Rh(t)

∞∑

i=0

(−1)i[2φ(2)(t)]2i
(2i)!

∞∑

s=1

φ(2s+1)(t)

(2s+ 1)!

×
s∑

k=0

(
2s+ 1

2k + 1

)
Bh(2s− 2k + 2i, 2k + 2i+ 2)

(27)
where Rh(t) is given by (20).

Proof of this Proposition follows from de-
finition (13) of Ph(t), and definition (7) of
	φ(t,mT, nT ), by using the symmetry of the
time-lag kernel ϕ(t, τ). Note that the bias is
defined by (18).

Special Case: Assuming that the IF of ana-
lyzed signal is quadratic φ(t) = bt3/3, we have

E{	ω̂h(t)} =
1

2Rh(t)

∞∑

i=0

(−1)i[2φ(2)(t)]2i
(2i)!

×(Bh(2i+ 2, 2i+ 2) +
1

3
Bh(2i, 2i+ 4))φ(3)(t).

(28)

The most significant bias terms are obtained
for i = 0, 1

E{	ω̂h(t)} ∼=
1

2Rh(t)
[Bh(2, 2) +

1

3
Bh(0, 4)

−2(φ(2)(t))2(Bh(4, 4) +
1

3
Bh(2, 6))]φ

(3)(t).

(29)
Since the higher order moments (21) are small,
Bh(4, 4)+Bh(2, 6)/3 is relatively small as com-
pared with Bh(2, 2) +Bh(0, 4)/3 and Bh(2, 4)
is relatively small as compared with Bh(0, 2),
when Rh(t) ∼= Bh(0, 2) according to (22), we
can write

E{	ω̂h(t)} ∼=
Bh(2, 2) +Bh(0, 4)/3

2Bh(0, 2)
φ(3)(t)

(30)
or

|E{	ω̂h(t)}| ≤ S2

∣∣∣∣
Bh(2, 2) +Bh(0, 4)/3

2Bh(0, 2)

∣∣∣∣

with S2 = sup
t
{φ(3)(t)}. (31)

IV. S��	
�� C���� �� Q������
	 TFD�

The expressions for variance and bias in the
case of any TFD from CD may be obtained as
special cases of (24), (25), and (27). Let us
write these expressions for the cases of most
important and frequently used TFDs.

1) Pseudo WD: For this TFD,

ϕ̃h(mT,nT ) = wh(mT )δ(m+ n)wh(nT ),

Rh(t) = Bh(0, 2) =
∞∑

n=−∞

w2h1(nT )→ ThMw2

2

where wh(nT ) = (T/h)w(nT/h) is a real-
valued and even window function, wh1(nT ) =

wh(nT )(nT ), and Mw2

r =
1/2∫
−1/2

w2(τ)τrdτ is

the rth moment of the squared window w2(τ).
Namely, here we use the notation

Mw
r =

1/2∫

−1/2

w(τ)τrdτ (32)
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in order to represent the rth moment of the
window w(τ). The rth moments of the win-
dow’s w(τ) kth power wk(τ) are denoted by

Mwk

r . Thus, we get

var{	ω̂h(t)}

=
WDI(t, 0;wh2) + 2WDI,|f|2(t, 0;wh2)

4 |A(t)|4 |Rh(t)|2
(33)

bias(t, h)

=
Bh(0, 4)

6Bh(0, 2)
ω(2)(t) =

1

6

Mw2

4

Mw2
2

ω(2)(t)h2 (34)

where wh2(nT ) = w2h(nT )(nT ), whereas
WDx,y denotes the cross-WD. For the case of
a stationary, white, complex, Gaussian noise

var{	ω̂h(t)} =
σ2ε

2 |A(t)|2
(1 +

σ2ε

2 |A(t)|2
)Ww

T

h3

(35)
where

Ww = Mw4

2 /(Mw2

2 )2 (36)

is a constant, dependent on the window w(τ)

form, and Mw4

2 is the second-order moment of
window w4(τ). Values of Ww for some com-
monly used windows are presented in Table I.
Note that for the rectangular window wh(nT ),
variance (35) and bias (34) are reduced to the
well-known expressions from [16]

var{	ω̂h(t)} =
6σ2ε

|A(t)|2
(1+

σ2ε

2 |A(t)|2
)
T

h3
(37)

bias(t, h) =
1

40
ω(2)(t)h2. (38)

One may conclude that in the case of ana-
lyzed FM signals, var{	ω̂h(t)} is not depen-
dent on the phase φ(t) and its derivatives, i.e.,

var{	ω̂h(t)} is constant for all values of φ(2)(t)
in the case of linear FM signals.

2) Spectrogram: Here, we have:

ϕ̃h(mT,nT ) = wh(mT )wh(nT ).

In this case, two parts of variance var{Qh} [see
(68) from the Appendix] have the forms

var{∂Cx(t, ω;ϕh)
∂ω

|0δε}

= 2STFTI(t, 0;w
2
h1)SPECf (t, φ

′(t);wh)

+2STFTI(t, 0;w
2
h)SPECf (t, φ

′(t);wh1)

−4STFTI(t, 0;wh2)
·Re[STFTf (t, φ′(t);wh)STFT ∗f (t, φ′(t);wh1)]

(39)

var{∂Cx(t, ω;ϕh)
∂ω

|0δε2}

= 2Re[STFTI(t, 0;w
2
h1)STFT

∗
I (t, 0;w

2
h)]

−2SPECI(t, 0;wh2) (40)

where STFT (t, ω;wh) represents the short-
time Fourier transform, SPEC(t, ω;wh) =

|STFT (t, ω;wh)|2, whereas Rh(t), (20), and
(21), is

Rh(t) =
h2

4

∞∑

i=0

(−1)i(h2φ(2)(t)/2)2i
(2i)!

×
2i∑

i1=0

2i+2∑

i2=0

(
2i

i1

)
(−1)i2

(
2i+ 2

i2

)

×Mw
4i+2−i1−i2 ·Mw

i1+i2 . (41)

Substitution of (39) and (40) into (68) pro-
duces variance var{Qh}. Then, substitution of
the obtained variance and (41) into (19) gives
the IF estimator variance in the case of the
spectrogram. From (39), it can be concluded
that var{	ω̂h(t)}, in the case of spectrogram,
is highly signal dependent. In the same way,
starting from (28) and (30), the bias of the IF
estimator can be obtained [25].

Special Case: Consider linear FM sig-
nal f(t) = A(t) exp(jat2/2) corrupted by
the stationary [or quasistationary I(t +
nT ) = I(t)], complex, white, Gaussian noise.
Then, we have SPECf (0, 0;wh1) = 0 and
STFTI(t, 0;wh2) = 0. Thus

var{∂Cx(t, ω;ϕh)
∂ω

|0δε}

= 2σ2εThM
w2

2 · SPECf (0, 0;wh) (42)

where
SPECf (0, 0;wh)

= |A(t)|2
∣∣∣∣∣

∞∑

i=0

(jh2a/2)i

i!
Mw
2i

∣∣∣∣∣

2

(43)
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TABLE I

C���
	
���� Ww, Sw, ��� Cw, ���
��� !� (36), (45), ��� (46), �����	�
(���, ��� (��
��� )
���) w(τ)

�����. T���	���� G����
�� )
���) w(τ) = exp(−(πτ)2) 
� 	���
�����.

Window w(τ) Rectangular Hanning Hamming Triangular Gaussian
Ww 12 54.46 41.66 34.29 36.40
Sw 12 28.11 19.73 19.20 17.89
Cw 5.3 · 10−3 1.77 · 10−3 2.94 · 10−3 2.74 · 10−3 3.20 · 10−3

whereas Rh(t) is given by (41) with φ(2)(t) =
a. Now, the exact IF estimation error 	ω̂h(t)
variance may be obtained by substituting (41)-
(43) into (19).

Since the rth moment of the window w(τ)
is a rapidly decreasing function of the order
r, then for a relatively small a (a2Cwh

4 < 5;
in the realization from Fig. 1, this means a ≤
0.6), var{	ω̂h(t)} can be closely approximated
by the following simple form:

var{	ω̂h(t)} ∼=
σ2ε

2 |A(t)|2
T

h3
Swe

a2Cwh
4

(44)

which is obtained by substituting i = 0, 1 into
(41) and (43). Here

Sw = Mw2

2 /(Mw
2 )

2 (45)

and

Cw =
1

4

(
(
Mw
2

Mw
0

)2 +
Mw
6

Mw
2

− Mw
4

Mw
0

)
(46)

are the window w(τ)-dependent constants; see
Table I [25]. Note that due to the ker-
nel ϕ̃h(mT,nT ) symmetry, the same values
of variance var{	ω̂h(t)} hold for negative a
with a → |a|. Conclude that in this case,
var{	ω̂h(t)} is not constant. It is highly sig-
nal dependent. As a increases, var{	ω̂h(t)}
increases from the value

var{	ω̂h(t)} ∼=
σ2ε

2 |A(t)|2
Sw

T

h3
, for a = 0

(47)
which has been derived in literature as the
spectrogram variance [15]. Of course, it holds
only for a = 0, whereas for other values of
a, more general relations (41)-(44), which are
derived in this paper, hold.

3) Smoothed Pseudo WD: In this case [4],
[6],

ϕh(mT,nT ) = γ exp(−(mT )2/α− (nT )2/β).

For α = β, ϕ̃h(mT,nT ) = wh(mT )wh(nT ),
where wh(mT ) =

√
γ exp(−(mT )2/(2α)) is

the truncated Gaussian window. Conse-
quently, the bias and variance expressions may
be directly obtained from those in the case of
spectrogram for the truncated Gaussian win-
dow wh(mT ).

4) General Form of Variance for Small
Signal Rate: Let us consider the value of
var{	ω̂h(t)} for an arbitrary quadratic TFD
in the case of FM signals with a small signal
rate within the kernel width φ(2)(t) = a → 0.
Then, Rh(t), (22), and (23) takes the form

Rh(t) ∼= Bh(0, 2)→ h2 · b0,2 (48)

where b0,2 is a constant depending on the ker-
nel ϕ(t, τ). It is defined by (23). In this case,

Cf (0, 0;−Ψ̃2
h) from (25) becomes

Cf (0, 0;−Ψ̃2
h)→ |A(t)|2 · ThCC (49)

where CC is the kernel ϕ(t, τ)-dependent con-
stant

CC =

1/2∫

−1/2

1/2∫

−1/2

1/2∫

−1/2

ϕ̃(t1, τ)ϕ̃
∗(t2, τ)

×(t1 − τ)(t2 − τ)dt1dt2dτ. (50)

Therefore, substituting (48) and (49) into
(25), a general form [valid for any TFD and

small φ(2)(t) = a] of var{	ω̂h(t)} can be ob-
tained as

var{	ω̂h(t)} ∼=
σ2ε

8 |A(t)|2
· CC

|b0,2|2
· T
h3

. (51)
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Note that (35) and (47) are just the special
cases of (51).

Bias dependence on the kernel width h can
easily be obtained from (30) as

E{	ω̂h(t)} ∼= CBφ
(3)(t)h2 (52)

where bk,l are defined by (23) and

CB =

(
b2,2 +

1

3
b0,4

)
/ (2b0,2) . (53)

This expression in not restricted to the small
φ(2)(t) since φ(2)(t) is multiplied by higher or-
der moments of the kernel, which are already
small. The total IF estimation MSE as a func-
tion of h, for the case presented here, is

MSE = var{	ω̂h(t)}+ (E{	ω̂h(t)})2

=
σ2ε

8 |A(t)|2
· CC

|b0,2|2
· T
h3

+(CBφ
(3)(t))2·h4. (54)

The MSE minimization, with respect to h,
then reduces to the cases studied in [15], [16],
and [27].

V. M���
	�������� S
�����

Consider a multicomponent signal

f(t) =
M∑

p=1

fp(t) =
M∑

p=1

Ape
jφp(t) (55)

and assume a definition of the IFs as the
phase derivatives of the signal’s components
φ′p(t) = dφp(t)/dt, p = 1, 2, ...,M . The IF es-
timation problem here consists of calculating
the estimates of φ′p(t), p = 1, 2, ...,M .

In this case, a quadratic TFD Cf (t, φ
′
i(t);

Φ̃h) from (24), at the frequency ω = φ′i(t),
can be written as

Cf (t, φ
′
i(t); Φ̃h)

=
∞∑

m1=−∞

∞∑

m2=−∞

Φ̃h(m1T,m2T )

×
(

M∑

p=1

M∑

q=1

fp(t+m1T )f
∗
q (t+m2T )

)

×e−jφ′i(t)(m1−m2)T . (56)

Based on the new kernel Φ̃h(m1T,m2T ) defin-
ition, in the case of stationary, white, complex,
Gaussian noise [see (76) from the Appendix],
(56) can be written in the form

Cf (t, φ
′
i(t); Φ̃h)

= σ2ε

∞∑

n=−∞

M∑

p=1

M∑

q=1

[
∞∑

m1=−∞

ϕ̃h(m1T,nT )

×(n−m1)Tfp(t+m1T )e
−jφ′i(t)m1T ]

×[
∞∑

m2=−∞

ϕ̃h(m2T, nT )

×(n−m2)Tfq(t+m2T )e
−jφ′i(t)m2T ]∗. (57)

The terms within summation could be consid-
ered to be the short-time Fourier transforms of
the signal components fp(t) with the window
function wϕ(mT,nT ) = ϕ̃h(mT,nT )(n−m)T,

STFTfp(t, φ
′
i(t);nT )

=
∞∑

m=−∞

ϕ̃h(mT,nT )(n−m)T

×fp(t+mT )e−jφ
′

i(t)mT . (58)

Now, Cf (t, φ
′
i(t); Φ̃h) can be written as

Cf (t, φ
′
i(t); Φ̃h)

= σ2ε

∞∑

n=−∞

∣∣∣∣∣

M∑

p=1

STFTfp(t, φ
′
i(t);nT )

∣∣∣∣∣

2

. (59)

Short-time Fourier transform STFTfp(t, ω;
nT ) is concentrated around the IF φ′p(t). The
concentration of STFTfp(t, ω;nT ) is deter-
mined by the window ϕ̃h(mT,nT )(n − m)T
in (58). For example, in the pseudo WD
case, the kernel function ϕ̃h(mT,nT )(n−m)T
is completely concentrated along m = −n
line, whereas in the cases of commonly used
RID, the kernel functions ϕ̃h(mT,nT )(n−m)T
are spread around m = −n line. In the
spectrogram ϕ̃h(mT,nT ) = wh(mT )wh(nT ),
the window width is determined by wh(mT ).
This means that in the case of the spectro-
gram and the RID, when STFTfp(t, ω;nT )
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and STFTfq(t, ω;nT ) do not overlap, for p �=
q, the following holds:

Cf (t, φ
′
i(t); Φ̃h)

∼= σ2ε

∞∑

n=−∞

M∑

p=1

∣∣STFTfp(t, φ′i(t);nT )
∣∣2 (60)

and
Cf (t, φ

′
i(t); Φ̃h)

∼= σ2ε

∞∑

n=−∞

∣∣STFTfi(t, φ′i(t);nT )
∣∣2

= Cfi(t, φ
′
i(t); Φ̃h). (61)

We can conclude that for the spectrogram and
TFDs from the RID class, the IF estimation
analysis derived for the case of monocompo-
nent signal f(t) remains valid for the multi-
component signals (55), for each component
separately, when they are well separated in
time-frequency plane.

In contrast to the RID, when the pseudo
WD is used in the IF estimation,
STFTfp(t, φ

′
i(t);nT ) has the form

STFTfp(t, φ
′
i(t);nT )

= w2h(nT )(2nT )fp(t− nT )ejφ
′

i(t)(nT ) (62)

since ϕ̃h(mT,nT ) = wh(mT )δ(m+n)wh(nT ),
and, consequently, in the case of nonoverlap-
ping components fp(t), p = 1, 2, ...,M , (59)
takes a simple form

Cf (t, φ
′
i(t); Φ̃h)

= 4σ2ε

(
M∑

p=1

A2p

)
∞∑

n=−∞

w4h(nT )(nT )
2. (63)

It can be concluded that variance (35) (derived
for the case of monocomponent signals) for the
estimation of φ′i(t), by applying pseudo WD,
increases with the number of components as

var{	ω̂hi(t)} =
σ2ε
4A4i

(2
M∑

p=1

A2p + σ2ε)Ww
T

h3
.

(64)
This is in accordance with the results from

[9] for this special case.
The above conclusions for multicomponent

signals will be illustrated and confirmed sta-
tistically in the next section.

VI. N����
	�� I����������
�� ���
S���
��
	�� A�����
�

A. Monocomponent Signals

Obtained theoretical results for the variance
of monocomponent signals (Proposition 1) are
checked statistically and are presented in Fig.
1a)-c). The following quadratic TFDs are con-
sidered:
• pseudo WD with the Hanning window

ϕ(mT,nT ) = w(nT )δ(m)w(nT );

• spectrogram with the Hanning window

ϕ(mT,nT ) = w(mT + nT )w(mT − nT );

• Born-Jordan distribution (BJD)

c(kT, 2nT ) =
sin((π/T )kTnT )

(π/T )kTnT

ϕ(mT,nT ) = DFTk{c(kT, 2nT )};
• Choi-Williams distribution (CWD)

c(kT, 2nT ) = exp(−((2π/T )kTnT/σ)2),

σ =
√
2π

ϕ(mT,nT ) = DFTk{c(kT, 2nT )}.
The linear FM signal f(t) = exp(j32πat2) is

assumed, within the time interval t ∈ [−1, 1]
and with the sampling period T = 1/128. The
IF of this signal varies from zero up to the max-
imal possible frequency (when a = 1), without
aliasing, within the considered interval. In the
case of spectrogram the signal f(t) is sampled
at the Nyquist rate T = 1/64. The signal f(t)
is corrupted by a stationary, Gaussian, white
noise with variance σε = 0.25. Analysis of
the various σε values (or SNR) influence on
the IF estimation is performed in Section VI-
D. Time-frequency plane consists of 256× 256
points in all considered cases. The BJD and
the CWD are calculated by using the kernel
definition in (θ, τ) domain, and the signal’s
ambiguity function. Note that the results for
the CWD highly depend on the parameter σ.
Thus, any comparison is relative. Here, we
have chosen the CWD parameter according to
the results from [23]. The analysis of kernel
width influence is done in Section VI-B. Note
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Fig. 1. IF variance obtained theoretically (dashed thick line), and statistically (thin solid line) as a function of

the normalized values of signal rate φ(2)(t) = a; a) Spectrogram, b) Born-Jordan distribution, and pseudo
Wigner distribution, c) Choi-Williams distribution and pseudo Wigner distribution. Note that a = 0
corresponds to the pure sinusoid, whereas the value of a = 1 corresponds to the diagonal of the considered
time-frequency domain.

that for these parameters, the spectrogram be-
haves the best for small a (a < 0.4). For
a > 0.4, the variance is smallest in the pseudo
WD. Therefore, these two distributions could
be reasonable choice for these values of a and
monocomponent signals. However, for multi-
component signals, in general, the pseudo WD
cannot be used, and we can see that for large
a, the BJD and CWD outperform the spectro-
gram. Once more, we want to point out that
any comparison is relative and would require
the parameter optimization for each distribu-
tion and each signal before a general conclu-
sion could be drawn.

A very high agreement of the theoretical
results (dashed thick line) and the statistical
data (thin solid line) can easily be observed in
Fig. 1. Theoretical values are produced by ap-
plying the derived expressions (24) and (25),
whereas the statistical data are obtained by
running 128 simulations, i.e., in 128 × 192 =
24576 points. Typical error functions for one
realization and three values of a are given in
Fig. 2. Note that var{	ω̂h(t)} in the BJD
and the CWD cases increases (as in the case of
spectrogram) as a increases. For small a→ 0,
they have lower variance than the pseudo WD,
whereas by increasing a, they perform worse
than the pseudo WD. These conclusions are
expected since the RID significantly reduce
noise energy located far from the θ, τ axes. For
the signals whose ambiguity function lies along
the θ, τ axes (as in the case of linear FM signals

with a → 0), the RID do not degrade signal
representation. On the other hand, for linear
FM signals with larger values of a, the RID
significantly degrade representation of the an-
alyzed signal. Consequently, in this case, it
may happen that the TFDs from RID class
have worse performance than the pseudo WD.
Oscillations in variance for the BJD case are
due to its pseudo form used in numerical im-
plementations. Namely, considering finite sup-
port of the BJD, significant kernel values can
be truncated. Since they are oscillatory, they
can cause variance oscillations as well. Note
that the obtained variances for a = 0, in the
case of spectrogram, with a Hanning window
and the cases of considered RID (BJD and
CWD) are almost equal. However, if a rec-
tangular window were used in the spectrogram
definition, its IF estimation variance would be
2.34 times smaller [according to (47) and the
values of constant Sw given in the Table I].

B. Influence of the Kernel Width in Time-Lag
Domain

The influence of kernel width is illustrated
on the spectrogram, the CWD, and the pseudo
WD. The IF variance decreases in the pseudo
WD as h increases, as expected from (35) [see
Fig. 3c)]. In addition, for the pseudo WD
case, the IF variance does not depend on the
signal rate a. For the IF estimation based on
the spectrogram and the CWD, the variance is
highly dependent on signal rate a. For small
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Fig. 2. Typical realization of the IF estimation error in the cases of the pseudo Wigner distribution (the thickest
line), the Choi-Williams distribution (line), and the Born-Jordan distribution (the thinnest line), for various
values of a: a) a = 0, b) a = 0.25, c) a = 0.5.

a, close to a = 0, an increase of the kernel
width h significantly increases the signal en-
ergy, whereas the amount of noise (depending
on the kernel energy) is only slightly increased.
Thus, the improvement in the estimation (de-
crease of the IF estimation variance) is sig-
nificant with larger h; see Fig. 3a) and b).
Note that for small a, the spectrogram and
the CWD produce better estimation results
than the WD (calculated with a Hanning win-
dow). For very small values of a, the CWD
(and other TFDs from the RID class) has the
same behavior of the IF estimation variance as
the pseudo WD [see Fig. 3a) and b) for a = 0
and Fig. 3c)], with different constant factors,

var{	ω̂h(t)} ∼
1

h3
. (65)

This relation is in accordance with (35), (47),
and (51).

However, for high values of the signal rate
a, the kernel width increase almost does not
influence the signal energy, whereas it slightly
increases the energy of noise. It results in the
IF estimation variance increase [Fig. 3a) and
b) for a = 0.5 and a = 1]. For these values of a,
the spectrogram and the CWD produces worse
results than the pseudo WD, as expected and
shown in Section VI-A.

C. Multicomponent Signals

Theoretical results for the multicomponent
signal (see Section V) are checked statisti-
cally on the spectrogram, BJD, CWD, and
the pseudo WD. A sum of parallel linear FM

noisy signals with the normalized amplitudes
A = 1 is considered. In the IF estimation,
the TFD maximum is detected, and then, a
small region around the detected maximum is
excluded. The IF of the next component is es-
timated as the position of the maximum in the
remaining part of frequency axis.

For the spectrogram, we have obtained that
the IF estimation variance depends neither on
the number of component nor on the distance
between components, as far as they do not
overlap. Thus, all lines in Fig. 4a) overlap and
coincide with the result for monocomponent
signal from Fig. 1a). Similar situation takes
place in the BJD and the CWD [see Fig. 4b)
and c)]. When the pseudo WD is used in the
IF estimation, then the variance in multicom-
ponent signal is dependent both on the num-
ber and the total power of components. The
results for monocomponent, two-component,
and three-component signals are presented in
Fig. 4d). The variance increases with the
number of components, independently on the
distance between components, exactly as ex-
pected from (64). In order to illustrate this
theoretical result, the components are taken
so that the cross-terms do not overlap with
the auto-terms.

In Fig. 5, the IF estimation MSE (MSE =
var{	ω̂h(t)}+(E{	ω̂h(t)})2) is presented. It
can be seen that the MSE coincides with the
IF estimation variance in all cases, except for
the BJD and the CWD for close components
and high signal rate a (close to the diagonal
of the time-frequency plane a = 1); see the
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Fig. 3. IF variance as a function of the kernel width h for various values of the normalized signal rate a: a)
Spectrogram, b) Choi-Williams distribution, c) pseudo Wigner distribution.

solid gray line in Fig. 5b) and c). Then, com-
ponents exhibit a high mutual influence, and
they start overlapping with non-negligible val-
ues, thus introducing the bias. The analytical
treatment of this effect was very complex, and
it is not given in the paper. For very small
values of a, some increase in the MSE for two-
component signal, with close components, can
be spotted in the BJD and CWD as well. In
this case, the variance is already very small,
and the bias, although very small, is noticable
due to the logarithmic scale. When the signal
is monocomponent (thin solid line) or when
the components in a multicomponent signal
are well-separated (dashed line), the MSE co-
incides with the variance, meaning that the
estimation can be treated as unbiased.

D. High Noise Effect in the IF Estimation

Sources of estimation error in the IF estima-
tion based on the TFD maxima are

1) bias;
2) random deviation of the maxima within

the auto-term caused by the small noise (This
noise was the topic of this paper. It can cause
that some of the auto-term points surpass the
value of true maximum at the IF, producing
the estimation error);

3) when the noise is very high, some TFD
values that are outside the signal’s auto-terms,
can surpass all the auto-term values.

Then, a false maxima position is detected.
It causes large random IF errors, uniformly
distributed over the entire frequency range.
When this kind of error starts to occur, it dom-
inantly degrades the estimation performance.

A detailed analysis of this kind of error is pre-
sented in [10]. Here, we will present the sta-
tistical data for the considered kernels, which
are in full accordance with the analysis and re-
sults from [10]. The IF estimation variance in
the BJD, the CWD, and the pseudo WD, as
a function of the input SNR, is presented in
Fig. 6. Bellow the SNR value, when the high
errors appear, a significant increase in the IF
estimation variance can be seen. For pseudo
WD, this SNR is approximately equal to 4 dB,
and unlike in the case of BJD and CWD, it is
independent on the signal rate a.

A very simplified example of the high noise
analysis in the pseudo WD will be given next.
It is easy to conclude that the ratio of the
pseudo WD maximal auto-term value (AWD)
and the standard deviation of the pseudo WD
values (σWD) for a noisy linear FM signal is
[2], [26], [28]

AWD

σWD

=

A2
N/2∑

m=−N/2

w(m)w(−m)

√
σ2ε(2A

2 + σ2ε)
N/2∑

m=−N/2

(w(m)w(−m))2

(66)
where A is the amplitude of the input signal,
and σ2ε is the variance of input noise. Since
the resulting noise in the pseudo WD may be
considered as Gaussian [10], then a point out-
side the auto-term will have a value greater
than κσWD with probability P (κ). For ex-
ample, for κ = 3, that probability is P (3) =
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Fig. 4. IF variance as a function of the normalized signal rate a for monocomponent and multicomponent
signals: a) Spectrogram, b) Born-Jordan distribution, c) Choi-Williams distribution, d) Pseudo Wigner
distribution. Thin solid line is for monocomponent signals (as in Fig.1); dashed line is for a two-component
signal with the distance between the components equal to one half of the whole frequency range; solid gray
line is for a two-component signal with the distance between the components equal to one fourth of the
whole frequency range; dot-dashed line in the pseudo Wigner distribution is for the three-component signal.

(1 − 0.9973)/2 = 0.00135, whereas for κ = 6,
it is P (6) = 10−6. Note that for each instant,
there are slightly less than N points outside
the auto-term.

For the example presented in Fig. 6, where
the Hanning window w(m) of N = 64 samples
is used, with the normalized amplitude A = 1,
we can conclude that the ratio AWD/σWD = 3
(when AWD = κσWD) will cause one high er-
ror, very roughly speaking, in less than 12 in-
stants [since 1/(12 × 60) ∼ P (3)]. Since the
value of this error can be very high, with this
relatively high frequency of occurrence, it will
be enough to degrade the IF estimation per-
formance. For AWD/σWD = 6, frequency of
the high error occurrence is very low, even for
a large number of points, since P (6) = 10−6.
Thus, the transition region (between no high
errors and very frequent high errors) is approx-
imately within 3 < AWD/σWD < 6. From
(66), for the considered example, we get 3 <

5.78/
√
σ2ε(2 + σ2ε) < 6, corresponding to

−0.7dB < SNR < 4.1dB

which is in agreement with Fig. 6c). Again,
this is only a very rough analysis of the high
noise influence. A rigorous analysis may be
found in [10].

VII. C��	���
��

In this paper, we have performed the IF esti-
mation analysis based on the general quadratic
shift-covariant class of TFDs. The exact
bias and variance expressions are derived. It
is shown that the IF estimation variance is
closely related to the TFD of the non-noisy
signal. The expressions, in the cases of most
frequently used TFDs, are obtained as spe-
cial cases of the general analysis. The re-
sults obtained for monocomponent signal re-
main valid for the multicomponent signals and
TFDs from the RID class when the compo-
nents are well separated. In the pseudo WD
case, the estimation variance depends on the
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Fig. 5. MSE of the IF estimation (variance plus squared bias) as a function of the normalized signal rate a,
for monocomponent and multicomponent signals: a) Spectrogram, b) Born-Jordan distribution, c) Choi-
Williams distribution, d) Pseudo Wigner distribution. Thin solid line is for monocomponent signals (as in
Fig.1); dashed line is for a two-component signal with the distance between the components equal to one
half of the whole frequency range; solid gray line is for a two-component signal with the distance between
the components equal to one fourth of the whole frequency range; dot-dashed line in the pseudo Wigner
distribution is for the three-component signal.

total power of all signal components. The ob-
tained results are checked numerically and sta-
tistically.

VIII. A�����
-

Proof of Proposition 1: The general expres-
sion for the variance of the estimation error is
given by (19), where the factor Qh is defined by
(14). According to the definition of Qh, we can
conclude that E{Qh} = 0 since, in the case of
white noise ε(nT ), E{∂Cx(t, ω;ϕh)/∂ω|0δε} =
0, and E{∂Cx(t, ω;ϕh)/∂ω|0δε2} = 0. There-
fore

var{Qh} = E{|Qh|2}

= E{
∣∣∣∂Cx(t,ω;ϕh)∂ω |0δε + ∂Cx(t,ω;ϕh)

∂ω |0δε2
∣∣∣
2

}.
(67)

By applying the property that the odd-order
moments of the zero mean ε(nT ) are equal to
zero [20], it follows that

E{∂Cx(t,ω;ϕh)∂ω |0δε × (∂Cx(t,ω;ϕh)∂ω |0δε2)∗} = 0,

and

E{(∂Cx(t,ω;ϕh)∂ω |0δε)∗ × ∂Cx(t,ω;ϕh)
∂ω |0δε2} = 0.

Thus, var{Qh} may be written as

var{Qh}

= var{∂Cx(t,ω;ϕh)∂ω |0δε}+var{∂Cx(t,ω;ϕh)∂ω |0δε2}.
(68)

The first term in (68) is highly signal and noise
dependent. Second term is signal independent
and time-frequency invariant for the case of
stationary noise [14]-[16]. In the case of com-
plex, Gaussian noise ε(nT ), [2], [11], [16], [26],
[28], the second term from (68) can be written
in the following form:

var
{
∂Cx(t,ω;ϕh)

∂ω |0δε2
}
= 4

×
∞∑

n1=−∞

∞∑

n2=−∞

∞∑

m1=−∞

∞∑

m2=−∞
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Fig. 6. IF estimation variance as a function of the input SNR, for various normalized signal rates: 1) a = 0, 2)
a = 0.125, 3) a = 0.25, 4) a = 0.5, 5) a = 1. a) Born-Jordan distribution, b) Choi-Williams distribution, c)
pseudo Wigner distribution.

×ϕh(m1T, n1T )ϕ
∗
h(m2T, n2T )

×[Rεε(t+m1T + n1T, t+m1T − n1T )

×R∗εε(t+m2T + n2T, t+m2T − n2T )

+Rεε(t+m1T + n1T, t+m2T + n2T )

×R∗εε(t+m1T − n1T, t+m2T − n2T )]

×(n1T )(n2T )e−j2φ
′(t)(n1−n2)T (69)

where Rεε(t+mT, t+nT ) = E{ε(t+mT )ε∗(t+
nT )} is the noise ε(nT ) auto-correlation func-
tion.

Special Case: For nonstationary, complex,
white, Gaussian noise, Rεε(t+mT, t+ nT ) =
I(t+mT )δ(m− n), I(t) ≥ 0, we get

var
{
∂Cx(t,ω;ϕh)

∂ω |0δε2
}

= 4
∞∑

n=−∞

∞∑

m=−∞

|ϕh(mT,nT )|2 (nT )2

×I(t+mT + nT )I∗(t+mT − nT )

= 4CI(t, 0;
∣∣ϕh1

∣∣2) (70)

where ϕh1(mT,nT ) = ϕh(mT,nT )(nT ).
Thus, in this case, the noise-only dependent
part of variance may be represented as a
quadratic TFD of I(t), with the new kernel∣∣ϕh1(mT,nT )

∣∣2, [24].
Special Case: For stationary, complex,

white, Gaussian noise, I(t) = σ2ε, we have

var
{
∂Cx(t,ω;ϕh)

∂ω |0δε2
}

= 4σ4ε

∞∑

n=−∞

∞∑

m=−∞

|ϕh(mT,nT )|2 (nT )2

= 4σ4εWh. (71)

Note that, as T → 0, Wh is reduced to

Wh → T 2W = T 2
1/2∫

−1/2

1/2∫

−1/2

|ϕ(t, τ)|2 τ2dtdτ

(72)
where W depends on the kernel ϕ(t, τ) type
only.

The first term from (68), for real and sym-
metric kernel ϕh(mT,nT ), and in the case of
complex, Gaussian noise ε(nT ) may be repre-
sented as

var
{
∂Cx(t,ω;ϕh)

∂ω |0δε
}

=
∞∑

n1=−∞

∞∑

n2=−∞

∞∑

m1=−∞

∞∑

m2=−∞

×ϕ̃h(m1T, n1T )ϕ̃
∗
h(m2T, n2T )

[f(t+m1T )f
∗(t+m2T )R

∗
εε(t+ n1T, t+ n2T )

+f∗(t+n1T )f(t+n2T )Rεε(t+m1T, t+m2T )]

×(n1 −m1)(n2 −m2)T
2

×e−jω(m1−m2)T e−jω(n2−n1)T |0. (73)

Applying ϕ̃h(m1T, nT ) = ϕ̃h(nT,m1T ), and
Rεε(t+mT, t+ nT ) = I(t+mT )Rεε(m− n),
I(t) ≥ 0, we get

var
{
∂Cx(t,ω;ϕh)

∂ω |0δε
}
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= 2
∞∑

m1=−∞

∞∑

m2=−∞

Φ̃h(m1T,m2T )

×[f(t+m1T )e
−jφ′(t)m1T ]

×[f(t+m2T )e
−jφ′(t)m2T ]∗

= 2Cf (t, φ
′(t), Φ̃h) (74)

where Cf (t, φ
′(t), Φ̃h) is a quadratic TFD

[with the new kernel Φ̃h(m1T,m2T ) =
Φh((m1 +m2)T/2, (m1 −m2)T/2)] of the an-
alyzed signal f(t) at the signal’s IF φ′(t). The

general form of the new kernel Φ̃h(m1T,m2T )
is [24]

Φ̃h(m1T,m2T )

=
∞∑

n1=−∞

∞∑

n2=−∞

ϕ̃h(m1T, n1T )

×ϕ̃∗h(m2T, n2T )(n1 −m1)T (n2 −m2)T

×I(t+ n2T )Rεε(n2 − n1)e
−jφ′(t)(n2−n1)T .

(75)
Special Case: For stationary, complex,

white, Gaussian noise, we get

Φ̃h(m1T,m2T )

= σ2ε

∞∑

n=−∞

ϕ̃h(m1T, nT )ϕ̃
∗
h(m2T, nT )

×(n−m1)(n−m2)T
2. (76)

For finite limits, this is a matrix multiplication
form

Φ̃h = σ2ε[An−m. ∗ ϕ̃h]× [Am−n. ∗ ϕ̃h] (77)

where An−m is a matrix with elements
A(m,n) = n −m, for m,n = 1, 2, ...,N . El-
ements of matrix ϕ̃h are ϕ̃h(mT,nT ). Let us

now introduce Ψ̃h = An−m. ∗ ϕ̃h. Then, be-
cause of symmetry and realness of matrix ϕ̃h,
ϕ̃∗h(m2T,nT ) = ϕ̃h(nT,m2T ), and the anti-
symmetry of matrix An−m, An−m = −Am−n,
we have

Φ̃h = −σ2εΨ̃2
h. (78)

Thus

var
{
∂Cx(t,ω;ϕh)

∂ω |0δε
}
= 2σ2εCf (t, φ

′(t);−Ψ̃2
h).

(79)

Special Case: For nonstationary, complex,
white, Gaussian noise, we have

Φ̃h(m1T,m2T )

=
∞∑

n=−∞

ϕ̃h(m1T, nT )ϕ̃
∗
h(m2T, nT )

×(n−m1)(n−m2)T
2I(t+ nT )

= −Ψ̃hItΨ̃
∗
h (80)

where matrix It is defined in Proposition 1.
Substitution of (70) and (80) into (19) gives
(24) of Proposition 1. In addition, by substi-
tuting (71) and (79) into (19), we get (25) of
the special case of Proposition 1.
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