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Realization of the Robust Filters in the
Frequency Domain
Igor Djurovíc, LJubiša Stanković

Abstract– An efficient and simple procedure
for filtering of signals in an impulse noise envi-
ronment is proposed. It can be used for realiza-
tion of all filter forms: lowpass, highpass, stop-
band, and bandpass. Accuracy of the proposed
procedure is of the same order of magnitude
as in the case of the weighted median/myriad
filters admitting negative weights, recently pro-
posed by Arce et al.

I. I������	�
��

Myriad and median filters are commonly
used for the removal of impulse noise from low-
pass data [1]-[3]. Recently, weighted forms of
these filters, admitting negative weights, have
been proposed [4]-[7]. They can produce all
filter types (lowpass, highpass, stopband, and
bandpass). Synthesis of these filters includes
spectral optimization techniques [6] (or “train-
ing” procedures [4]). These procedures can
be understood as synthesis of the filters ro-
bust to the impulse noise influence in the time-
domain. The entire genesis of the weighted
median/myriad filters development can be fol-
lowed through [2]-[7].

Forms of the discrete Fourier transform
(DFT), which can be used for spectral estima-
tion in the case of signals embedded in the im-
pulse noise, are introduced recently [8]. They
are based on the same robust statistics con-
cept as the median and myriad filters [9]. The
robust M -DFT form, calculated by using the
fixed-point search algorithm, is proposed in
[8]. The marginal-median- filter-based form
of the robust M-DFT is introduced in [10].
For the analysis of a mixture of the impulse
and Gaussian noise, the L-filter- based DFT
(L-DFT) forms are defined [11], [12]. In this
paper, an implementation of robust filters in
the frequency domain, based on the L-DFT,
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is proposed. Filtering is performed as a two-
stage operation. In the first step, the L-DFT is
calculated in order to produce an accurate es-
timate of the non-noisy signal DFT. The stan-
dard linear filtering procedure is performed
in the second step. This quite simple proce-
dure exhibits similar accuracy as the weighted
median/myriad filters designed in the time-
domain.

The paper is organized as follows. A brief
overview of the weighted median and myriad
filter is given in Section II. Procedure for re-
alization of the robust filters in the frequency-
domain is described in Section III. Numerical
study is presented in Section IV.

II. W�
���� M��
��/M��
�� F
�����

Consider a signal f(n) corrupted by a white
noise ν(n), x(n) = f(n) + ν(n). The general
form of the weighted median filter, admitting
negative weights, follows as the solution of the
minimization problem [4]-[7]:

s(n) = argmin
θ

∑N

k=−N
[g(k)|x(n+ k)− θ|

+ |h(k)|| − x(n+ k)− θ|], (1)

while the general weighted myriad filter results
from:

s(n) = argmin
θ

∑N

k=−N
log[K2 + g(k)×

(x(n+ k)− θ))2]

+ log[K2 + |h(k)|(−x(n+ k)− θ))2], (2)

where g(k) ≥ 0 and h(k) ≤ 0 for k ∈
[−N,N ], and real-valued K is the scaling or
linearization factor. Standard weighted me-
dian/myriad smoothers follow from (1) and (2)
for h(k) = 0, k ∈ [−N,N ]. A proper choice
of g(k) and h(k) in (1) and (2) can produce
any spectral characteristics in the frequency
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domain, including the highpass or bandpass
form [4], [6]. However, synthesis of these fil-
ters is not straightforward. It can be realized
by using the generalized Mallow’s algorithm
[6], or iterative learning and training proce-
dures [4]. These procedures represent digital
filter synthesis in the time domain for the im-
pulse noise environment. In order to simplify
the calculation, the robust filter realization in
the frequency domain is presented next.

III. R����� F
����
� 
� ���
F������	� D���
�

A. Robust DFT

A general form of the DFT can be defined
as a solution of [8]

XF (e)(ω) = argmin
θ

∑N−1

n=0
F
(
x(n)e−jωn − θ

)
.

(3)
where ω = 2πk/N . The quadratic loss func-
tion F (e) = |e|2 produces the standard DFT:

X|e|2(ω) =
1
N

∑N−1

n=0
x(n)e−jωn

= mean{x(n)e−jωn : n ∈ [0, N − 1]}. (4)

The standard DFT is a poor estimate of the
non-noisy signal DFT, even for a small amount
of the impulse noise. The robust DFT is intro-
duced in order to improve accuracy of the DFT
estimate for the impulse noise environment.
This transform follows from (3) for the loss
function F (e) = |e| [8]. It cannot be written
as a closed form expression, and the iterative
procedure should be used for its calculation.
In order to avoid handling with the iterative
procedure the “sub-optimal” marginal-median
form of the robust DFT is introduced [10]:

X|e|(ω) =

median{Re{x(n)e−jωn} : n ∈ [0, N − 1]}

+jmedian{Im{x(n)e−jωn} : n ∈ [0,N − 1]}.
(5)

The robust DFT form (5) is a very accurate
spectra estimate for a sum of sinusoids em-
bedded in the impulse noise. However, it can
produce distorted results for signals with vary-
ing spectral content.

B. L-filter Form of the DFT

The L-DFT forms are introduced as a trade-
off between robustness to the impulse noise in-
fluence and quality of the spectra estimate [11].
They can also be used in the case of signals
embedded in a mixture of the Gaussian and
impulse noise [1], [11]. The L-DFT is defined
as [11], [12]

XL(ω) =
∑N−1

n=0
an[rn(ω) + jin(ω)], (6)

where
∑N−1
n=0 an = 1, rn(ω) and in(ω)

represent values from the sets R(ω) =
{Re{x(n)e−jωn} : n ∈ [0,N − 1]} and I(ω) =
{Im{x(n)e−jωn} : n ∈ [0, N − 1]}, rn(ω) ∈
R(ω), in(ω) ∈ I(ω), n ∈ [0, N − 1] sorted
into nondecreasing order: r0(ω) ≤ r1(ω) ≤
... ≤ rN−1(ω), i0(ω) ≤ i1(ω) ≤ ... ≤ iN−1(ω).
Here, we will use the α-trimmed mean form
of the L-DFT, where coefficients an in (6) are
given as:

an =
1

a(4− 2N) +N
, for

n ∈ [(N − 2)a, (−N + 2)a+N − 1], (7)

and an = 0 elsewhere. This form of the DFT
will be denoted by Xa(ω). It is equal to the
standard DFT for a = 0, X0(ω) = X|e|2(ω),
while for a = 1/2 it reduces to the marginal-
median form (5), X1/2(ω) = X|e|(ω). For
0 < a < 1/2, this transform can give a trade-
off between spectra quality and impulse noise
removal.

C. Filtering Procedure

A standard linear time-invariant filter can
be represented in the frequency domain as:
S(ω) = H(ω)X(ω), where X(ω) and S(ω)
are the DFTs of the input and output signals
respectively, while H(ω) is the frequency re-
sponse. Since the L-DFT forms produce accu-
rate estimates of the spectra for impulse noise
environment, they can be used instead of the
standard DFT. Then, the procedure for filter-
ing is simple: a) DetermineXa(ω), [see (6) and
(7)]; b) Multiply H(ω) by Xa(ω), where H(ω)
is known in advance or determined through
well-defined procedures in the case of linear
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filters; c) Calculate inverse discrete DFT

s(n) = N
∑N−1

k=0
H(2πk/N)×

Xa(2πk/N) exp(j2πkn/N). (8)

A problem that remains is the choice of the
parameter a value in the α-trimmed mean fil-
ter form of the L-DFT (7), since it will be
used as the DFT estimate. For a known signal
model, this can be done through experiments
and a training procedure. However, since the
expected noise is of the impulse form and we
want to preserve high quality of the spectra
content, the α-trimmed form with a 	 0.25
can be used as an empirical trade-off between
elimination of the impulse noise and spectra
quality. Detailed analysis of this problem will
be the topic of our further research. Note that
the noise nature is more important factor for
optimal parameter a choice in (7) than the
particular signal shape. There are numerous
methods for estimation of the pdf for the im-
pulse kind of noise. For example, estimation
of the parameters for the α-stable noises [13]
can be found in [14] and references therein.

IV. N����
	�� S����

The same numerical example as in [4, Ex-
ample 1] will be used. The chirp signal
f(n) = sin(nω(n)) is considered. Its fre-
quency is varied according to the quadratic law
ω(n) = 0.2π(n/(N − 1))2, n ∈ [0, N − 1], and
N = 300. The desired filter output (Fig.1a)
is created by the FIR filter designed by us-
ing fir1 function from MATLAB, with fil-
ter order 21 and passband cut-off frequencies
(ω1, ω2) = (0.16π, 0.18π). The output of the
filter (8), with a = 0.25, is presented in Fig.1b.
It can be seen that this signal is a good approx-
imation of the desired signal from Fig.1a. Fur-
thermore, signal f(n) is embedded in the α-
stable impulse noise [13] with α = 1.4 and the
dispersion factor γ = 0.1. One realization of
the FIR filter output is shown in Fig.1c, while
the output of the proposed filter with a = 0.25
is shown in Fig.1d. Note that no training
procedures for determination of the fil-
ter coefficients are used here. The statis-
tical analysis is performed for these two cases,
as well. Non-noisy signal case is presented in

Fig.2a. The MSE of the filter output is marked
with a solid line as a function of a, while other
lines represent the MSE obtained by using the
general myriad filter (dashed line), and spe-

cial myriad filter (dash-dot line) [4, Table II].
Noisy signal case is shown in Fig.2b. The
dotted line represents results obtained by the
FIR filter with coefficients determined from
the least mean-square (LMS) algorithm [4].
For a noiseless signal the proposed procedure
for a = 0.25 produces MSE = 0.0059. The
general myriad filter behaves slightly worse
(MSE = 0.0060) while the special myriad fil-
ter is the best (MSE = 0.0033). In total, 100
trials are considered for the case of a noisy
signal. The proposed procedure for a = 0.25
gives MSE = 0.0224, which is slightly bet-
ter than the special myriad filter with 0.0229
and slightly worse than the general myriad fil-
ter where MSE = 0.0173. It is significantly
better than the FIR filter with LMS-trained
coefficients, MSE = 0.0544. It can be seen
that the MSE function is very smooth around
its minimum (MSE = 0.0198 for a = 0.12).
Thus, all values a ∈ [0.05, 0.30] can be used
for an accurate DFT estimate, producing ac-
curate filter estimate. Note that as the amount
of impulse noise increases, the higher values of
the parameter a becomes “optimal”. It means
that the estimation of noise behavior is more
important for the filter synthesis than the par-
ticular shape of signal. An interesting effect is
that the MSE for the marginal median based
robust DFT a = 1/2 is lower in the case of
the impulse noise than in non-noisy case (see
Figs.2b, and 2a, respectively). As expected,
for the standard DFT, a = 0, MSE = 0 for
nonnoisy signal (see Fig.2a) while the MSE as-
sumes a very high value for the signal with
impulse noise (see Fig.2b).

Finally, we considered noisy signal with
varying α parameter and fixed γ = 0.1. Fig.2c
shows the MSE, as a function of (a, α). The
minimal observed MSE for this noise case
was 0.0186. Three isolines are presented
[0.022, 0.03,0.05]. It can be seen that the stan-
dard DFT becomes useless very fast when the
impulse noise amount increases, i.e., when α
decreases. There is a large portion of the
(a,α) plane centered around a = 0.2 where
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(a) (b) 

(c) (d) 

Fig. 1. Bandpass filtering: (a) Desired signal; (b) Robust filter for a = 0.25 of noiseless signal; (c) FIR filtering
of the noisy signal; (d) Robust filter for a = 0.25 of noisy signal.
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Fig. 2. MSE of the filter output: (a) Noiseless signal; (b) Noisy signal α = 1.4, γ = 0.1. Solid line represents the
proposed filter. The dotted line represents the FIR filter with the LMS training. The dashed line represents
the general myriad filter. The dash-dot line represents the special myriad filter; (c) Contour plots of the
MSE for [0.022, 0.03, 0.05] as a function of (α, a); (d) MSE as a function of α for a ∈ [0.16, 0.25, 0.5].
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the MSE is almost constant. This performance
can be slightly different for other signal types
but our numerical experiments confirmed that,
roughly speaking, a ∈ [0.10, 0.30] produces
satisfactory accuracy in all cases. The MSE er-
ror, as a function of the impulse noise amount,
is shown in Fig.2d for the robust DFT a = 0.5,
and the L-DFTs for a = 0.25 and a = 0.16.
Note that a = 0.16 produces the smallest
‘mean MSE’ for the presented signal calculated
over α.

V. C��	���
��

Frequency domain filtering of signals cor-
rupted by the impulse noise is presented.
The basic filtering tool is the L-DFT, which
can remove a significant part of the impulse
noise. The second step in filtering is a well
known standard linear filtering realization.
Results obtained with this simple procedure
are slightly worse than those produced with
the weighted median/myriad filters, but at the
same time the algorithm complexity is signifi-
cantly reduced. Accurate results are obtained
for relatively wide range of the parameter a
values. Algorithms for the determination of
optimal parameter in the L-DFT calculation
are the topic of our further research.
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