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Robust Two-dimensional DFT
Igor Djurovíc, LJubiša Stanković, Johann F.Böhme

Abstract– A form of the two-dimensional
(2D) DFT, robust with respect to the influence
of impulse noise, is defined. Different forms
of the robust 2D DFT based on the iterative
procedures and various median filter forms are
introduced. The realization based on the ro-
bust 1D DFT along one coordinate and stan-
dard 1D DFT along the other one is also pro-
posed. It performs similarly to other robust 2D
DFT forms with significant calculation savings.

I. I������	�
��

Recently, the Huber robust statistic theory
has found an application in the spectral analy-
sis of signals corrupted with impulse noise [1]-
[12]. Two forms of the robust DFT were in-
troduced: 1) The robust M-DFT obtained by
using the iterative procedure [3], [4]; and 2)
The robust DFT based on the marginal me-
dian filter [6], [12]. Accuracy of both of them
is similar. Namely, in the Gaussian noise envi-
ronment the standard DFT performs slightly
better than each of them. However, the stan-
dard DFT in the impulse noise environment
produces poor results, while the robust DFT
forms produce very high accuracy.

The spectral analysis of the 2D signals in im-
pulse noise environment is considered in this
paper. The robust 2D DFT is introduced in
order to produce an accurate estimate of the
non-noisy 2D DFT for signals corrupted by the
impulse noise. Several forms of the robust 2D
DFT are analyzed. They are based on the
iterative procedure and various median filter
forms.

The paper is organized as follows. As a brief
introduction to the topic, filtering of signals by
using the moving average and median filter,
and the robust DFT are presented in Section
2. The robust 2D DFT forms are developed
in Section 3. Numerical example is given in
Section 4.
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II. T�
��
�
	�� B�	�������

A. Signal filtering

Consider signal f(n) corrupted by a white
noise ν(n), x(n) = f(n) + ν(n). Filtering can
be done by using several samples around the
considered one. The filter output can be de-
fined as a value f̂(n) that minimizes the fol-
lowing functional:

J(m;n) =
n+M∑

k=n−M

F (x(k)−m), (1)

f̂(n) = argmin
m
J(m;n), (2)

where F (e) is the loss function. The maximum
likelihood (ML) estimation, for the case of
noise with probability density function pν(ξ),
is produced by using the loss function F (e) ≈
− ln pν(e). Thus, the ML estimation for the
Gaussian noise is obtained by using F (e) =
|e|2, resulting in the moving average filter:

f̂(n) =
1

2M + 1

n+M∑

k=n−M

x(k)

= mean{x(k), k ∈ [n−M,n+M ]}. (3)

The ML estimate for the Laplacian noise is
produced by using the median filter. It follows
from (1), (2) with the loss function F (e) = |e|:

f̂(n) = median{x(k), k ∈ [n−M,n+M ]}. (4)

The median filter exhibits slightly worse re-
sults in the Gaussian noise environment than
the moving average filter. However, the mov-
ing average filter behavior is poor in the case
of impulse noise, while the median filter is very
robust to the influence of impulse noise.

B. Robust DFT

Consider the standard DFT:

XS(k) =
1

N

N−1∑

n=0

x(n)e−j2πnk/N . (5)
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It can be understood as an average of the mod-
ulated samples {x(n)e−j2πnk/N , n ∈ [0,N)}:

XS(k) = mean{x(n)e−j2πnk/N , n ∈ [0, N)}.
(6)

The DFT can be obtained as a value that min-
imizes the functional:

J(m; k) =
N−1∑

n=0

F (x(n)e−j2πnk/N −m), (7)

XS(k) = argmin
m
J(m; k), (8)

for the loss function F (e) = |e|2. The standard
DFT, as its filtering counterpart, the mov-
ing average filter, exhibits very poor results
in the impulse noise environment. The ro-
bust DFT is introduced to overcame the men-
tioned drawback of the standard DFT. It is
defined by Katkovnik as a solution of the min-
imization problem (7), (8) for the loss function
F (e) = |e|. This form, known as the robust
M -DFT, can be written as [3], [4]:

XR(k) = g(k)
N−1∑

n=0

x(n)e−j2πnk/N

|x(n)e−j2πnk/N −XR(k)|
,

(9)
where

g(k) =

(
N−1∑

n=0

1

|x(n)e−j2πnk/N −XR(k)|

)−1
.

(10)
Expressions (9) and (10) are an implicit solu-
tion for the robust M-DFT. The iterative pro-
cedure for determination of XR(k) is used in
[3], [4].

Separate minimization of the real and imag-
inary parts of error function (x(n)e−j2πnk/N −
m) gives the solution known as the marginal
median filter [6], [13]:

XM(k) =

median{Re{x(n)e−j2πnk/N}, n ∈ [0, N)}+

jmedian{Im{x(n)e−j2πnk/N}, n ∈ [0, N)}.
(11)

The accuracy of the presented robust DFT
forms is of the same order of magnitude [6].

III. R����� 2D DFT

The standard 2D DFT is defined by:

XS(k1, k2) =
1

N1N2
×

N1−1∑

n1=0

N2−1∑

n2=0

x(n1, n2)e
−j2πn1k1/N1−j2πn2k2/N2 ,

(12)
or alternatively as:

XS(k1, k2) =
1

N1

N1−1∑

n1=0

X′
S(n1, k2)e

−j2πn2k2/N2 ,

(13)
where X′

S(n1, k2) is the DFT of rows of the
matrix x(n1, n2):

X ′
S(n1, k2) =

1

N2

N2−1∑

n2=0

x(n1, n2)e
−j2πn2k2/N2 .

(14)
Expressions (12)-(14) can be written in the fol-
lowing forms:

XS(k1, k2) =

mean{x(n1, n2)e
−j2πn1k1/N1−j2πn2k2/N2 ,

n1 ∈ [0,N1), n2 ∈ [0, N2)}, (15)

XS(k1, k2) =

mean{X′
S(n1, k2)e

−j2πn2k2/N2 ,n2 ∈ [0, N2)},
(16)

where
X′
S(n1, k2) =

mean{x(n1, n2)e
−j2πn1k1/N1 , n1 ∈ [0, N1)}.

(17)
Relations (15)-(17) are the solutions of the fol-
lowing minimization problems:

J1(m; k1, k2) =

N1−1∑

n1=0

N2−1∑

n2=0

F1(x(n1, n2)e
−j2πn1k1/N1−j2πn2k2/N2 −m),

XS(k1, k2) = argmin
m
J1(m; k1, k2), (18)

J2(m; k1, k2) =
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N1−1∑

n1=0

F2(X
′
S(n1, k2)e

−j2πn1k1/N1 −m),

XS(k1, k2) = argmin
m
J2(m; k1, k2), (19)

J3(m;n1, k2) =

N2−1∑

n2=0

F3(x(n1, n2)e
−j2πn2k2/N2 −m),

X ′
S(n1, k2) = argminm

J3(m;n1, k2), (20)

for the loss functions F1(e) = F2(e) = F3(e) =
|e|2. Note, that minimization problems (18),
(19), and (20) result with the same solution,
the standard DFT, in this case.

By analogy with the case of 1D signals, the
robust 2D DFT can be defined for the loss
function F (e) = |e|. It can be realized in nu-
merous ways. In the case of the minimization
problem (18), it can be defined alternatively
by using:

a) Implicit solution and iterative procedure:

XR1(k1, k2) = g(k1, k2)
N1−1∑

n1=0

N2−1∑

n2=0

x(n1, n2)

|d(n1, n2; k1, k2)|
e−j2πn1k1/N1−j2πn2k2/N2 ,

(21)
where:

g(k1, k2) =

(
N1−1∑

n1=0

N2−1∑

n2=0

1

|d(n1, n2; k1, k2)|

)−1

,

(22)
and

d(n1, n2; k1, k2) =

x(n1, n2)e
−j2πn1k1/N1−j2πn2k2/N2

−XR1(k1, k2). (23)

b) Marginal median approach:

XM1
(k1, k2) = median{Re{x(n1, n2)×

e−j2πn1k1/N1−j2πn2k2/N2},

n1 ∈ [0, N1), n2 ∈ [0, N2)}+

jmedian{Im{x(n1, n2)×

e−j2πn1k1/N1−j2πn2k2/N2},

n1 ∈ [0,N1), n2 ∈ [0, N2)}. (24)

Consecutive application of the minimization
problems (19) and (20) results in the following
solutions:

c) Consecutive iterative procedures:

XR2(k1, k2) = g
′(k1, k2)×

N1−1∑

n1=0

X′
R(n1, k2)e

−j2πn1k1/N1

|X′
R(n1, k2)e

−j2πn1k1/N1 −XR2(k1, k2)|
,

(25)
where

X′
R(n1, k2) = g

′′(k1, k2)×

N2−1∑

n2=0

x(n1, n2)e
−j2πn2k2/N2

|x(n1, n2)e−j2πn2k2/N2 −X′
R(n1, k2)|

.

(26)
d) Consecutive marginal median calcula-

tion:
XM2

(k1, k2) =

median{Re{X ′
M(n1, k2)e

−j2πn2k2/N2},

n2 ∈ [0, N2)}+

jmedian{Im{X ′
M(n1, k2)e

−j2πn2k2/N2},

n2 ∈ [0, N2)}, (27)

where:
X′
M(n1, k2) =

median{Re{x(n1, n2)e
−j2πn1k1/N1},

n1 ∈ [0, N1)}+

jmedian{Im{x(n1, n2)e
−j2πn1k1/N1},

n1 ∈ [0, N1)}. (28)

Functions g′(k1, k2) and g′′(k1, k2) in expres-
sions (25) and (26) are given as:

g′(k1, k2) =

(
N1−1∑

n1=0

1
|X′

R(n1,k2)e
−j2πn1k1/N1−XR2 (k1,k2)|

)−1

(29)
and

g′′(k1, k2) =
(
N2−1∑

n2=0

1
|x(n1,n2)e−j2πn2k2/N2−X′

R(n1,k2)|

)−1

.

(30)
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The solutions XR2(k1, k2) can be obtained
through two consecutive iterative procedures,
the same as in the case of 1D signal. Form of
the solution presented by (27) and (28) corre-
sponds to the separable median filter form. It
is used in digital image processing [14].

It can be easily concluded that the pre-
sented solutions for XRi(k1, k2), i = 1, 2, and
XMi

(k1, k2), i = 1, 2, are not equal to each
other. This is due to the nonlinearity of the
proposed transforms.

A. Calculation complexity

The median filter based form is more calcu-
lationally efficient than the iterative procedure
in the 1D signal case [6]. The same conclusion
holds for the 2D signals. The calculation of the
median filter form of the 2D DFT (24) needs
N1N2 log2N1N2 comparisons for each point or
N2
1N

2
2× log2N1N2 comparisons for the entire

frequency plane. The separable median forms
(27) and (28) need N1 log2N1 + N2 log2N2
comparisons for each point, or N2

1N2 log2N1+
N1N

2
2 log2N2 for the entire frequency plane.

This means that the separable median form
of the 2D DFT needs an order of magnitude
less comparisons than the median filter form.
Note, that the standard median behaves better
in the image processing application than the
separable median [14]. However, the calcula-
tion of the DFT needs more samples than the
calculation of the median filter in digital image
processing. As number of samples increases,
the performance of both median forms, (24)
and (27), will get closer to each other.

Note, that after calculation of the robust
1D DFT by using the signal samples along
one coordinate, by using iterative procedure
(26), the second step can be performed by us-
ing the marginal median filter form (27), and
vice versa. Furthermore, different loss func-
tions F2(e) and F3(e) can be applied for min-
imization of (19) and (20). This can be used
to further decrease the calculation complex-
ity. Since the number of samples in the ma-
trix x(n1, n2) can be very large, for example
N1 × N2 = 256 × 256, application of the ro-
bust 1D DFT along one direction will remove
all impulses appearing in the matrix. Then the
1D standard DFT can be applied to the other

coordinate. Calculation complexity for this
algorithm is reduced to N2

1N2 log2N1 com-
parisons. Note that calculation complexity of
the FFT algorithm exhibits N1N2 log2N2 ad-
ditions and multiplications, and it can be ne-
glected with respect to the number of compar-
isons.

IV. N��
�
	�� E�����


Consider the signal:

x(t1, t2) =

exp(j12πt1+j48πt2)+exp(j96πt1−j48πt2)+

exp(−j48πt1+j48πt2)+exp(−j36πt1−j48πt2),
(31)

embedded in a high amount of impulse noise:

y(t1, t2) = x(t1, t2)+a(ν
3
1(t1, t2)+ jν

3
2(t1, t2)),

(32)
where a = 10 and νi(t1, t2), i = 1, 2 are
mutually independent white Gaussian noises
with unitary variance E{νi(t1, t2)νj(t1, t2)} =
δ(i − j). The signal is sampled with ∆t1 =
∆t2 = 1/128, along both coordinates. The
sampled version of the signal contains 256×256
samples. The standard 2D DFT fails to pro-
duce any reasonable result in this case (Figure
1(a)). However, realization of the standard 2D
DFT is very fast and needs only 0.1sec on a
PC Pentium IV. The robust 2D DFT based
on the median filter (24) is shown in Figure
1(b). Necessary time for its calculation was
2h 47min 4.6sec. However, large portion of
calculation time has been taken by reshaping
matrix into the vector suitable for the median
determination. The separable median realiza-
tion (27), (28) is shown in Figure 1(c). The
calculation time was 27.6sec. The robust 2D
DFT, obtained by using the robust DFT along
one coordinate and the standard DFT along
the other, is shown in Figure 1(d). Its realiza-
tion has taken 18.1sec. It can be seen that all
forms of the robust 2D DFT produce similar
accuracy in this example, while the last one is
calculated in shortest time period.

V. C��	���
��

Generalization of the robust DFT form to
the 2D signals is presented. various forms



ROBUST TWO-DIMENSIONAL DFT 661

50 100 150 200

50 

100

150

200

50 100 150 200

50 

100

150

200

50 100 150 200

50 

100

150

200

50 100 150 200

50 

100

150

200

k
2
 

k
1
 

k
2
 

k
1
 

k
2
 

k
1
 

k
2
 

k
1
 

(a) (b) 

(c) (d) 

Fig. 1. 2D DFT forms of signal embedded in impulse noise: (a) Standard 2D DFT; (b) Robust 2D DFT -
marginal median filter form; (c) Robust 2D DFT - separable median filter form; (d) Robust 2D DFT -
robust 1D DFT along one coordinate and the standard 1D DFT along the other.

of the robust 2D DFT are introduced. The
fastest one assumes the calculation of the ro-
bust DFT along the rows or columns of the
matrix, followed by the application of the stan-
dard DFT along the other direction. The
straightforward generalization to the case of
multidimensional signals is possible.
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