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Analysis of Polynomial FM Signals
Corrupted by Heavy-Tailed Noise

Braham Barkat, LJubiša Stanković

Abstract– In this paper, we consider the
analysis of polynomial FM signals corrupted
by additive heavy-tailed noise. Standard time-
frequency techniques fail to analyze such sig-
nals. For that, we propose here a new tech-
nique, named the robust polynomial Wigner-
Ville distribution (r-PWVD) to handle this
case. We show that this representation outper-
forms the robust Wigner-Ville distribution (r-
WVD) and the robust spectrogram in terms of
artifacts suppression and high time-frequency
resolution for this class of signals. Also, we
show that the peak of the r-PWVD is an accu-
rate instantaneous frequency estimator. Exam-
ples and Monte-Carlo simulations are presented
in order to validate and prove the performance
of the proposed algorithm.

I. I������	�
��

Time-frequency analysis has proved to be a
powerful tool in the analysis of non-stationary
signals, i.e., signals whose spectral contents
vary with time [1]. Such signals can be
found in many engineering applications such
as radar, sonar and telecommunications.
In practice, the signal to be analyzed is al-

ways corrupted by noise. In general, and for
various reasons, the corrupting noise is as-
sumed to be additive and Gaussian. Analysis
of non-stationary signals affected by additive
Gaussian noise has been addressed in several
places [2], [3], [4]. However, in some situa-
tions, the Gaussian assumption of the noise is
not valid and, therefore, alternative analysis
techniques are needed in this case.
Recently, a novel technique to analyze a si-

nusoid contaminated by additive noise having
unknown heavy-tailed distribution was pro-
posed in [5]. Examples of heavy-tailed distri-
butions include Laplace, Cauchy and α-stable
distributions with α < 2. The use of these dis-
tributions have proved to be effective in mod-
eling many real-life engineering problems such
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as outliers and impulse signals [5]. The case of
non-stationary signals was considered in [6],
[7], [8].
In [6], [7], [8], the authors proposed the

robust spectrogram and the robust Winger-
Ville distribution (r-WVD) to address the
problem of non-stationary signals embedded
in heavy-tailed noise. However, it is known
that the spectrogram suffers from low resolu-
tion in the time-frequency domain; while, the
WVD suffers from the presence of artifacts for
non-linearly frequency modulated (FM) sig-
nals and from cross-terms for multicomponent
signals [1]. Moreover, and except for the pure
sinusoid or the linear FM signal, the peak of
the WVD is not exactly located at the sig-
nal instantaneous frequency (IF) but is always
shifted from it [4]. Thus, it is important to
have alternative high resolution techniques to
deal with non-linear FM signals affected by im-
pulsive noise.
In this paper, we consider the problem of

polynomial FM signals corrupted by addi-
tive heavy-tailed noise. Since the polyno-
mial WVD (PWVD) was designed to represent
polynomial FM signals as a row of delta func-
tions at the exact signal IF [9], it is the kernel
of this particular representation that will be
used in the design of the robust PWVD (r-
PWVD). We show that the r-PWVD outper-
forms both the r-WVD and the robust spectro-
gram in the analysis of polynomial FM signals
affected by heavy-tailed noise. We also show,
using Monte-Carlo simulations, that the pro-
posed r-PWVD is more accurate in estimating
the IF of such noisy signals. We observe that
some other works have considered paramet-
ric approaches in order to deal with impulsive
noise. In particular, we can cite [15] where the
authors proposed to estimate the phase coeffi-
cients of a chirp signal embedded in impulsive
noise. Although a full comparision between
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both techniques is out of the scope of this pa-
per, we can state that the method proposed
here applies to polynomial FM signals, and is
not limited to linear FM signals only (which is
the case of the method proposed in [15]).
The paper is organized as follows. In Sec-

tion 2 we give a brief review of the robust spec-
trogram. In Section 3, we present the proposed
r-PWVD algorithm. In the same section, we
discuss the IF estimation and evaluate its sta-
tistical performance. Section 4 concludes the
paper.

II. R�

�� �� ���

R�����-S��	�������

Assume that the observed discrete-time
noisy signal under consideration, y(kT ), can
be written as y(kT ) = z(kT ) + ε(kT ) where
z(kT ) = A exp{jφ(kT )} is an arbitrary FM
signal, ε(kT ) is an additive noise, T is a sam-
pling period and k an integer. Now, consider
the optimization problem [6]

m̂ = argmin
m
I(kT, f,m) (1)

with

I(kT, f,m) =

N/2−1∑

n=−N/2

w(nT )F [e(k, f, n)]

e(k, f, n) = y(kT + nT )e−j2πfnT −m

where w(nT ) is a window function andm is an
estimate of the expectation of the sample av-
erage of the quantity y(kT +nT )e−j2πfnT [6].
For the loss function F (e) = |e|2, the

optimum solution m̂, obtained by solving
∂I(t, f,m)/∂m∗ = 0, yields the standard
short-time Fourier transform (STFT)

STFT sy (kT, f) =

N/2−1∑

n=−N/2

w(nT )
∑N/2−1
n=−N/2w(nT )

y(kT +nT )e−j2πfnT .

(2)
The standard spectrogram, or the squared

magnitude of STFT sy (kT, f), is the maximum
likelihood (ML) estimate of the expectation in
the case of Gaussian noise [6], but for non-
Gaussian noise it produces poor results. In

this situation, and based on the minimax Hu-
ber’s estimation theory, which is linked to the
problem of spectra resistance to impulse noise,
a better representation can be obtained by
choosing F (e) = |e|. For the loss function
F (e) = |e|, the optimal solution, called the
robust STFT, is found to be [6]

STFT ry (kT, f)

=

N/2−1∑

n=−N/2

d(kT, f, n)
∑N/2−1
n=−N/2 d(k, f, n)

×y(kT + nT )e−j2πfnT

where
d(k, f, n)

=
w(nT )

y(kT + nT )e−j2πfnT − STFT ry (kT, f)
.

(3)
This robust STFT inheritates the strong re-

sistance property to the impulse noise, mak-
ing it a very appropriate tool solution for
the problem under investigation. Note that
the right-hand side of the solution equation
(3) also contains STFT ry (kT, f). It suggests
that the implementation of the robust spec-
trogram, the squared magnitude of the ro-
bust STFT, necessitates an appropriate iter-
ative procedure (similar to the procedure for
the robust PWVD outlined in Table I below).
Also, note that the choice of the particular loss
function F (e) = |e| results from a minimax re-
gression estimation problem detailed in [5]. In
particular, the best loss function is obtained as
the minimizer of the covariance matrix of the
estimate. This loss function is different from
the nonlinear function which is usually used to
compress/suppress large samples of the noisy
signal in the time domain [13], [14].
The time-frequency resolution of the robust

spectrogram is not impressive [6]. In the se-
quel, we present techniques that can address
the impulsive noise problem while maintaining
high time-frequency resolution.

III. R����� PWVD

Here, we give a brief review of the PWVD
and present the rational in the design of the r-
PWVD to tackle the heavy-tailed noise prob-
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lem. A statistical performance evaluation, us-
ing Monte-Carlo simulations, of the r-PWVD
based IF estimation is also presented in this
section.

A. Key Idea

The primary purpose of the window w(nT )
in the STFT (refer to the previous section) is
to limit the extent of the signal to be trans-
formed so that its spectral characteristics are
reasonably stationary over the duration of the
window. The more rapidly the signal charac-
teristics change, the shorter the window should
be (i.e., lower frequency resolution). On the
other hand, increasing the window length re-
sults in a low time resolution. The best results,
in terms of time-frequency resolution, can be
obtained by using the optimal window length
in the STFT. However, the optimal window
length requires an a priori knowledge of the
signal IF, which is difficult to obtain in gen-
eral [1]. This limitation can be avoided by
using the quadratic kernel of the WVD given
by [1]

Ky(kT, nT )

= y(kT + 0.5nT ) · y∗(kT − 0.5nT ). (4)

The kernel Ky(kT, nT ) transforms, for each
time instant kT , the IF of a monocompo-
nent linear FM signal into a sinusoid at that
particular time [4]. That is, the use of the
above kernel guarantees stationarity of the
signal for a larger extent of the signal (i.e.,
higher frequency resolution) compared to the
STFT. Thus, using Ky(kT, nT ), instead of
y(kT+nT ), in the optimization problem stated
earlier results in the r-WVD [8]. This repre-
sentation outperforms the robust spectrogram
in terms of time-frequency resolution. Note
that, an interpolation or appropriate oversam-
pling is necessary in order to have non-integer
values of the argument of the signal in Equa-
tion (4).
For higher-order polynomial FM signals

given by

z(kT ) = A exp{j

p∑

i=0

ai(kT )
i}, (5)

the quadratic kernel of the WVD does not
transform the IF into a pure sinusoid, at each

time instant kT , as it does for the linear FM
case (p = 2). For such signals, the r-WVD
produces some artifacts due to the mismatch
between the signal polynomial order and the
WVD [4] (see also Figure 2). To avoid this
problem, and to improve the performance, we
need to use a transform or a kernel that can
map a higher-order polynomial FM signal, at
each time instant kT , into a sinusoid. A
transform that can accomplish this task is the
PWVD kernel given by [9]

Kq
z (kT, nT )

=

q/2∏

i=1

z(kT + cinT ) · z
∗(kT − cinT ) (6)

where the ci are real coefficients, and q is an
even integer number.
A general procedure to obtain the ci and q

for a fixed polynomial phase order p (refer to
(5) ), is outlined in [9]. For example, for p = 2,
we have q = 2 and c1 = 0.5. That’s is, the
WVD kernel in (4) is just a special case of the
PWVD kernel. For quadratic (p = 3) or cubic
(p = 4) FM signals, an appropriate kernel to
use is the sixth order kernel given by [9]

K(6)
z (kT,nT )

= [z(kT + 0.62nT ) z∗(kT − 0.62nT )]

×[z(kT + 0.75nT ) z∗(kT − 0.75nT )]

×[z(kT − 0.87nT ) z∗(kT + 0.87nT )]. (7)

Here, we should emphasise that, an interpo-
lation is necessary in order to have signal val-
ues at non-integer argument points in Equa-
tion (6) (refer to [9] for more details). In
what ensues, we will use the PWVD kernel,
K
(q)
z (kT, nT ), in the design of the r-PWVD

to analyze polynomial FM signals affected by
impulsive noise.

B. Algorithm Development

Let us consider the optimization problem
given by

m̂ = argmin
m
J(kT, f,m) (8)
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where

J(kT, f,m) =

N/2∑

n=−N/2

w(nT )F [e(k, f, n)]

e(k, f, n) = K(q)
y (kT, nT )e−j2πfnT −m

with K(q)
y (kT, nT ) being an appropriately de-

signed kernel for the noisy polynomial FM sig-
nal y(kT ) under consideration.
If we choose the loss function as F (e) = |e|2,

we can show by solving for m the expression
∂J(kT, f,m)/∂m∗ = 0 that the optimal solu-
tion, labeled the standard PWVD, is equal to

W s
y (kT, f) =

N/2∑

n=−N/2

w(nT )
N/2∑

n=−N/2

w(nT )

×K(q)
y (kT, nT )e−j2πfnT . (9)

Similarly to the standard spectrogram or
standard WVD, the standard PWVD is not
an adequate analysis tool in the presence of
heavy-tailed noise, as shown in the example
below. In the presence of such noise, we need
to choose the loss function as F (e) = |e|. The
choice of this particular function is well de-
tailed and explained in [5], [10]. In this case,
we find the optimal solution, labeled the ro-
bust PWVD (r-PWVD), to be

W r
y (kT, f)

=

N/2∑

n=−N/2

d(k, f, n)

D0(kT, f)
K(q)
y (kT, nT )e−j2πfnT

(10)
d(k, f, n)

=
w(nT )

|K
(q)
y (kT, nT )e−j2πfnT −W r

y (kT, f)|
(11)

D0(kT, f) =

N/2∑

n=−N/2

d(k, f, n). (12)

Since, the quantity W r
y (kT, f) appears on

the right as well as on the left hand side of the

Equation (10), an iterative procedure is neces-
sary in order to obtain the r-PWVD. The algo-
rithm of this representation is stated in Table I
below.
Note that the above solution can also be

written as

(W r
y )
i+1 = T [(W r

y )
i] =

∑
n f [(W

r
y )
i]xn∑

n f [(W
r
y )
i]

where

f [(W r
y )
i] =

w(nT )

|K
(q)
y (kT, nT )e−j2πfnT − (W r

y )
i|

and
xn = K

(q)
y (kT, nT )e−j2πfnT .

For such forms, it was shown in [16] that
if the initial value is within the interval
[min(xn),max(xn)], then the iterative algo-
rithm will converge to a local minimum within
the same interval. In our case, the func-
tion J(kT, f,m) has a single minimum [16]
and, therefore, the proposed iteration proce-
dure will converge to that single (global) min-
imum since our initial value W r

y
0(kT, f) =

W s
y (kT, f) is a mean value which satisfies

the necessary condition of the convergence,
namely, W r

y
0(kT, f) ∈ [min(xn),max(xn)].

To check the validity and superiority of the
proposed algorithm, let us consider the analy-
sis of a quadratic FM whose frequency range
is 0.1-0.4Hz (assume unit sampling period).
Some corrupting noise is added to this noise-
less signal. The additive noise ε(kT ) consists
of an α-stable process with skewness coeffi-
cient equal to zero and the dispersion coeffi-
cient equal to one. The standard PWVD, dis-
played in Figure 1 (left plot) yields a poor rep-
resentation; while, the r-PWVD displayed in
the same figure (right plot), clearly reveals the
features of the noisy signal. Also, we compute
the r-WVD of the same signal (Figure 2 (left
plot)). The superiority of the r-PWVD over
the r-WVD is obvious. For a closer compari-
son, slices of these two representations, taken
at the middle of the time interval, are dis-
played in Figure 2. We see that the peak of
the robust WVD is not located at the true
IF of the signal (0.4 Hz in this case) but is
shifted from it. In addition, the presence of
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TABLE I

R����� PWVD A����
���

1. Evaluate the standard PWVD using Equation (9).
2. For initialization purposes, set

W r
y
0(kT, f) =W s

y (kT, f)

and the repetition index i = 0.
3. Set i = i+ 1. Compute d(k, f, n) using Equation (11).
4. Compute D0(kT, f) using Equation (12).
5. Evaluate the r-PWVD, for iteration i, W r

y
i(kT, f) using Equation (10).

6. If the relative absolute difference between two iterations is smaller than a fixed
threshold η, i.e.,

|W r
y
i(kT, f)−W r

y
(i−1)(kT, f)|/|W r

y
i(kT, f)| ≤ η,

then stop the algorithm. Otherwise go back to Step (3).
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Fig. 1. The standard (left plot) and the robust (right plot) sixth order PWVD of a quadratic FM signal affected
by impulsive noise.

the artifacts in the r-WVD tends to hide the
real features of the signal.

C. IF Estimation

In many engineering applications, the IF
characterizes important physical parameters of
the signal [11]. Therefore, accurate and ef-
fective estimation of this quantity is of great
importance. Based on the results of the previ-
ous sections, we see that the r-PWVD is well
suited to estimate the IF of a polynomial FM
signal affected by impulsive noise.
The Weierstrass theorem states that for a

given function, defined and continuous on a
closed interval, there exists a polynomial of

a finite order p which is as “close” to the
given function as desired [12]. The degree of
the approximate polynomial, p, increases with
increasing non-linearity of the approximated
non-linear function. This result implies that
the r-PWVD is very useful in the analysis, and
IF estimation, of non-linear, not necessarily
polynomial, FM signals corrupted by impul-
sive noise.
Here, we assess the statistical performance

of the r-PWVD based IF estimator. Specifi-
cally, we evaluate, using Monte-Carlo simula-
tions, the mean squared error of the IF esti-
mate when the peak of the r-PWVD is used as
an IF estimator. In addition, a statistical per-
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Fig. 2. The r-WVD (left plot) of the same signal displayed in Figure 1. The right plot displays slices, taken at
the middle of the time interval, of the r-WVD (top plot) and the r-PWVD (bottom plot).

0 1 2 3 4 5 6 7
-27

-26

-25

-24

-23

-22

-21

-20

SNR [dB]

M
S

E
 o

f 
IF

 e
s
ti
m

a
te

s
 [
d
B

]

r-PWVD

r-WVD 

0 1 2 3 4 5 6 7
-26

-25

-24

-23

-22

-21

-20

-19

-18

SNR [dB]

M
S

E
 o

f 
IF

 e
s
ti
m

a
te

s
 [
d
B

]

r-PWVD

r-WVD 

Fig. 3. M.S.E’s of IF estimates, corresponding to the r-WVD (’o’) and the r-PWVD6 (’+’), for a noisy quadratic
FM signal (left plot) and a noisy cubic FM signal (right plot).

formance comparison with the r-WVD based
IF estimator is also performed here. For that,
let us consider a noisy quadratic FM signal y(t)
modeled as y(t) = exp{j(a1t+a2t2+a3t3)}+a·
ε(t) where a is a real parameter and the coeffi-
cients ai, i = 1, 2, 3 are chosen so that the IF of
the signal, fi(t) = 1

2πd((a1t+a2t
2)+a3t

3)/dt =
1
2π (a1+2a2t+3a3t

2), is confined in the range
0.1-0.4Hz (assume a unit sampling interval).
The complex noise ε(t) consists of independent
real and imaginary parts. The samples of each
part are chosen to be independent and identi-
cally distributed (i.i.d), taken from an α-stable
process with a zero skewness coefficient and a
unit dispersion coefficient. In the experiment,
we fix the signal length equal to N = 501
samples and the window length, used in the

r-PWVD implementation, equal to 101 sam-
ples. The r-WVD and the robust sixth order
PWVD (r-PWVD6) of one realization have al-
ready been displayed in Figures 1 and 2.
We estimate the IF of the noisy signal, at

the middle of the time intrval (corresponding
to the exact IF: 0.4 Hz), as the argument of
the peak of the robust representations. We re-
peat the estimation process 6000 times for each
value of the signal-to-noise ratio (SNR). In
Figure 3 (left plot), we plot the estimates mean
squared errors (M.S.E’s) versus the signal-to-
noise ratio (in dB) for both r-WVD and r-
PWVD6. We re-run the same experiment for
a cubic FM signal (same figure (right plot)).
The accuracy and superiority of the r-PWVD6
over the r-WVD is evident in both examples.
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IV. C��	���
��

In this paper, we proposed a new tech-
nique to analyze polynomial FM signals cor-
rupted by additive impulsive noise. We showed
that the proposed technique, referred to as r-
PWVD, outperforms the robust Wigner-Ville
distribution (r-WVD) and the robust spec-
trogram in terms of artifacts suppression and
high time-frequency resolution. In addition,
Monte-Carlo simulations have shown that the
r-PWVD is very accurate in estimating the in-
stantaneous frequency of the noisy signal and
its statistical performance is superior to that
of the r-WVD.
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