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Robust DFT with high breakdown
point for complex-valued impulse noise

environment
Igor Djurovíc and Vladimir V. Lukin

Abstract–Modification of the robust DFT is

proposed in order to achieve high breakdown

point for signals corrupted by complex-valued

impulse noise with independent real and imag-

inary parts. Obtained results are compared

with existing robust DFT forms. In addition,

an adaptive procedure for selection of the mod-

ified robust DFT form is developed.

I. I������	�
��

In practice, signals are quite often corrupted
by non-Gaussian or impulse noise. Such sit-
uations can result from target glint in radar
signal processing [1], coding/decoding errors
in data transmission, apparatus malfunction,
atmospheric phenomena and man-made activ-
ities in communications [2], etc. Conventional
spectral analysis techniques are inefficient in
such cases. Recently, robust DFT forms have
been proposed for spectral analysis of signals
corrupted by impulse noise [2]:

x(n) = f(n) + ν(n), n ∈ [0, N), (1)

where f(n) is signal of interest, while ν(n) is a
white impulse noise, and N is number of sig-
nal samples. We will consider here the L-filter
form of the DFT (L-DFT) given as [3]:

XL(ω) =
N−1∑

m=0

am[rm(ω) + jim(ω)] (2)

where coefficients am satisfy
∑N−1

m=0 am = 1
and am = aN−1−m for m ∈ [0, N), while
rm(ω) and im(ω) are elements from the sets
R(ω) and I(ω)

R(ω) = {Re{x(n) exp(−jωn)} for n ∈ [0,N)}

IEEE Signal Processing Letters, Vol. 13, No. 1, Jan.
2006

I(ω) = {Im{x(n) exp(−jωn)} for n ∈ [0,N)}.
(3)

Values rm(ω) and im(ω) are sorted into non-
decreasing sequences: rm(ω) ≤ rm+1(ω) and
im(ω) ≤ im+1(ω). The α-trimmed form of
coefficients is commonly used (here given for
even number of samples N): am = 1/[2α(N −
2)+2] form ∈ [N/2−1−α(N−2), N/2+α(N−
2)] and am = 0 elsewhere, where α ∈ [0, 1/2].
Two special cases of the α-trimmed mean are:

• the standard DFT for α = 1/2 :

XS(ω) =
1

N

N−1∑

n=0

x(n) exp(−jωn). (4)

• the median-filter DFT form for α = 0.

These two transforms have quite different
behavior. The standard DFT is very sensitive
to impulses, while median-filter form, robust
to impulse noise, exhibits spectral distortion
effect. Taking this into account, it can be ex-
pected that there exists a trade-off in selec-
tion of α parameter. A general rule is that
impulse rejection property of the α-trimmed
mean filter improves with the decrease of α.
At the same time, the spectral distortion ef-
fect becomes more considerable. Then, quasi-
optimal parameter α, for the considered noise
environment, is such a value that produces reli-
able rejection of impulses introducing minimal
spectral distortions.
Above described robust DFT can be ap-

plied both to real and complex-valued signal
f(n) and noise ν(n) [4]. However, it is possi-
ble to pursue several alternatives in the case
of complex-valued x(n). Here we propose a
novel modification of the robust DFT that is
less sensitive to complex-valued impulse noise
with mutually independent real and imagi-
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nary parts. Potential applications of the pro-
posed modification are in the fields where
signal features are extracted from the spec-
trum of complex-valued signals, like for exam-
ple: direction-of-arrival estimation of signals
impinging on sensor arrays, coherent imag-
ing systems [5] (including SAR), estimation of
motion parameters in digital video-sequences
processing, etc.

II. B��
����� ��
�� 
�
���
�

Fundamental method for measurement of
the transform robustness to impulse noise in-
fluence is so called breakdown point [6]. For a
finite number of samples, the breakdown point
can be defined as the smallest percentage of
observations that must be replaced by arbi-
trary values in order to force an estimator to
produce the values arbitrary far from the pa-
rameter values generated by non-noisy data.
The breakdown point in the L-filter based

DFT for a real-valued noise is bp(α) = [N/2−
α(N − 2)]/N . Obviously, for the standard
DFT, the breakdown point is bp(0) = 1/N ,
since a single sample can produce arbitrary
estimate. For the median based estimate,
the breakdown point is bp(1/2) = 1/2, i.e.,
at least half of samples should be corrupted
by impulse noise in order to produce an ar-
bitrary estimate. The breakdown point can
be directly related to the number of im-
pulses that can be rejected with the trans-
form. Assume that we have a real valued
noise ν(n), with probability of impulse ap-
pearance equal to p. Then, modulated sig-
nal sequence x(n) exp(−jωn) has the real part
equal to Re{f(n) exp(−jωn)}+ ν(n) cos(ωn),
while imaginary part is Im{f(n) exp(−jωn)}−
ν(n) sin(ωn). Probability of resulting impulse
in both real and imaginary sequences is equal
to p. The L-DFT with parameter α will reject
impulses with percentage p for bp(α) > p, i.e.,
α should be selected as:

α <
N( 1

2
− p)

N − 2
. (5)

However, parameter α that rejects im-
pulses decreases in the case of complex-valued
noise with mutually independent real and
imaginary parts: ν(n) = ν1(n) + jν2(n),

E{ν1(n)ν2(n)} = 0. Assume that the per-
centage of impulses in both real and imagi-
nary parts is p. Then, resulting noise in the
real part of the modulated signal sequence
can be written as Re{ν(n) exp(−jωn)} =
ν1(n) cos(ωn) + ν2(n) sin(ωn). Under the
considered assumptions, probability of im-
pulse noise in resulting noise ν1(n) cos(ωn) +
ν2(n) sin(ωn) is approximately 2p − p2. The
same situation holds in the case of imaginary
part of modulated signal sequence. Then,
elements from the sets R(ω) and I(ω) are
corrupted by impulse noise with probability
2p−p2. In order to reject impulses, parameter
α in the L-DFT should be selected as:

α <
N( 1

2
− 2p+ p2)

N − 2
. (6)

In order to illustrate values in (5) and (6), con-
sider a typical example with calculation of the
DFT with N = 100 samples and percentage
of impulses of p = 0.25. Parameter α for real-
valued noise can be selected as α < 0.255 ac-
cording to (5), while in the second case it is
α < 0.064, i.e., significantly smaller value of α
should be selected. Recall that small α pro-
duces emphatic spectral distortion effects in
the L-DFT [4]. To avoid this drawback, we
propose a modification of the robust L-DFT
for signals with independent real and imagi-
nary disturbances in the next section.

III. P������� ���
�
	
�
��

In order to explain the proposed modifica-
tion, the standard DFT is rewritten as:

XS(ω) =
1

N

N−1∑

n=0

[Re{x(n)}

+j{Im{x(n)}] exp(−jωn)

= R(ω) + jI(ω), (7)

where R(ω) and I(ω) are the standard DFTs
of real and imaginary parts of signal x(n), re-
spectively:

R(ω) =
1

N

N−1∑

n=0

Re{x(n)} exp(−jωn)
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I(ω) =
1

N

N−1∑

n=0

Im{x(n)} exp(−jωn). (8)

For assumed noise model we can write that
Re{x(n)} = Re{f(n)}+ν1(n) and Im{x(n)} =
Im{f(n)}+ ν2(n). One can easily draw a con-
clusion that both real and imaginary parts
of modulated samples Re{x(n)} exp(−jωn)
and Im{x(n)} exp(−jωn), used for evalua-
tion of R(ω) and I(ω), are corrupted by im-
pulses with probability p (not approximately
2p− p2 as in the case of Re{x(n) exp(−jωn)}
and Im{x(n) exp(−jωn)}). Then the L-
statistics can be applied to both real and
imaginary parts of modulated signal samples
Re{x(n)} exp(−jωn) and Im{x(n)} exp(−jωn),
with parameter α according to (5), i.e., with
higher breakdown point than in the case of the
original L-DFT.
This connection between the standard DFT

of complex-valued signal and the standard
DFTs of real and imaginary parts can be used
for development of the modified L-DFT. The
modified version of the L-DFT can be calcu-
lated as:

X′

L(ω) = RL(ω) + jIL(ω), (9)

where RL(ω) and IL(ω) are the L-filter forms
of DFT calculated for Re{x(n)} exp(−jωn)
and Im{x(n)} exp(−jωn):

RL(ω) =
N−1∑

m=0

am[r
′

m
(ω) + ji′

m
(ω)]

IL(ω) =
N−1∑

m=0

am[r
′′

m
(ω) + ji′′

m
(ω)], (10)

where r′
m
(ω), i′

m
(ω), r′′

m
(ω) and i′′

m
(ω) are el-

ements from the sets r′
m
(ω) ∈ R′(ω), r′′

m
(ω) ∈

R′′(ω), i′
m
(ω) ∈ I′(ω) and i′′

m
(ω) ∈ I′′(ω)

R′(ω) = {Re{x(n)} cos(ωn) for n ∈ [0,N)}

I′(ω) = {Re{x(n)} sin(ωn) for n ∈ [0,N)}

R′′(ω) = {Im{x(n)} cos(ωn) for n ∈ [0,N)}

I′′(ω) = {Im{x(n)} sin(ωn) for n ∈ [0,N)},
(11)

sorted into the corresponding non-decreasing
sequences. Probability that an element from

any of the sets R′(ω), R′′(ω), I′(ω) and I′′(ω)
is corrupted by impulse noise is equal to p.
However, it seems that now two L-DFTs

are evaluated (RL(ω) and IL(ω)) for each fre-
quency, causing increase of the calculation bur-
den. Fortunately, the calculation complexity is
practically not increased, since the modified L-
DFT is evaluated only for ω ≥ 0, while it can
be easily calculated for ω < 0 as:

X ′

L(ω) = R
∗

L(−ω) + jI
∗

L(−ω). (12)

Note that similar property holds for the stan-
dard DFT of real-valued signals sinceXS(ω) =
X∗

S(−ω).
From this analysis it follows that the pro-

posed modification produces higher break-
down point than the original robust L-DFT
form, i.e., parameter α can be selected accord-
ing to (5), in order to reject impulses with
probability p in both real and imaginary parts.
Also, calculation burden is not increased since
two L-DFTs are evaluated only for ω ≥ 0.

IV. N����
	
� 
�
���
�

Consider the test signal

f(t) = exp(j sin(8π(t/N)2)), (13)

where t ∈ [0, 1] with N = 300 samples within
the interval, embedded in an impulse noise
with independent real and imaginary parts.
The impulse noise is equal to either −A or
A with probability a/2, while value 0 is as-
sociated with probability 1− a (in our exper-
iments it is set that impulses have five times
larger magnitude than the signal, i.e., A = 5).
The mean-squared-error (MSE) is evaluated as
a quality measure:

MSEi(a, α) = E{|Ξ(ω)− F (ω)|
2} (14)

where Ξ(ω) is the transform of interest (L-filter
DFT form or its modification) while F (ω) is
the DFT of non-noisy signal. Index i in the
MSE denotes the used L-DFT form: i = 1 is
for L-DFT form (2), while i = 2 is for the pro-
posed modification. Difference MSE1(a, α)−
MSE2(a, α) is depicted in Fig.1a. It can be
seen that this function is positive-valued al-
most in entire domain. It means that the
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proposed modification produces smaller MSE
compared with the existing form. Also, it can
be seen that enhancement is small for α close
to 0.5 (both transforms approach the standard
DFT) and for small a (small number of im-
pulses in the signal). However, a significant
improvement is obtained for high probability
of impulses a and for small α (close to me-
dian form). These properties can be seen more
clearly in Figs.1b-1e where the MSEs are de-
picted for:
• fixed α = 0.45, close to the standard DFT
where only small improvement is achieved by
using the proposed modification;
• fixed α = 0.15, close to median DFT where
large improvement is obtained;
• small percentage of impulse a = 10% (the
optimal value for the proposed transform is
achieved for higher value of α than in the case
of the original L-DFT);
• large number of impulses a = 40% with
significant improvement achieved by the pro-
posed transform and very accurate results for
the wide region of parameter α values, α ∈
[0, 0.33].
Optimal value αopt for a known percent-

age of impulses in the proposed L-DFT form
is evaluated numerically as parameter α that
minimizes the MSE for the considered a
(Fig.2a). Numerically, we obtained linear
(αopt(a) = −0.56a + 0.48) and quadratic
(αopt(a) = 0.26a2 − 0.69a + 0.49) interpola-
tion for optimal value of αopt as a function of
probability a for the modified L-DFT. These
expressions could be useful when percentage
of impulses is known or accurately estimated.
However, this rarely occurs in practice. Sev-
eral various techniques are developed for adap-
tive estimation of the parameter α in the L-
filters [7], [8]. Here we consider the modified
Taguchi’s approach described in [7], [9] for the
adaptive α-trimmed mean filter as an example
of adaptive procedure that can produce accu-
rate results for the considered signal and noise
model. Adaptive α parameter is evaluated as:

αad =
1

2
E

{
|F̂ (ω)|2

|XS(ω)|2

∣∣∣∣∣
ω ∈ Ω

}

, (15)

whereXS(ω) is the standard DFT of noisy sig-

nal, while F̂ (ω) is an estimate of the non-noisy

signal DFT and Ω represents considered fre-
quency range. According to the Taguchi’s rec-
ommendation, we adopt that F̂ (ω) is the cor-
responding robust L-DFT with α = 1/6. For

|F̂ (ω)| ≈ |XS(ω)| it follows that αad ≈ 1/2,
i.e., the L-DFT approaches the standard DFT
since it can be assumed that this signal is not
corrupted by impulse noise. For high noise
influence |F̂ (ω)|2 	 |XS(ω)|2 it follows that
αad → 0, i.e., the adaptive L-DFT is close to
the median DFT form. In our experiments,
the Taguchi’s approach is applied to both ro-
bust L-DFT forms considered in the paper.
The minimal MSEs achieved with the consid-
ered transforms and the MSE produced by the
Taguchi’s approach are given in Fig.2b as a
function of a. It can be seen that the proposed
modification outperforms the original robust
DFT form. The Taguchi’s approach applied
to the original L-DFT form produces the MSE
that is, on the average, 37% higher than the
optimal transform (that could be evaluated
for a known impulse noise probability). The
Taguchi’s approach applied to the proposed
modification produces MSE just 4.5% higher
than the optimal transform. In order to show
this difference, small segment α ∈ [0.2, 0.3] is
magnified in Fig.2b.

Finally, some numerical data for MSEs are
summarized in Table I for various pairs (a, α).
The minimal MSE for the each considered
noise parameter a is highlighted by boldface.
Note that, MSE2 is smaller than MSE1 for
α < 0.5. Also, we would like to emphasize
the fact that the proposed modification intro-
duces considerably smaller MSE for small α
than the original robust form in the case of
non-noisy signal (a = 0), see second row in
Table I. The MSE achieved with the Taguchi’s
approach is given in Table I, last column. It
can be seen that for each considered impulse
probability this approach applied to the mod-
ified L-DFT form produces very accurate re-
sults. Procedure for adaptive selection of the
α-trimmed mean DFT parameter that can be
used for arbitrary impulse noise environment
will be topic of our further research.
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Fig. 1. Comparison of L-filter forms: (a) Difference MSE1(a, α)-MSE2(a, α); (b) MSEs for fixed α = 0.45; (c)
MSEs for fixed α = 0.15; (d) MSEs for fixed a = 0.10; (e) MSEs for fixed a = 0.40. Thin line - MSE1
calculated for L-DFT; Thick line - MSE2 calculated for proposed modification.

V. C��	���
��

Modification of the robust L-filter DFT pro-
ducing high breakdown point for complex-
valued impulse noise environments with in-
dependent real and imaginary parts, with-
out increase in calculation complexity, is pro-
posed. Simple technique for estimation of
the adaptive parameter in the L-filter DFT

form is introduced. Numerical examples con-
firm the presented theory. Application of the
proposed modification to practical problems
where the DFT is used to estimate parame-
ters of complex-valued signals corrupted by
impulse noise will be topic of our further re-
search.
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MSE1/MSE2 α = 0.5 0.4 0.3 0.2 0.1 0 Tag
a = 0 0/0 0.01/0.01 0.04/0.03 0.10/0.07 0.21/0.14 0.36/0.18 0.36/0
a = 0.1 0.58/0.58 0.19/0.13 0.28/0.15 0.43/0.20 0.62/0.29 0.84/0.35 0.37/0.16
a = 0.2 1.22/1.22 1.00/0.38 0.63/0.36 0.97/0.42 1.36/0.54 1.65/0.60 0.87/0.36
a = 0.3 1.84/1.84 1.89/1.19 1.24/0.64 1.54/0.69 2.23/0.85 2.81/0.92 1.67/0.64
a = 0.4 2.54/2.54 3.02/2.42 2.97/1.14 2.31/1.10 3.54/1.31 4.46/1.40 2.74/1.00
a = 0.5 3.04/3.04 4.28/3.25 4.28/2.02 3.78/1.60 4.91/1.83 6.49/1.98 4.09/1.53

TABLE I

MSE ��� ��� L-DFT �����. 1 - �#
��
�$; 2 - ��������. T'� (��� ������� 
	'
�)�� ��� 	���
�����

��
�� ��)
������� 
�� $
)�� 
� (����
	�. TAG ���
	�� ������� �(�

��� �
�' αad. V
���� 
� �'�

	���� 
�� �
)
��� �
�' 10−2.

Fig. 2. Comparison of the optimal L-DFT and
Taguchi’s approach: (a) Optimal α as a function of
a, αopt(a), for the modified L-DFT form. (b) MSE
of the L-DFT forms. Dash-dot line - proposed
modification with αopt(a); thick dashed line - orig-
inal L-DFT form with αopt(a); solid line - pro-
posed modification with αad; dotted line - original
L-DFT form with αad. Small segment a ∈ [0.2, 0.3]
has been enlarged in order to show difference be-
tween MSE for modified L-DFT for optimal para-
meter α and the Taguchi’s approach.
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