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Abstract– A novel adaptive clipping tech-
nique for filtering a constant amplitude fre-
quency modulated (FM) signal embedded in
non-Gaussian noise is proposed. It is based
on analysis and processing of the estimate of
probability density function of a FM signal re-
alization. As a result, modifications of two ro-
bust estimators of FM signal amplitude are pro-
posed. As shown, these estimators can be used
for Gaussian and non-Gaussian heavy-tail en-
vironments. The proposed clipping technique
can exploit one or another obtained robust es-
timate of the signal amplitude for addaptive
setting a threshold. Analysis of signal estimate
accuracy for different noise environments is car-
ried out. Comparative analysis of the obtained
methods and known approaches based on scan-
ning window nonlinear filtering and optimal ro-
bust L-DFT form is performed. It is demon-
strated that the usage of clipping based tech-
nique leads to the considerable improvement of
the FM signal filtering efficiency in compari-
son to the aforementioned known approaches
for different noise environments and for a wide
range of input SNR values.

I. I������	�
��

It is a well-known fact that the performance
of communication, radar, navigation and other
systems considerably depends both on the
type and characteristics of signals used and
noise statistical characteristics [1]-[4]. Because
of this, frequency (FM) or phase (PM) modu-
lated and manipulated signals have found wide
application in systems mentioned above. The
theory of FM and PM signal processing for
Gaussian noise environment and quite large
input SNR �1 was developed several decades
ago [5].

Since then, considerable attention has been
paid to analysis of more complicated and prac-
tical situations. In particular, input SNR
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�1 is often not so large, it can be of order
1...10 or even less. Besides, in many prac-
tical applications noise cannot be considered
Gaussian [4], [6]. It has been demonstrated
that more heavy-tailed distributions like α-
stable and other ones occur to be more ade-
quate for simulating properties of real life noise
[4], [6]-[10]. Moreover, commonly reliable a
priori information on noise statistics is absent
or restricted. Then, the task to remove noise
becomes more important (in comparison to the
case of input SNR�1 and Gaussian noise) but
more complex.

Assume that we have the following gener-
alized knowledge about signal and noise char-
acteristics. An additive noise has a symmetric
probability density function (pdf) with respect
to the location parameter (usually zero). Be-
sides, this noise can possess heavy tails (coeffi-
cient of kurtosis in this case is usually�0) [6].
At the same time, exact intensity (variance)
and pdf of noise is unknown. Such assump-
tions and practical situations are typical for
modern radar, communication and computer
systems and networks [3], [8]. Concerning sig-
nal component, we suppose that within ob-
servation interval it has a constant amplitude
and, at least, tens or hundreds of oscillation
periods.

There are various techniques for filtering
of such additive mixture of signal and noise.
Among them one can mention a scanning win-
dow nonlinear filtering (SWNF -method) [11]
and robust DFT [12], [13] based approaches.
However, alongside with observed positive ef-
fects, these methods possess some peculiarities
and drawbacks. The optimal or reasonable se-
lection of the window aperture size is one of the
main problems of the SWNF approach. As a
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result, it is necessary to know the signal spec-
trum in advance for proper choice of SWNF

type and parameters.

In turn, robust DFT-methods [12] might
have another drawback. In case of their ap-
plication to processing the signals of relatively
large number of samples (several hundreds or
more) a large amount of calculations and large
computation time are required. For example,
in case of the method based on the optimal
L-DFT forms it is necessary to compute spec-
trum estimate for all considered values of trim-
ming parameter in order to obtain its optimal
value [13]. Besides, the technique based on the
robust forms of the DFT could introduce spec-
tral distortions that can deteriorate accuracy
[12].

Therefore, the design of new filtering meth-
ods able to get around the shortcomings of
aforementioned techniques in the considered
applications is a crucial task. It is necessary
that the methods under design should be ro-
bust in wide sense [14]. This means that these
methods should be able to perform well enough
in cases of Gaussian and heavy-tail noises as
well as to operate appropriately for a wide
range of input SNRs under a limited a priori
information concerning what is a real pdf of
noise and what is input SNR.

In this paper we propose two novel noise
suppression methods based on clipping algo-
rithm. Note that clipping effects observed in
processing of FM signals embedded in non-
Gaussian noise and/or interference have been
thoroughly studied in papers of D. Middleton
and A. Spaulding [4], [9], [10]. In particu-
lar, they analyzed the influence of clipping on
output signal statistics. However, a distinc-
tive difference of our technique lies on the fact
that we deal with robust estimation of the FM
signal amplitude that can be carried out digi-
tally and, then, with adaptive setting the cor-
responding threshold. The main problem in
our technique is to design an accurate and ro-
bust algorithm for estimation of the amplitude
of the FM signal. For this purpose, modifica-
tions of two robust estimators are developed.

The first technique is based on the inter-
quantile differences (PEAK -estimator). This
estimator is originally proposed for blind esti-

mation of noise variance in [15]. However, the
images are generally low-pass signals and we
need to make several modifications of this tech-
nique for estimating amplitudes of signals cor-
rupted by intensive noise. For this purpose we
have studied pdf of the modulated signal am-
plitude for various types of noise and we have
analyzed inter-quantile differences for typical
noise environments. Based on this analysis,
we adjusted correcting factor of the estimator.
The second estimator is based on the median
of absolute deviations of processed signal re-
alization (MMAD-estimator). This is modifi-
cation of the approach from [11]. Again we
need some adjustment of this technique in or-
der to be able to perform accurate estimation
for FM signals. It is shown that the designed
methods can be used for different noise envi-
ronments (Gaussian and heavy-tailed noise).
The results are compared to the nonlinear fil-
tering methods (SWNF and robust DFT). It is
demonstrated that our methods exhibit better
performance.

The paper is organized as follows. The
analysis of a realization of noisy FM signal is
carried out in Section 2. The problem of am-
plitude estimation that appears in the case of
noise presence is also highlighted in this Sec-
tion. The proposed modifications of robust es-
timators are presented in Section 3. Simula-
tion results with comparative analysis of the
achieved accuracy for the proposed amplitude
estimators are given in Section 4. The appli-
cation of designed and known methods to FM
signal filtering is considered in Section 5 with
example that demonstrates the denoising effi-
ciency of the PEAK -method.

II. S�
��� �
���
���
�� ������
� ���

FM �
���� ��
�� ����
���
��

The FM and PM signals used in commu-
nication systems and various classes of radar
systems (e.g., in radio altimeters, Doppler ve-
locity measuring devices [2], etc.) can be writ-
ten as [1]

s(t) = A sin[ψ(t)] (1)

where ψ(t) denotes the oscillation phase; A is
the carrier wave amplitude. In the case of PM
signal, ψ(t) = ω0t + ksM(t); for FM signal
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- ψ(t) = ω0t + k

t∫

0

sM(t
′)dt′ + ϕ0, where ϕ0

denotes arbitrary initial phase, sM(t) is the
modulating signal and ω0 denotes the carrier
wave frequency. Below we assume that signal
has several oscillations (at least five) within
observation interval t ∈[0; TS].

A sampled realization of FM signal s(n∆t)
corrupted by noise ν(n∆t) can be represented
in the following way [2]:

z(n∆t) = s(n∆t) + ν(n∆t) (2)

where ∆t = 1/FB is the sampling rate, FB
denotes a sampling frequency, n ∈ [1;N ] is
a sample index and N = TS/∆t denotes the
number of samples in the observed interval.

Due to noise, the values of z(n∆t) can be
outside the interval [−A; A]. Suppose now
that one a priori knows A or has its accurate
estimate Â. Then, the following simple clip-
ping algorithm can be applied for noise sup-
pression

zFILT (n∆t) =




ξ̂, if z(n∆t) >ξ̂

−ξ̂, if z(n∆t) < −ξ̂
z (n∆t), otherwise,

(3)

where ξ̂ is a threshold value which is sup-
posed to be close enough to the true magni-
tude of FM signal. For ξ̂ = A by means of (3)
we change only the values outside z(n∆t) ∈
[−A; A], i.e., we perform denoising (clipping)
for only some percentage of samples.

Note that, in general, clipping is used in ra-
dio electronics rather widely. In particular,
clipping is applied in analog amplifiers [16] pre-
ceding frequency and phase detectors [1]. The
topic of the influence of the distortions caused
by the nonlinear elements of the FM receiver
where one of the elements is the clipping de-
vice has been investigated by D. Middleton
[4]. However, the purpose and degree of sig-
nal clipping for those applications is different
than for considered application. First of all, in
case of proper selection of ξ̂ in (3) we intend
to introduce minimal nonlinear distortions in
denoised signal whereas for the task described
above [16], pre-distortions are not so crucial
and they are desirable sometimes. Second, the

proposed clipping technique is focused on the
reduction of the distortions caused by some
types of noise, e.g., Gaussian noise, Laplacian,
and do not consider the interferences which
can arise from other communication channels.
Third, the proposed approach can be realized
only by the digital signal processing methods
unlike the approaches implemented in analog
amplifiers or FM receivers [9], [10], [16].

For proposed technique (3), the basic task
is to obtain appropriately accurate estimates
Â and setting ξ̂ approximately equal to Â. In
order to do this in proper manner we consider
statistics of the sample of z(n∆t), n ∈ [1;N ]
in details.

Let us investigate a noiseless harmonic sig-
nal with the frequency F and the amplitude
A:

s(n∆t) = A sin [2πFn∆t] (4)

and obtain the analytic expression for pdf for
it.

Since signal (4) is a periodic function with
period T = 1/F the pdf can be considered
within a period. Then the probability of the
signal amplitude between two constants can
be written as P (a < s < b) = (sin−1 b/A −
sin−1 a/A)/π. It can be extended as F (x) =
P (−A < s < x) = (sin−1 x/A + π/2)/π, by
which the pdf is obtained as [17], [18]

fs(x) =
1

πA

√
1− (x/A)2

. (5)

An example of a histogram of a signal (4) is
shown in Figure 1. The simplest procedure for
amplitude estimation in this case can be the
following

Â = max
n
|s(n∆t)| . (6)

However, the situation changes for noisy sig-
nal. If equation (6) is applied to noisy signal,

it produces Â > A in any case. If noise vari-
ance increases, the obtained pdf of the values
of the signal (4) occurs to differ more consid-
erably from the pdf estimate in Figure 1. To
prove this let us obtain the pdf of realization of
signal (4) corrupted by additive noise ν(n∆t)
analytically. This task can be done in the fol-
lowing way.
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Fig. 1. Histogram of the signal (4) for A=5.

The pdf of the process (2) is defined as [19]:

fz(y) =

∞∫

−∞

fs(x)fν(y − x)dx. (7)

For stationary white Gaussian zero-mean
noise, fν(x) can be expressed as

fν(x) =
1√
2πσ

exp

(
− x2

2σ2

)
(8)

where σ denotes the noise standard deviation.
Thus, we can rewrite (7) as

fz(y) =

A∫

−A

1

πA
√
1− (x/A)2

× 1√
2πσ

exp

(
− [y − x]

2

2σ2

)
dx. (9)

Carrying the constant items out of the inte-
gral, expression (9) becomes

fz(y) = B1

A∫

−A

1√
A2 − x2

×exp
(
− [y − x]

2

2σ2

)
dx (10)

where B1 =
1

πσ
√
2π

. Shape of fz(y) can be sig-

nificantly different for various A and σ2. As
examples, Figure 2 represents the pdfs (10) of

noisy signal (Figures with indexes a, c, e) and
pdfs of signal absolute values (Figures with in-
dexes b, d, f ) for several constant input SNRs
defined as

SNRinp = PS/σ
2
inp (11)

where PS =
1
N

N∑
n=1

[
s (n)− 1

N

∑N
i=1 s (i)

]2
is

the signal power, σ2inp =
1
N

N∑
n=1
(z[n]− s[n])2 ≈

σ2add denotes noise variance. For brevity rea-
sons we use notations s(n) = s(n∆t), z(n) =
z(n∆t), ν(n) = ν(n∆t).

Note that in case of zero-mean symmetric
pdf of noise fz(y) is an even function and,
thus, fw(y) = 2fz(y) for 0 ≤ y ≤ ∞ and
fw(y) = 0 for y < 0 where fw(y) is the pdf
of absolute value of noisy signal (5). Another
reason for considering fw(y) will be explained
in Section 3. The dependence of the shape of
the pdf fw(y) on input SNR is clearly seen.
The pdfs of noise-free FM signal realizations
for different instantaneous frequency (IF) laws
are practically similar to harmonic signal case
(4). The only exception is the fact that de-
pending on the initial FM signal phase and
also other parameters (sampling frequency, the
length of observation interval, modulating sig-
nal, etc.) one can observe the appearance of
insignificant pdf skewness. In case of station-
ary white Gaussian corrupted noise with zero-
mean noise, the FM signal distribution for in-
put SNR ≈25 has the form similar to that
one depicted in Figure 2a-d. Slightly differ-
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Fig. 2. Pdfs of noisy signal (4) and noisy signal (4) absolute values (for the case of A=5) for input SNR equal
to 25 (a, b), 5 (c, d ) and 1 (e, f )

Fig. 3. Histogram of noisy signal (4) (a) and histogram of the absolute values of realization of the signal (4)
(b) in case of non-Gaussian noise for input SNR≈25.

ent but, in general, similar histograms are ob-
served for both harmonic and FM signals em-
bedded in non-Gaussian noise with symmetric
and heavy-tail pdf. An example of pdf of the
signal (4) embedded in non-Gaussian noise is
shown in Figure 3. Note that for some heavy-
tail distributions analytical expressions for pdf
fz(y) can not be derived whilst for some of
them it is possible. For example, for Lapla-

cian pdf of noise

fν(x) =
1√
2σ
exp

(
−
√
2 |x|
σ

)
(12)

it is easy to obtain that

fz(y) = B2

A∫

−A

1√
A2 − x2
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×exp
(
−
√
2 (y − x)
σ

)
dx (13)

where B2 =
1

πσ
√
2
. For the same input SNR,

the shapes of fz(y) in case of Laplacian noise
are similar to the shapes of fz(y) presented in
Figure 2.

Obviously, amplitude estimation by means
of (6) for a limited size samples with distrib-
utions described by plots in Figures 2a-d will
lead to incorrect results, i.e., the estimates Â
will be greater than A especially if input SNR
is small. Moreover, the estimates Â have the
tendency to become larger if noise has heavier
tail.

Therefore, it is necessary to apply other pro-
cedures for estimation of FM signal amplitude
which would be robust to both Gaussian noise
and interferences with heavy-tail pdfs. Re-
call that these estimates have to perform well
enough in a wide range of possible input SNRs.

III. P������� 
��
�
	��
��� �� ���

������ �
��
���� ���

�����

The first proposed way to obtaining an esti-
mate Â is based on shape analysis of pdf esti-
mate for noisy input signal (Figures 2a-e and
3a). Note that the largest number of sample
values is close to A and -A, i.e., the histogram
has two main peaks (see Figures 2a, c and 3a).
This peculiarity can be exploited for an FM
signal amplitude estimation by means of find-
ing a coordinate of the maximum of processed
signal realization pdf estimate.

Below we propose modifications of the al-
gorithms based on inter-quantile differences
[15] and median absolute deviation (MAD)
[11] of processed signal realization. Direct ap-
plication of these algorithms to estimation of
the signal amplitude produce biased estimates.
To overcome these drawbacks correcting fac-
tors are exploited in the modified algorithms.
Their values are theoretically evaluated and
practically verified for different noise environ-
ments.

Now consider each algorithm for amplitude
estimation in details. There are several steps
for calculation the amplitude estimate based
on inter-quantile difference. The first step is
to smooth the estimate of pdf and have one

maximum for unique defining Â. This can be
achieved by processing the absolute values of
the realization samples. Here, we take into
account that the distributions of magnitudes
(2) are practically symmetrical with respect to
zero. This statement has been proved by the
analysis of the skewness coefficients calculated
for various signal-noise setups. Particularly,
for a distribution depicted in Figure 3a the
skewness is not larger than 0.02.

Figure 3b shows an example of the his-
togram obtained after applying transform de-
scribed above. So, in fact, after such trans-
form we obtain the estimate of distribution of
absolute values for the observed signal embed-
ded in noise. Note that this was the reason
why in Section 2 pdf fw(y) is represented and
considered in parallel with fz(y).

It can be seen that the greatest number
of the samples has values located close to A.
Thus, by means of finding the maximum of the
histogram and its corresponding coordinate it
is possible to estimate the signal amplitude.
The following procedure based on aforemen-
tioned idea is proposed for obtaining the am-
plitude estimate (PEAK -estimator):

ÂPEAK = K1 · (X(p) +X(q))/2 (14)

where K1 is the correcting factor, Xp and Xq
denote the p-th and the q-th order statistics
of array |z(n∆t)|.

Parameters p and q are chosen from the re-
lation

p− q = ∆ (15)

and their values are calculated from the con-
dition:

min
p,q
(
∣∣X(p) −X(q)

∣∣) (16)

where ∆ denotes a priori set constant (15) and
q ∈ [1;N −∆]. The algorithm described by
(14)-(16) is based on the fact that the greatest
number of samples has values located near A.
Therefore, the distance between order statis-
tics obtained from (15) and (16) will be the
smallest near the value A (see for details [15]).
This assumption is valid for distributions pre-
sented in Figure 2b and d as well as the pdf
histograms given in Figure 3. Thus, finding
this minimal distance described by the values
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Fig. 4. The dependences of K1 (a) and K2 (b) values on input SNR for the noisy realization of signal (4).

of p and q it is possible to obtain the amplitude
estimate by means of half-sum of the ordered
statistics X (p) and X (q).

At the same time, for the distribution rep-
resented in Figure 2f the maximal concentra-
tion of sample values is observed for neighbor-
hood of zero. Then it can be expected that the
clipping technique based on PEAK -estimator
would not perform well for small input SNRs.

For visual confirmation of this property, Fig-
ure 4 shows the dependence of averaged differ-
enceX(p)−X(q) on q for the signal (4),∆ = 50,
N = 512, input SNR=24.79. As seen, the min-
imum of X(p) −X(q) is observed for q ≈ 350.

According to (14), it can be expected that
the PEAK -estimator accuracy depends on pa-
rameters K1 and ∆. Our recommendation on
selection of ∆ is ∆ = 0.1N (in our simula-
tions N = 512 has been used, thus, ∆ = 51).
Note that the same recommendation on se-
lection of initial value of ∆ is given in [15].
Ideally, the correcting factor K1 should be
such that the estimate ÂPEAK is unbiased.
This means that the perfect choice of K1 is
K1 = A/

〈
(X(p) +X(q))/2

〉
where 〈•〉 denotes

ensemble expectation. However, depending on
input SNR and noise pdf,

〈
(X(p) +X(q))/2

〉

can be different. Thus, the perfect K1 should

depend on input SNR and noise pdf. To prove
this, Figure 5a represents the dependence of
the perfect values of correcting factor K1 on
the input SNR for the case of Gaussian noise.
It can be seen that the perfect value of K1 dif-
fers for different SNRinp. At the same time,
for a wide range of input SNRs (larger than 10)
the perfect value of K1 is rather stable and
approximately equal to 1.2. For input SNRs
smaller than 10, the perfect value of K1 in-
creases if input SNR reduces.

Recall that we would like to make our clip-
ping technique simple and robust in wide sense
[14]. This means that we would not like to es-
timate pdf of noise and input SNR. Instead,
we prefer to set a fixed value of the correcting
factor. Because of this, in our investigations of
the PEAK -estimator and its statistical charac-
teristics, the value of the correcting factor K1
is fixed to 1.2.

The second proposed robust FM signal am-
plitude estimator is based on the calculation
of MAD [11] of processed signal realization
(MMAD-estimator)

ÂMMAD = K2

×med
{∣∣X(i)−med(z1 , z2 , ..., zN )

∣∣} (17)

where med{...} is the sample median, K2
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Fig. 5. The dependences of K1 (a) and K2 (b) values on input SNR for the noisy realization of signal (4).

denotes the correcting factor for (17) and
z1 , z2 , ..., zN is the signal realization.

As it follows from expression (17), the
MMAD-estimator accuracy should depend on
K2. It is necessary to take into consideration
the following features. First, it is easy to show
that for pdf (5) the median value is equal to

A/
√
2. Then, in order to provide ÂMMAD = A

the value of the factor K2 for noise-free sig-
nal should be equal to 1.414. However, in
case of noise presence, the estimate ÂMMAD
for K2 = 1.414 is commonly biased. Suppose
that we determine the perfect value of K2 as
K2 = A/

〈
med

{∣∣X(i)−med(z1, z2, ..., zN)
∣∣}〉.

The dependence of the perfect value of K2 on
the input SNR for the case of Gaussian noise
is presented in Figure 5b. As seen, for a wide
range of SNRinp the perfect value of K2 is al-
most constant and it is within the limits from
1.44 to 1.52.

Thus, in our simulations we apply the
MMAD-estimate with the fixedK2 value equal
to 1.483 that corresponds to traditional MAD

estimate [11]. One of the main reasons to do
so is a lack of a priori knowledge about signal
and noise characteristics. However, the pro-
posed estimator has to perform well enough (to
give almost unbiased amplitude estimate) for
various SNRinp. In particular, for the consid-
ered case of Gaussian noise, by choosing fixed
K2 = 1.483 we obtain the unbiased MMAD-
estimate for SNRinp = 11 and 2.4 and the

largest absolute bias is for SNRinp = 6 and 1.
It is worth noting that the computational

complexities of these two estimators are both
O(N log2N), since the sorting is the most de-
manding operation in the procedures.

IV. A		���	� ������
� �� ��� ��������

�
���� �
��
���� ���

�����

The properties of the modified robust esti-
mators have been examined for two test sig-
nals. As the first one, a harmonic signal was
chosen: s1(n∆t) = 5 sin(2πC1 n∆t) where
C1 is a constant equal to 40/N , N = 512,
∆t = 1 (TS#1); the second test signal was the
FM signal with linear modulation s2(n∆t) =
5 sin

(
2πC2(n∆t)2

)
where C2 denotes a con-

stant equal to 0.13/N (TS#2).
According to the stated problem, the only

available a priori information is that noise dis-
tribution is symmetric with respect to location
parameter and it can possess heavy tails. To
consider the performance for different noise en-
vironments, below we deal with the following
three types of noise (given in accordance with
increasing the tail heaviness or increasing the
pdf kurtosis (K )):

• zero-mean Gaussian noise with variance σ2G
(K=0);
• noise obtained as a product of two zero-
mean independent Gaussian random variables
(BNoise) (K ≈ 7.47); such kind of noise is, in
particular, observed in signal waveform recon-



736 TIME-FREQUENCY SIGNAL ANALYSIS

struction in bispectral systems [20];
• Laplacian noise (Laplacian) (K ≈ 7.5);
• noise generated in the form of cube (power of
three) of random independent Gaussian vari-
able with zero-mean (Cube) [7] (K ≈ 16.4);
• Cauchy noise (Cauchy) (K ≈ 30).

One statistical parameter characterizing es-
timate accuracy is the bias of the amplitude
estimates expressed as

∆A =
〈
Â
〉
−A. (18)

Figure 6 depicts the dependence of
〈
Â
〉

on

input SNR (see plots 6a, b and d) and noise
parameters (see plots 6c and 6e) for TS#1
and TS#2 for PEAK and MMAD-estimates
for five aforementioned types of noise. Av-
eraging was performed over the ensemble of
M=500 realizations.

The obtained data leads to conclusion that
practically in all observed cases the ampli-
tude estimates are characterized by a bias that
can be both positive and negative. Note that
∆A/A remains the same for given input SNR
and noise pdf irrespectively of exact value of A.

As seen,
〈
Â
〉

is almost independent on signal

shape (i.e., is it a harmonic or FM signal) but
it basically depends on input SNR, noise type,
pdf parameters and an estimation method ap-
plied.

As expected, when PEAK -estimator is ap-
plied, a considerable estimate bias is observed
for small input SNR and Gaussian noise (see
Figure 6a). This can be explained in the fol-
lowing way. The contaminating noise distrib-
utions influence more significantly sample pdf
shape for small input SNR values (in the con-
sidered case the sample pdf shape will tend
to Gaussian distribution, see Figures 2e and
f ). As a result, with the decreasing of input
SNR the position of the maximum of signal re-
alization pdf little by little shifts towards the
mean value of the affecting noise (to zero). Ac-
cording to this property, the PEAK -estimator
obtains the greater negative bias with the de-
creasing of input SNR value and when SNRinp

is equal to unity the bias reaches 60% (
〈
Â
〉
≈

0.4A, see Figure 6a).

The same situation is observed for Lapla-

cian and Cauchy noise types where with the
increasing of intensity of noise (the great val-
ues of parameters λ and γC where λ is the
parameter of Laplacian pdf and γC denotes
the scale parameter of Cauchy distribution)
the negative bias of PEAK -estimator reaches
20% and 40%, respectively (see plots 6c and
e).

When the test signals are corrupted by
BNoise and Cube noises, ÂPEAK is character-
ized by positive value of bias with respect to
the true value of the amplitude (∆A/A ≈ 0.2,
see plots in Figures 6b and c). Such a situation
results from setting fixed K1 = 1.2. In other
words, it is difficult to set some fixed K1 to
produce practically unbiased PEAK -estimates
if there is no a priori information about noise
type and input SNR.

The distinguishing feature of the MMAD-
based procedure is that it produces rather
stable and accurate amplitude estimation for
both test signals for all investigated types
of noise. The input SNR influences bias of
MMAD-estimator only slightly. The maxi-
mum bias value is only about 6% (see the plots
in Figure 6a for input SNR equal to unity).

Alongside with the first central moment, an-
other important quality indicator is variance of
the parameter estimates

σ2est =
1

M − 1

M∑

l=1

[
Âl −

1

M

M∑

m=1

Âm

]2
(19)

where Âl is the l -th amplitude estimate.
Tables 1-3 show the amplitude estimate vari-

ances for the considered test signals depending
on input SNR value and noise type. Best re-
sults are marked bold font. The obtained data
analysis shows that in the case of Gaussian

noise (see Table 1) and small input SNR (≈ 1),
the PEAK -estimator application does not al-
low performing stable and accurate estimation
of the signal amplitude. The ratio σest/A is of
the order [0.1, 0.25] and reaches 0.28 for input
SNR about unity. Such a behavior can be ex-
plained by the already discussed dependence
of the pdf shape on input SNR value. At the
same time with the increasing the noise pdf
tail heaviness, the robustness of the PEAK -
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Fig. 6. Dependences of 〈Â〉 on input SNR obtained by the proposed methods in case of Gaussian noise (a),
BNoise interference (b), Laplacian noise (c), Cube interference (d ) and Cauchy noise (e).
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TABLE I

T�� ���
��	� ��������	
�� �� ��� �������� �
��
���� ���

����� �� 
���� SNR ������

Gaussian noise
Input SNR value 14 10 8 6 4 2 1

PEAK -estimator 0.260 0.600 0.600 0.980 1.54 1.610 1.88
TS1 MMAD -estimator 0.011 0.019 0.018 0.015 0.03 0.036 0.11

PEAK -estimator 0.320 0.510 0.630 1.460 2.040 1.540 1.460
TS2 MMAD -estimator 0.015 0.012 0.014 0.020 0.021 0.035 0.056

BNoise interference
PEAK -estimator 0.051 0.084 0.123 0.200 0.310 0.520 2.350

TS1 MMAD -estimator 0.010 0.012 0.014 0.014 0.017 0.033 0.053
PEAK -estimator 0.046 0.100 0.200 0.160 0.160 2.460 4.120

TS2 MMAD -estimator 0.008 0.014 0.015 0.019 0.022 0.031 0.038
Cube interference

PEAK -estimator 0.0051 0.0036 0.0084 0.0011 0.0031 0.0092 0.0120
TS1 MMAD -estimator 0.0029 0.0059 0.0086 0.0075 0.0130 0.0110 0.0220

PEAK -estimator 0.0013 0.0004 0.0006 0.0010 0.0008 0.0050 0.0016
TS2 MMAD -estimator 0.0130 0.0110 0.0170 0.0120 0.0220 0.0140 0.0160

TABLE II

T�� ���
��	� ��������	
�� �� ��� �������� �
��
���� ���

����� �� ����
���� λ ��� �!� ����

�
����� ��� L����	
�� ��
��

Parameter λ value 0.5 2 3.5 5 6.5 8 9.5 11
PEAK -estimator 0.021 0.113 0.142 0.218 0.372 0.513 0.333 0.625

TS1 MMAD -estimator 0.007 0.010 0.016 0.017 0.016 0.016 0.024 0.018
PEAK -estimator 0.028 0.081 0.324 0.618 0.716 0.854 1.282 1.421

TS2 MMAD -estimator 0.006 0.015 0.016 0.017 0.022 0.020 0.019 0.026

estimator improves. In the case of Laplacian

noise (see Table 2) the accuracy of MMAD-
estimator proves to be considerably better
comparing to the PEAK -estimator. The maxi-
mal ratio σest/A for MMAD-estimator is equal
to 0.03 for the first test signal and 0.032 for
TS#2.

In the case of Cube noise, σest/A is smaller
than 0.015 (see data in Table 1), i.e., the es-
timates are very accurate. When signal is
corrupted by Cauchy (see Table 3) noise the
best accuracy can be achieved by application
of MMAD-estimator. In this case the maximal
value of σest/A is approximately 0.047 and ob-
served for great values of parameter γC . At the
same time PEAK -estimator has the maximal
values of σest/A ≈0.32.

Summarizing these results, the PEAK -
estimator accuracy considerably depends on
noise pdf. For Gaussian noise its accuracy is
poor whilst for some types of heavy-tail pdf of
noise (for example, Cube noise) the accuracy
can be excellent. Such properties in case of
absence of a priori knowledge of noise pdf can

be considered as a drawback of the PEAK -
estimator.

In turn, for MMAD-estimator a weak de-
pendence of σest/A on the type of noise and
input SNR takes place. σest/A is commonly of
the order [0.02, 0.03] reaching 0.07 in the worst
case of intensive Gaussian noise (see Table 1).
Thus, the analysis of statistical characteris-
tics of the proposed signal amplitude estimates
shows that the PEAK -estimator is more accu-
rate for some non-Gaussian (heavy-tail) noises
than the MMAD-estimator and vice versa. At
the same time, the MMAD-estimator has more
stable operation in all considered cases. The
review of properties of the considered estima-
tors is shown in Table 4 for all considered noise
environments.

Consequently, based on carried out research,
one can conclude that in practice the use of the
MMAD-estimator is preferable.
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TABLE III

T�� ���
��	� ��������	
�� �� ��� �������� �
��
���� ���

����� �� ����
���� γC ��� Cauchy ��
��

γ value 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
estimator
PEAK 0.009 0.121 0.270 0.693 0.985 1.298 1.701 1.839 2.183 2.280

TS1 MMAD 0.010 0.013 0.019 0.021 0.041 0.033 0.040 0.043 0.055 0.057
PEAK 0.032 0.099 0.587 1.119 1.929 2.075 2.791 2.756 2.578 2.714

TS2 MMAD 0.011 0.021 0.023 0.028 0.030 0.033 0.034 0.043 0.057 0.058

TABLE IV

C�
�����
�� ������
� �� ��� �������� �
��
���� ���

����� ��� ��� 	���
����� ����� �� ��
��

Gaussian BNoise Laplacian Cube Cauchy

PEAK-estimator

∆A increases with
the decreasing

of SNRinp

excellent differes for
different
SNRinp;

maximal value
reaches 20%

constant;
equals to

0.2A

decreases with
the decreasing

SNRinp;
maximal bias
reaches 40%

σ2est considerably
greater than
for MMAD

rapidly
increases for
SNRinp<3

greater than
for MMAD

equal or
smaller than
for MMAD

considerably
greater than
for MMAD

MMAD-estimator

∆A small for
all SNRinp

tends to 0 practically
unbiased

unbiased grows with the
γC increasing;
maximal value
equals to 20%

σ2est small values considerably
smaller than

for PEAK

considerably
smaller than

for PEAK

slightly
greater than
for PEAK

small values

V. C�
���
��� �� ���
���� ��� $��!�


������

FM signal filtering quality for the designed
and known approaches based on scanning win-
dow nonlinear filters and optimal L-DFT (L-

DFT ) has been examined by numerical sim-
ulations. Comparative analysis has been per-
formed for the following test signals:
1. Complex harmonic signal s1(t) = 5 exp(2π40
t/T ) where t∈ [−T/2;T/2), T=2 is the obser-
vation interval, ∆t = T/N denotes the sam-
pling interval and N = 512 is the number of
samples (TS1);
2. Complex linear FM signal s2(t) =
5 exp

(
2π60t2/T

)
(TS2).

The investigated test signals were corrupted
by the following four types of noise:
• zero-mean Gaussian noise with variance σ2G;
• Laplacian noise with parameter λL (Laplace);
• Cauchy noise with parameter γC (Cauchy);
• noise with symmetrical α−stable distribu-

tion defined by two parameters α and γ (SaS).
Quantitatively, the filtering performance

has been evaluated by means of analysis of out-
put SNR

SNRout = PS/σ
2
out (20)

where σ2out =
1
N

N∑
n=1

|ŝF (n)− s (n)| 2 denotes

the MSE of residual fluctuations after filter-
ing, ŝF (n) is the n-th sample of output signal
obtained for one of the examined methods.

One of the peculiarities of the scanning win-
dow based approach is the dependence of its
properties on several factors. One of them
is the applied nonlinear filter that commonly
takes into account parameters of noise envi-
ronment. However, in case of absence of a
priori information about noise statistical char-
acteristics, it is impossible to define the best
filter type. That is why, as compromise de-
cision that allows obtaining acceptable results
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both in case of Gaussian and non-Gaussian

noise with different tail heaviness, the alpha-
trimmed mean filter was selected. In our
simulations we used the trimming parameter
Nα = [NW · 0.25] where [...] is the integer part
of a real value and NW denotes the window
size. Another important parameter affecting
the performance of the SWNF is the size NW .
The performed simulations have shown that
the smaller value of NW the greater quality of
impulse noise removal. Therefore the value of
5 have been chosen for the window sizeNW . In
this case the number of trimmed samples has
been 2 (one maximal and one minimal values,
respectively).

In robust DFT based processing approach
different forms of DFT can be obtained de-
pending on the applied estimators. One of
them is the robust DFT form which is based
on the robust estimators from the L-class. L-

DFT method described in [13] uses the alpha-
trimmed mean estimator with adoptively se-
lected value of trimming parameter for each
considered case. Thus, in situations when a
priori knowledge about noise statistical char-
acteristics partially or fully undefined such an
L-DFT method can allow to obtain spectrum
estimate close to the optimal. That is the effi-
ciency of noise suppression can be very high.

Plots on Figures 7 and 8 present the results
of filtering TS1 and TS2 corrupted by four
aforementioned types of noise by means of the
proposed and known methods.

Based on the obtained data we can conclude
that SWNF -method application in the case of
TS1 processing allows to perform filtering of
signal in the best way almost for all considered
types of noise and input SNRs in comparison
to other considered methods. The exceptions
are observed only in cases of:

• Cauchy noise (see Figure 7c) with great val-
ues of parameter γC (1.8 and 2) that can be ex-
plained by the following. The number of out-
liers in noise process proves to be great and as
a result some of impulses remain in the signal
after processing whereas, for example, PEAK -
or MMAD-methods remove all of them.
• SaS noise described by small values of α and
great γ (see Figure 7e and f ). In this case the
behavior of SWNF -method is similar to the

case of Cauchy noise.
• small values of parameter λ of Laplacian

noise model. In situation when SNRinp
is great, e.g., there is practically no noise,
SWNF -method starts to introduce specific dis-
tortions such as, for example, the smoothing
the signal in the polynomial extremum areas.
Then σ2out increases and consequently SNRout
becomes smaller. In this case the use of meth-
ods based on clipping technique allow to pre-
serve the signal shape and to perform filtering.

At the same time, the use of SWNF for
processing the TS2 results in distortions that
lead to significant decreasing of SNRout. Such
distortions are especially obvious in places
of fast oscillations of the signal component.
Then, the positive effect of noise suppression
can be less than negative effect due to afore-
mentioned distortions. As a result, SNRout
can be smaller than input SNR. The difference
is especially large for great input SNR. Opti-
mal L-DFT based filtering is able to improve
the processed signal quality for all examined
types of noise. However, it is worth noting that
for optimal L-DFT the observed benefit is the
smallest among all considered methods in case
of TS1 (see Figure 7). At the same time, for
TS2 optimal L-DFT outperforms the SWNF -
method for Laplacian and Gaussian noise en-
vironments (see Figure 8a and b) and small
values of parameter γC for Cauchy noise (see
Figure 8c). Note that one of the distinctive
features of the optimal L-DFT method is cal-
culation complexity for large number of sam-
ples in considered interval.

Consider now the signal TS1. From Figure
7 it can be seen that the performance of the
designed clipping methods is worse than for
SWNF -method which is the best choice for
TS1. Such a situation can be explained in the
following way. Nonlinear filters realize filtering
for all signal samples regardless of their val-
ues. In particular, they suppress noise in sig-
nal increasing/decreasing fragments [21]. At
the same time, the proposed clipping methods
based on MMAD or PEAK -estimators change
only those samples whose magnitudes do not

belong to the interval
[
−ξ̂; ξ̂

]
.

At the same time, the proposed clipping
methods allow to improve FM signal (TS2) for
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Fig. 7. Dependencies of output SNR values obtained by investigated methods for the case of TS1 on noise
parameters for Gaussian (a), Laplacian (b), Cauchy (c) noise environments and SaS noise model (d, e and
f ) with different values of γ equal to 1.1, 1.5 and 1.9, respectively.
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Fig. 8. Dependencies of output SNR values obtained by investigated methods for the case of TS2 on noise
parameters for Gaussian (a), Laplacian (b), Cauchy (c) noise environments and SaS noise model (d, e and
f ) with different values of γ equal to 1.1, 1.5 and 1.9, respectively.
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Fig. 9. Real components of the noise-free TS2 (thick solid line) and TS2 realization corrupted by SaS noise
with parameters α = 1.5 and γ = 1.1 and input SNR value equal to 0.02 (thin line).

Fig. 10. Real components of TS2 estimates obtained by SWNF -method with NW = 5 (thick solid line,
SNRout=1.72) and PEAK -method (thin line, SNRout=2.24).

all examined types of noise comparing to the
SWNF method and optimal L-DFT based ap-
proach. For the two designed methods, the
best results (the greatest output SNR value)
for Gaussian, Laplacian and Cauchy noise en-
vironments are obtained in case of MMAD-
method application. Maximal benefit of the
MMAD-method with respect to the PEAK -
method is 25% (see Figure 8a, variance value
is equal to 5). The worse performance of
PEAK -method is explained by the PEAK -
estimator properties described above in Sec-
tion 3, namely, by the problem in choosing
fixed K1 and by possible large bias of PEAK -
estimates. However the PEAK -method is the
best choice for SaS noise where the maximal

benefit with respect to the MMAD-method is
about 60% and such a situation is observed
for small α values and great γ (see Figure 8e
and f ). Let us also give a visual example of
FM signal filtering by the proposed clipping
technique. The real components of noise-free
TS2 (thick solid line) and TS2 noisy realiza-
tion corrupted by SaS noise with parameters
α = 1.5 and γ = 1.1 for the case of input SNR
equal to 0.02 (thin solid line) are presented
in Figure 9. The real components of the sig-
nal estimates obtained by clipping technique
based on the proposed PEAK -estimator (thin
solid line) and SWNF -method with applying
alpha-trimmed mean filter (thick solid line) are
demonstrated in Figure 10. For better visual
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analysis the parts of the signal estimates in
square are represented in the greater scale. It
can be seen that the SWNF -method consider-
ably distorts the FM signal with suppressing
the signal parts in high frequency oscillation
areas. As said above, this is because the para-
meters of this filter should be selected accord-
ingly to the signal spectrum and noise statis-
tical characteristics. In the case of absence of
a priori knowledge about noise characteristics
the main problem of the SWNF approach is
its inaccuracy.

At the same time, the FM signal processed
by the clipping technique based on the PEAK -
estimator is denoised well enough, SNR has
been improved by about 20 dB. It is also worth
noting that the results similar to the described
above have been obtained for FM signals with
other parameters.

VI. C��	���
���

In this paper, methods for noise suppression
based on the analysis of distribution of the
FM signals are proposed. Two robust estima-
tors are modified for the amplitude estimation
of FM signals distorted by Gaussian noise or
noise with heavy-tailed pdf. The first estima-
tor (PEAK -estimator) is based on the deter-
mination of the minimal distance between two
order statistics. Evaluation of the median of
absolute deviation for data sample is the basis
of the second procedure (MMAD-estimator).
The corresponding two novel clipping meth-
ods for FM signal reconstruction are devel-
oped. The comparative analysis of the de-
signed methods and the SWNF and optimal
L-DFT based approaches is performed. It is
shown that the designed methods are robust to
noise influence for various noise environments.
The basic advantage of the proposed methods
is in the fact that they can be efficiently ap-
plied in case of limited a priori information
about signal and noise properties. Besides,
clipping techniques allow increasing the data
processing rate comparing to optimal L-DFT

since the former ones require much less sorting
operations. The task of formulating an adap-
tive algorithm that estimates input SNR and
noise pdf tail heaviness and then chooses the
proper clipping method can be a subject of the

future work.
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���
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