
668 TIME-FREQUENCY SIGNAL ANALYSIS

Robust L-Estimation Based Forms of
Signal Transforms and Time-Frequency

Representations
Igor Djurovíc, LJubiša Stanković, Johann F. Böhme

Abstract– The L-estimation based signal
transforms and time-frequency (TF) represen-
tations are introduced by considering the cor-
responding minimization problems in the Hu-
ber estimation theory. The standard signal
transforms follow as the maximum likelihood
solutions for the Gaussian additive noise envi-
ronment. For signals corrupted by an impulse
noise the median based transforms produce ro-
bust estimates of the non-noisy signal trans-
forms. When the input noise is a mixture of
Gaussian and impulse noise, the L-estimation
based signal transforms can outperform other
estimates. In quadratic and higher order TF
analysis the resulting noise is inherently a mix-
ture of the Gaussian input noise and an impulse
noise component. In this case, the L-estimation
based signal representations can produce the
best results. These transforms and TF repre-
sentations give the standard and the median
based forms as special cases. A procedure for
parameter selection in the L-estimation is pro-
posed. The theory is illustrated and checked
numerically.

I. I������	�
��

Huber’s estimation theory gives fundamen-
tal principles for solving a wide class of prob-
lems when the signal is influenced by impulse
disturbances [1], [2]. Three groups of meth-
ods for signal parameters estimation are pro-
posed. They are referred to as the maxi-
mum likelihood estimations (M-estimations),
linear combination of order statistics estima-
tions (L-estimations), and estimation derived
from rank tests (R-estimations).

The standard Fourier transform can be ob-
tained by solving a proper minimization prob-
lem with the squared absolute error as a loss
function [3]-[6]. It is the maximum likeli-
hood (ML) estimate of the nonnoisy signal
transform for the Gaussian noise environment.
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However, for an impulse kind of noise, the
standard Fourier transform may produce poor
results. Applying results from the Huber’s
estimation theory, Katkovnik has introduced
the robust M -periodogram via the robust M -
Fourier transform [3]. This method has been
extended to the robust TF analysis of nonsta-
tionary signals embedded in an impulse noise
[5], [7]. The robust M-periodogram definition
is based on the absolute error as a loss func-
tion. Since this type of loss function does not
produce a closed form solution, the iterative
procedures are used in calculation of the ro-
bust M-periodogram [3]. Recently, it has been
shown that a form of the robust Fourier trans-
form can be obtained without iterative proce-
dures, by using the median filter approach [8].

In this paper, we first have introduced the
general form of discrete unitary transforms
as a solution of an appropriate minimization
problem. The standard form of these trans-
forms follows as a solution of the minimiza-
tion problem with the squared absolute error
as a loss function. It is the ML estimate of
the transform calculated for a signal in the
Gaussian input noise. When the resulting sig-
nal is a sum of Gaussian and impulse noise (of
a known type), we can calculate the ML esti-
mate of a discrete unitary transform by solv-
ing an appropriate minimization problem with
the corresponding loss function, defined by the
resulting noise properties. However, this loss
function is of the form which cannot be prac-
tically used. Huber’s estimation theory pro-
vides solutions for this kind of problems [1].
They are based on the L and R-estimation
approaches. These results are used here for
a definition of the L-estimation forms of the
discrete unitary transforms. These forms can



ROBUST L-ESTIMATION BASED FORMS OF SIGNAL TRANSFORMS... 669

produce accurate results for a wide range of
weights in the mixture of Gaussian and im-
pulse noise. The well-known standard trans-
forms and the recently introduced marginal
median based form of these transforms easily
follow as special cases from their L-estimation
forms. A signal dependent adaptive procedure
for determination of the parameter in the L-
estimation based discrete unitary transforms is
proposed. The presented theory is extended to
the quadratic time-frequency (TF) represen-
tations as standard tools for analysis of non-
stationary signals [9]-[12]. These representa-
tions can be interpreted as a Fourier trans-
form of the signal local autocorrelation func-
tions (LAF). As it will be shown in the paper,
for quadratic TF distributions the resulting
noise in the LAF can be treated as a mixture
of the Gaussian and impulse noise, even for
the pure Gaussian input noise. This suggests
that the L-estimation forms can outperform
the standard TF representation forms, even
in some cases when the input noise is purely
Gaussian. The presented L -estimation-based
forms of signal transforms and representations
can be used in a straightforward manner to de-
fine corresponding R-estimation-based forms.
The considered signal transforms can be effi-
ciently used in the robust filter design [24] and
the parametric signal estimation.

The paper is organized as follows. Basic the-
ory, along with definitions of the M- and L-
estimates of the discrete unitary transforms,
is given in Section II. The relationship be-
tween common estimation forms is derived.
An extension of the L-estimation-based ap-
proach to the TF representations is given in
Section III. Adaptive procedure for selection of
the L-estimate parameter is presented in Sec-
tion IV. In this section an analysis of statisti-
cal performance of the considered transforms
is done, as well. Concluding remarks are given
in Section V.

II. B�

	 T�����

Numerous discrete transforms have been de-
fined for the analysis of discrete-time signals
(DFT, Hadamard, discrete Walsh, Haar, dis-
crete cosine, discrete sine, discrete Hartley
transform, etc.). These transforms can be

written as:

S(k) =
N−1∑

n=0

s(n)ϕk(n), (1)

where s(n) is a signal of the length (or period-
icity) N, and ϕk(n), k ∈ [0, N−1] are the basis
functions. Without loss of generality we will
consider a set of orthonormal basis functions

N−1∑

k=0

ϕk(n)ϕ
∗

k(n
′) = δ(n− n′). (2)

If (2) holds, S(k) is a discrete unitary trans-
form.

Consider the signal s(n) embedded in a
white noise ν(n), x(n) = s(n) + ν(n). Our
goal is to estimate the signal transform coeffi-
cients S(k) by using noisy samples x(n). Es-

timated values will be denoted by Ŝ(k). One
approach to solve this problem is based on the
minimization of:

Lϕ(m; k) =
N−1∑

n=0

F (Nx(n)ϕk(n)−m), (3)

where F (e) is a loss function, while

e(m;n, k) = Nx(n)ϕk(n)−m (4)

is the error function. Relationship (3) can be
understood as a redefinition of the discrete
unitary transforms within the scale-location
problem [2]. This problem also known as or-
thogonal robust regression has attracted sig-
nificant attention in the statistical community.
Details on this topic can be found in [1], [2],
[13]-[17]. The minimum of (3) can be deter-
mined from

Lϕ(m;k)

∂m∗
|m=m0

= 0, with Ŝ(k) = m0. (5)

Solution of (3) and (5) is called the M -
estimate.

For the loss function F (e) = |e|2 we easily
get the standard discrete unitary transform:

X(k) = Ŝ(k) =
N−1∑

n=0

x(n)ϕk(n) =

= mean{Nx(n)ϕk(n) : n ∈ [0, N − 1]}. (6)
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This solution has nice estimation properties
when the noise is Gaussian. It can be shown
that (6) is the ML estimate for this particu-
lar kind of noise. Namely, for a given proba-
bility density function (pdf) of noise, pν(e),
the ML approach suggests the loss function
F (e) ∼ − log pν(e) [3], [4]. For the Gaussian
pdf the loss function assumes the form F (e) =
|e|2, producing (6) as the ML estimate. How-
ever, the ML estimates are quite sensitive to
the variation of the noise pdf form. This
means that the standard transforms, being the
ML estimates for the Gaussian noise, may not
produce satisfactory results for other kinds of
noise.

This fact motivated introduction of the ro-
bust, instead of the ML estimates [1]. The ro-
bust estimate is introduced for a class of noises
by taking the ML estimate of the worst noise
from this class (noise with the longest tail) as
the robust estimate for the whole class. The
Laplacian noise with F (e) = |e| is the worst
case for numerous forms of impulse noises. Of
course, this robust estimate based on F (e) =
|e| will produce worse results for the Gaussian
noise than its ML estimate (6). However, the
results for Gaussian noise will be only slightly
worse, whereas the improvement of the estima-
tion accuracy for impulse noise environment
will be significant.

Solving (3) and (5) for the loss function
F (e) = |e|requires handling of nonlinear equa-
tions. We can distinguish two cases:

(a) The signal x(n) and the basis functions
ϕk(n) are real-valued. Here the solution can
be reduced to the median filter [8], [18] given
as:

XM(k) = median{Nx(n)ϕk(n) : n ∈ [0,N−1]}.
(7)

(b) The signal and/or the basis functions
are complex-valued. Here, we will use the loss
function F (e) = |Re(e)| + | Im(e)| and mar-
ginal median approach [8], [18], that produces
solution as:

XM(k) =

median{Re{Nx(n)ϕk(n) : n ∈ [0, N − 1]}}+

jmedian{Im{Nx(n)ϕk(n) : n ∈ [0, N − 1]}}.
(8)

Note that the solution in this case can also be
obtained by using the iterative procedure [3]-
[6] or vector median approach; see Appendix
A.

Signals are often corrupted not by a pure
Gaussian or impulse noise but by their com-
bination. In TF representations, due to their
quadratic nature, resulting noise is a mixture
of the Gaussian and impulse noise for the in-
put noise being purely Gaussian. Theoreti-
cally, when we have a sum of Gaussian and
impulse noise (of a known type) we can de-
rive the pdf function, and its corresponding
loss function for the ML estimation. However,
this loss function will be of the form that is
not practically applicable in the minimization.
Huber’s estimation theory provides solutions
for this kind of problems [1]. They are based
on the L- and R-estimation approaches. For
real-valued signals and basis functions the L-
estimation of transform coefficients is

XL(k) =
N−1∑

i=0

aix(i)(k), (9)

with
∑N−1
i=0 ai = 1. The values x(i)(k), i =

0, ..., N − 1, are elements from the set Ek =
{Nx(n)ϕk(n) : n ∈ [0, N − 1]}, ordered into
the nonincreasing sequence

x(0)(k) ≥ ... ≥ x(i)(k) ≥

x(i+1)(k) ≥ ... ≥ x(N−1)(k). (10)

Note that the standard discrete unitary trans-
form, i.e., transforms based on the mean, and
the transforms based on the median can be
obtained as special cases of (9):

a) The standard discrete transforms (1) fol-
lows from (9) with ai = 1/N , i = 0, ..., N − 1.

b) The robust median-based transforms re-
sult for

ai =

{
1 i = (N − 1)/2
0 i �= (N − 1)/2 for odd N,

ai =

{
1
2 i ∈ [N/2− 1,N/2]
0 elsewhere

for even N .

(11)
Special attention will be paid to the form

of coefficients in (9), which can be written in
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analogy to the α-trimmed mean in the nonlin-
ear digital filter theory [18]. The coefficients
ai, for even N, are given by

ai =
1

N(1− 2α) + 4α for

i ∈ [(N − 2)α,α(2−N) +N − 1](12)

and ai = 0, elsewhere. From (12), the stan-
dard transforms follow for α = 0, whereas
α = 0.5 produces the transforms based on the
median filter. For 0 < α < 0.5, the transforms
having performance between these two limit
cases are obtained. For a mixture of Gaussian
and impulse noise, the L-estimation with prop-
erly chosen value of α can produce more accu-
rate results than either the standard or the me-
dian based transforms. This is especially im-
portant for quadratic and higher-order TF rep-
resentations, where resulting noise inherently
has a form of this mixture.

The L-estimation based filters (L-filters)
and general Huber estimation theory have
attracted significant attention in the signal
and image filtering, including signal de-noising
[18]-[23]. However, almost all of these fil-
ters produce low-pass characteristics. They
are not suitable for signals with a high fre-
quency content. The L-estimations of the dis-
crete unitary transforms, proposed in this pa-
per, are used for development of the robust
filters in the frequency domain [24]. These
filters can produce all filtering characteristics
(lowpass, highpass, bandpass, and stopband).
They are counterparts of the robust filters ad-
mitting negative weights recently proposed by
Arce et al. [25]. An alternative approach
for development of the robust filters of signals
with high frequency content is presented in
[21], where Schick and Krim created a wavelet-
based de-noising method by applying data de-
scription length as a criterion for trade-off be-
tween ‘goodness-of-fit’ and model complexity.
The probabilistic model used in [21] is inspired
by the Huber’s work as well.

Now, we will illustrate these transforms on
a real-valued transform example.
Example 1. Consider the Hadamard trans-

form (HT) with the rectangular-shaped basis
functions ϕk(n) [26, pp.290-291], and N =
128. The signal s(n) is formed as a sum of

two basis functions of the HT

s(n) = ϕ13(n) + ϕ107(n). (13)

The standard HT of the nonnoisy signal (13)
is:

S(k) =
N−1∑

n=0

s(n)ϕk(n) =

{
1 k = 13 or k = 107
0 elsewhere.

(14)

Signal is corrupted by a mixture of Gaussian
and impulse noise:

x(n) = s(n) + ν(n) =

s(n) + σgν1(n) + (ahν2(n))
3, (15)

where νi(n), i = 1, 2, are mutually indepen-
dent Gaussian white noises with unitary vari-
ances. A cube of the Gaussian noise is used
hereafter as a model of impulse noise. Other
models of impulse noise can be found in [27]-
[29]. The HT estimations based on the mean,
the α-trimmed mean with α = 3/8, and the
median are shown in Fig.1 for three different
ratios of Gaussian and impulse noise. For a
relatively small impulse component in the mix-
ture (top row of Fig.1) the median-based form
is worse than the mean, and the α-trimmed
mean-based transforms. For σg = 0.7 and
ah = 0.7, all three transforms exhibit very sim-
ilar performance (middle row of Fig.1). With
an increase of the impulse noise component,
σg = 0.7, ah = 1.0, the standard HT be-
comes useless, whereas the median and the α-
trimmed mean have very similar performance
(bottom row of Fig.1). Note that typical
realizations of the considered transforms are
shown in Fig.1, whereas the statistical compar-
ison is given in Section IV. From these three
typical realizations we can conclude the fol-
lowing: a) In the Gaussian noise environment
the α-trimmed-mean based HT performs as
equally well as the standard mean-based trans-
form; b) In the dominant impulse noise, the α-
trimmed mean-based HT behaves as equally
well as the median-based transform. There-
fore, it can be a good choice for a whole variety
of noise forms, from the pure Gaussian to the
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Fig. 1. HT of the signal corrupted by a mixture of the Gaussian and the impulse noise. Top row - (σg =
0.7, ah = 0.2). Middle row - (σg = 0.7, ah = 0.7). Bottom row - (σg = 0.7, ah = 1.0).

pure impulse ones. A detailed statistical con-
firmation of this conclusion will be provided
later.

Note: For the complex-valued signal and/or
basis functions, the L-estimation based trans-
form is given by

XL(k) =
N−1∑

i=0

air(i)(k) + j
N−1∑

i=0

aii(i)(k), (16)

where r(i)(k) and i(i)(k) are elements belong-
ing to the sets Rk = {Re{Nx(n)ϕk(n)} : n ∈
[0, N − 1]}, and Ik = {Im{Nx(n)ϕk(n)} : n ∈
[0, N − 1]}, respectively, sorted into the non-
increasing sequences. Both the standard and
the median-based transforms follow as special
cases of (16), with a) ai = 1/N , i = 0, ..., N−1
and b) ai given by (11), respectively. The L-
estimation form in this case follows the mar-
ginal median definition, according to the facts
presented in Appendix A.

III. T
��-F������	� R����
�����
��


TF representations are introduced for analy-
sis of signals whose spectral content changes in
time [9]-[12]. Influence of the Gaussian noise
to the TF representations is a well studied
topic [30]. In order to improve the perfor-
mance of TF representations when the noise
is not Gaussian, the L-estimation based de-
finitions of these distributions will be intro-
duced in this section. The L-estimation form
of the short-time Fourier transform (STFT),
as a time-varying form of the robust DFT, is
defined first. Then, the L-estimation of the
Wigner distribution (WD) is considered. Due
to the nonlinearity of the WD, even for the sig-
nal with an additive Gaussian input noise, the
resulting noise in this distribution is a combi-
nation of the Gaussian and impulse noise. The
same holds for any other quadratic or higher-
order TF representation.
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A. L-estimation of the DFT and STFT

The DFT has complex-valued basis func-
tions ϕk(n) = exp(−j2πnk/N)/

√
N. The L-

estimate of the DFT is obtained by using (16).
The STFT is a time-varying form of the DFT.
The L-estimate of the STFT can be defined by

STFTL(n, k) =

Re{STFTL(n, k)}+ j Im{STFTL(n, k)}

=
N−1∑

i=0

air(i)(n, k) + j
N−1∑

i=0

aii(i)(n, k), (17)

where r(i)(n, k) and i(i)(n, k) are elements be-

longing to the sets Rn,k = {Re{
√
Nx(n +

m) exp(−j2πkm/N)} : m ∈ [0,N − 1]}, and
In,k = {Im{

√
Nx(n +m) exp(−j2πkm/N)} :

m ∈ [0, N − 1]}, respectively, sorted into the
nonincreasing sequences. For constant coef-
ficients ai = 1/N , i = 0, 1, ..., N − 1, in (17),
the standard STFT follows. The median based
STFT is obtained for ai, given by (11). The
spectrogram based on the L-estimation of the
STFT is

SPECL(n, k) = |STFTL(n, k)|2 =

|Re{STFTL(n, k)}|2 + | Im{STFTL(n, k)}|2.
(18)

B. L-estimation of the Wigner distribution

The WD is introduced in TF analysis in
order to overcome low TF resolution of the
STFT. It is defined as a DFT of the LAF
rx(n,m) = x(n+m)x∗(n−m). From this fact
the WD can be defined as a solution which
minimizes the following functional:

LWD(n,k) =

N/2∑

m=−N/2

F
(√
N + 1x(n+m)x∗(n−m)×

exp(−j4πkm/(N + 1))−WD(n, k)) . (19)

The standard WD follows from (19) for the
loss function F (e) = |e|2. The median form of
the robust WD is obtained with F (e) = |e|
[8], [18]. The L-estimate of the WD can be

introduced, according to the above analysis,
as

WDL(n, k) =
N∑

i=0

aix(i)(n, k), (20)

where x(i)(n, k) are the order statistics of

En,k = {
√
N + 1Re{x(n+m)x∗(n−m)×

exp(−j4πkm/(N + 1))} : m ∈ [−N/2, N/2]}.
(21)

Special cases of the L-estimation based WD
(20) are the standard and median WD. More
details about the robust WD are given in [7],
[8]; see Appendix B.

Next, we will show that the L-estimation
based WD can outperform the standard WD,
even in the case of the Gaussian input noise.

C. ML estimation of the Wigner distribution

Let the signal s(n) be corrupted by an ad-
ditive noise ν(n). The LAF is given by:

x(n+m)x∗(n−m) =

s(n+m)s∗(n−m) + s(n+m)ν∗(n−m)+
ν(n+m)s∗(n−m) + ν(n+m)ν∗(n−m) =

rs(n,m) + Ψ(n,m), (22)

where rs(n,m) = s(n + m)s∗(n − m) is the
signal component, while the noise influenced
term is

Ψ(n,m) = s(n+m)ν∗(n−m)+

ν(n+m)s∗(n−m)+ν(n+m)ν∗(n−m). (23)

Assume that the input noise is of the form
ν(n) = ν1(n) + jν2(n), where νi(n), i =
1, 2 are mutually independent white Gaussian
noises N (0, σ2). The component s(n +
m)ν∗(n−m)+ν(n+m)s∗(n−m) is a Gaussian
white nonstationary noise with variance de-
pending on the signal s(n). The noise LAF
rν(n,m) = ν(n+m)ν

∗(n−m) can be written
as

ν(n+m)ν∗(n−m) =
ν1(n+m)ν1(n−m) + ν2(n+m)ν2(n−m)−
jν1(n+m)ν2(n−m) + jν2(n+m)ν1(n−m).

(24)
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For m = 0, it is equal to rν(n, 0) =
Re{ν(n)ν∗(n)} = ν21(n) + ν

2
2(n). The pdf of

this noise is p(ξ) = exp(−ξ/2σ2)/2σ2 for ξ > 0
and p(ξ) = 0 for ξ < 0 [31, eqs. (5.9) and
(6.39)]. For m �= 0 the real and imaginary
part of noise rν(n,m) = r1(n,m)+jr2(n,m) in
(24) can be written as ri(n,m) = νaνb+νcνd,
where νa, νb, νc, and νd are mutually inde-
pendent Gaussian noises. Then, components
ri(n,m) = νaνb+νcνd have the Laplacian pdf
p(ξ) = exp(−|ξ|/σ2)/2σ2, as it is shown in [32]
and [33]. They are dominant with respect to
rν(n, 0), since they exist for each m �= 0.

Thus, we can conclude that for a Gaussian
input noise the resulting noise in the WD

Ψ(n,m) is a mixture of the Gaussian and

Laplacian impulse noise.
Example 2. We have considered the re-

sulting WD noise Ψ(n,m) for the signal
s(n) = exp(j128π(n/(N + 1))2) corrupted by
a Gaussian noise ν(n), with N = 256 sam-
ples. The standard WD of this signal is con-
centrated along the line k = 128n/(N + 1) in
the TF plane. The cases with noise variances
σ2 = (0.01)2 and σ2 = 0.64 are considered. In
both cases, the pdf of the resulting noise is ob-
tained numerically. The value of − log(p(e))
for resulting noise is shown in Fig.2. For
small noise (σ2 = (0.01)2), we get that the
ML estimation is very close to the standard
WD, since the loss function is of the form
− log(p(e)) = F (e) � |e|2. In this case the
Gaussian component s(n+m)ν∗(n−m)+ν(n+
m)s∗(n−m) dominates over ν(n+m)ν∗(n−m)
in the resulting WD noise Ψ(n,m). In the sec-
ond case (σ2 = 0.64), the Laplacian compo-
nent rν(n,m) is significant in Ψ(n,m). Then,
F (e) � |e| would produce estimation very close
to the ML one. However, for small |e|, the
ML loss function is different from F (e) = |e|.
Thus, it can be concluded that the L-estimate
of the WD will be an appropriate choice.

IV. P��	����� ��� S���	�
�� ��

P�������� α

A procedure for automatic selection of the
coefficient α in (12) will be discussed here. For
simplicity, we will consider transform with a
real-valued signal and basis functions. The
α-trimmed mean based transform, with limit

cases (the standard and the median trans-
form), can be written as:

Xα(k) = S(k) +Re(k) (25)

where S(k) is the standard transform of the
signal without noise (1), whereas Re(k) in-
cludes the residual noise component and the
component due to the nonlinearity of the α-
trimmed mean. Assume that the signal trans-
form can be represented with a very small
number of non-zero values for k ∈ K, where
the set K consists of all transform coefficients
where S(k) �= 0

Xα(k) =

{
S(k) +Re(k) k ∈ K

Re(k) k /∈K. (26)

This holds when the analyzed signal can be
represented as a sum of the basis functions.
For noncorrelated S(k) and Re(k), when we
can assume that

∑
k∈K S(k)Re(k)/N ≈ 0, the

mean squared value of Xα(k) is

1

N

N−1∑

k=0

|Xα(k)|2 ≈

1

N

∑

k∈K

|S(k)|2 + 1

N

N−1∑

k=0

|Re(k)|2. (27)

It can be concluded that the transform
which produces minimal

∑N−1
k=0 |Xα(k)|2/N

will give the minimal mean squared er-
ror (MSE), i.e., the minimal component
caused by the residual noise and nonlinearity∑N−1
k=0 |Re(k)|2/N . Therefore, the α-trimmed

mean transform from the considered set of
transforms with different α that produces min-
imal

∑N−1
k=0 |Xα(k)|2/N is close to those that

produces minimal MSE. Our statistical analy-
sis suggests that this criterion performs well
for noisy cases for signal to noise ratios up to
20dB.

The presented simple procedure produces
accurate results in a case of signals that can
be represented by a relatively small number
of non-zero transform coefficients, as it will be
illustrated on examples. In general this proce-
dure could not produce particularly accurate
results. Then, more complicated algorithms
should be employed, like, for example, those



ROBUST L-ESTIMATION BASED FORMS OF SIGNAL TRANSFORMS... 675

-0.05 -0.025 0 0.025
-10

-8

-6

-4

-2

-5 -2.5 0 2.5
-10

-8

-6

-4

-2

a) b) 

e e 
-l

o
g
(p

(e
))

-l
o

g
(p

(e
))

Fig. 2. Probability density function of the resulting noise Ψ(n,m) for additive complex Gaussian noise. a)
σ = 0.01. b) σ = 0.8.

presented in the case of the signal filtering in
[34] and [35]. However, in opposite to the algo-
rithms from [34] and [35], presented procedure
is calculationally very simple. It assumes cal-
culation of several L-estimates that need only
single sorting of the sequence for the consid-
ered coefficient. Remaining part of the proce-
dure is evaluation of the very simple criterion.
Example 3. For statistical analysis we have

considered the HT of signal (13) corrupted by
a mixture of the Gaussian and impulse noise
(15), where σg ∈ [0, 1] and ah ∈ [0, 1.4]. The
MSE of the estimate is calculated as

MSE =
1

N

N−1∑

k=0

|XT (k)− S(k)|2 (28)

where S(k) is given by (14), and XT (k) is the
considered transform. The MSE for the stan-
dard HT, the α-trimmed mean for α = 3/8
and α = 1/4, and the median based HTs,
for σg = 0.7 as a function of ah is shown
in Fig.3a. The MSE obtained with the pro-
posed procedure is depicted with dotted line.
The optimal L-estimate is chosen between the
above mentioned transforms. From Fig.3a, it
can be concluded that for small impulse noise
(small ah), the standard HT performs best,
whereas with an increase of ah, it becomes
very poor (its MSE is a rapidly increasing func-
tion). The median based HT is relatively in-
sensitive to the impulse noise (very slowly in-
creasing function of ah). The L-estimation
based transforms follow the better of the pre-
vious two HT forms within the entire consid-
ered interval of the noise weights. In the inter-
val ah ∈ [0.65, 1.1], they perform better than

either the mean or the median-based HT. Ob-
viously, the adaptive transform performs sta-
tistically better than any transform with con-
stant α.
Example 4. As a second example we have

considered the DFT of signal:

s(n) = 16 exp(−j2πn · 13/256)+

16 exp(−j2πn · 107/256) (29)

for N = 256, corrupted by a mixture of the
Gaussian and impulse noise

ν(n) = σg(ν1(n) + jν2(n))+

(ahν3(n))
3 + j(ahν4(n))

3. (30)

Note that the equivalent signal to noise ratio
is the same as in the case of the HT since twice
as many samples are taken. The MSE is shown
in Fig.3b. The behavior of results, as well as
the conclusions, are similar to those given for
the HT.
Example 5. Finally, consider the WD of the

signal s(n) = 16 exp(j128π(n/(N+1))2), with
N = 256 samples. The MSE as a function of
ah, for two fixed values σg = 0.2 and σg = 0.5,
is shown in Fig.3c and d, respectively. In the
first case, for a very small influence of the im-
pulse noise, the standard WD performs best,
but only slightly better then the α-trimmed
mean for α = 3/8. With an increase of the
impulse noise, the standard WD becomes the
worst. The L-estimations are better than the
median based ones until the impulse noise in-
fluence becomes dominant ah > 0.9. Even
for ah > 0.9, the L-estimation for α = 1/4
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Fig. 3. MSE for transforms with constant and variable α. a) HT. b) DFT. c) WD for σg = 0.2. d) WD for
σg = 0.5. Adaptive transforms are represented by the gray line.

is very close to the median. In the second case
(Fig.3d), the standard WD is worse than the
L-estimation based ones, even where there is
no impulse component in input noise (ah = 0).
This is in accordance with the results derived
in the previous section since the resulting noise
in the WD is inherently a mixture of Gaussian
and Laplacian noise. Other results are very
similar to those in Fig.3c. In both cases the
proposed procedure produces better accuracy
than all WD forms with constant α.

Typical realizations of the standard WD,
median-based WD, and the α-trimmed-based
WD for α = 3/8 are depicted with contour
plots with five isolines in Fig.4 for σg = 0.2,
ah = 0.6. As expected from the statistical
analysis (Fig.3c at ah = 0.6), the α-trimmed
based WD produces the best result with re-
spect to the auto-term to noise ratio.

V. C��	��

��

The L-estimation based discrete unitary
transforms and TF representations are pro-
posed as alternatives to their standard forms.
They outperform the standard and median-
based transforms and representations in the
case of a mixture of Gaussian and impulse
noise that inherently appears in quadratic and
higher order TF representations. As a spe-
cial case of the L-estimations, we have consid-
ered the α-trimmed mean transform. A simple
procedure for adaptive selection of the para-
meter α in the α-trimmed mean transform is
proposed. The adaptive transform can out-
perform all constant parameter signal trans-
forms in the case of noisy signals. The L-
estimations of the discrete unitary transforms
proposed in this paper are used for develop-
ment of the robust filters in the frequency do-
main [24]. These filters can produce all filter-
ing characteristics (lowpass, highpass, band-
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Fig. 4. WD of noisy signal. a) Standard WD. b) Median WD. c) α-trimmed mean WD. Noise is a mixture of
Gaussian and impulse noise with σg = 0.2 and ah = 0.6.

pass, and stopband). Another promising ap-
plication field of the transforms proposed in
this paper could be in the parametric estima-
tion of the FM signals corrupted by the im-
pulse noise.

Appendix A

When complex-valued functions are consid-
ered, the standard median cannot be used for
definition of robust transforms. Instead of the
standard median, iterative procedures or me-
dian forms (vector median and marginal me-
dian) derived for vector-valued functions must
be used.
Iterative procedure: When the loss func-

tion F (e) = |e| is used in the case of complex-
valued signals, there is a problem to estimate
the real and imaginary part of a transform.
For the robust M -periodogram (squared ab-
solute value of the robust Fourier transform)
calculation, Katkovnik has proposed an iter-
ative procedure [3], [4]. From the minimiza-
tion problem (3) and (5), for the loss function
F (e) = |e|, the nonlinear equation

XI(k) = γ(k)
N−1∑

n=0

Nx(n)ϕk(n)

|e(n, k)| (31)

follows, where XI(k) is the robust transform,
and e(n, k) = Nx(n)ϕk(n) − X(k), γ(k) =

1/
∑N−1
n=0 1/|e(n, k)|. Since the unknown ro-

bust transform XI(k) is on both sides of (31),
an appropriate iterative procedure should be
used. Note that the nonlinear relation (31) is
of the form x = f(x), which can be solved by
using the iterative method xn+1 = f(xn) with

a suitable initial guess x0. The standard trans-
form (6) is used as the initial guess X(0)(k).
Then the iterative procedure is applied as

X
(l) = A(l−1)

x (32)

where

X
(l) = [X

(l)
I (0)...X

(l−1)
I (N − 1)]T (33)

A
(l−1) is the matrix whose elements are

a(n, k) = Nγ(l−1)(k)ϕk(n)/|e(l−1)(n, k)|,
(34)

with

e(l−1)(n, k) = Nx(n)ϕk(n)−X(l−1)
I (k) (35)

γ(l−1)(k) = 1/
N−1∑

n=0

1/|e(l−1)(n, k)| (36)

and x = [x(0) x(1) ... x(N − 1)]T . The itera-
tive procedure is stopped when

max
{
|X(l) −X(l−1)|/|X(l−1)|

}
≤ ε (37)

where ε is a given precision. Realization of
the similar iterative procedures, along with
proof of their convergence, is discussed in [1,
Sec.7.8], [3] and [36].
Note: Similar procedures can be used not

only for the loss function F (e) = |e| but for
any other loss functions, like, for example, for
the loss function that produces myriad filter
[36], [37], whose form is F (e) = ln(|e|2 +K2).
The basic difference is only in the matrix A(l)

coefficients.
Vector median: The minimization prob-

lem (3) and (5) can be solved for the complex-
valued functions by using the vector median
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approach [8], [38], [39]. If we restrict our so-
lution to the set Ek = {Nx(n)ϕk(n) : n ∈
[0, N − 1]}, then the solution of the minimiza-
tion problem with the loss function F (e) = |e|
is XV (k) =m(k) ∈ Ek such that

N−1∑

n=0

|m(k)−Nx(n)ϕk(n)| ≤

N−1∑

n=0

|Nx(n1)ϕk(n1)−Nx(n)ϕk(n)| (38)

where n1 ∈ [0, N − 1]. This is a def-
inition of the vector median. It inter-
prets |Nx(n1)ϕk(n1)−Nx(n)ϕk(n)| as a dis-
tance between two points (Nx(n1)ϕk(n1) and
Nx(n)ϕk(n)) in the complex plane. The vec-
tor median is then the point m(k) ∈ Ek such
that its sum of distances to all other points
from the set Ek is minimal. Therefore, the
robust transform for complex-valued signals
and/or basis functions can be defined as

XV (k) =

vector_median{Nx(n)ϕk(n) : n ∈ [0, N − 1]}.
(39)

Marginal median: Significant computa-
tional simplification of the previous iterative
and vector median procedures can be achieved
by using a separate minimization of the er-
ror function real and imaginary parts. If we
choose the loss function as F (e) = |Re(e)| +
| Im(e)|, with the assumption that real and
imaginary part of the error function are statis-
tically independent, the minimization problem
is reduced to the real-valued case. Then, the
robust transform is of the form [7]

XM(k) =

median{Re{Nx(n)ϕk(n) : n ∈ [0, N − 1]}}+
jmedian{Im{Nx(n)ϕk(n) : n ∈ [0, N − 1]}}.

(40)
This solution corresponds to the marginal

median in the theory of filters [39]. From our
statistical experiments, we concluded that the
results obtained by using the previous two me-
dian forms and iterative procedure are very
close [8]. In the mathematical literature, the

median of a complex-valued sequence [40] is
sometimes defined as the marginal median.

Appendix B

The robust WD can be derived from the
minimization problem (19), with the loss func-
tion F (e) = |e|. It assumes the form [7]

WDI(n, k) = γ(n, k)

N/2∑

m=−N/2

√
N + 1

|e(n,m, k)|×

x(n+m)x∗(n−m)e−j4πkm/(N+1) (41)

with

e(n,m, k) =
√
N + 1x(n+m)x∗(n−m)×

exp(−j4πkm/(N + 1))−WDI(n, k)

and γ(n, k) = 1/
∑N/2
m=−N/2 1/ |e(n,m, k)| .

Equation (41) is an implicit definition of
WDI(n, k). Thus, it is necessary to use the
iterative procedure for the robust WD calcu-
lation [7]. In [7], it has been shown that the
robust WD is real-valued. The property of re-
alness holds for each iteration in the proce-
dure. The marginal median-based WD then
reduces to [7]

WDM(n, k) =

median{
√
N + 1Re{x(n+m)x∗(n−m)×

exp(−j4πkm/(N + 1))} : m ∈ [−N/2, N/2]}.
(42)
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