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Estimation of FM Signal Parameters in
Impulse Noise Environments

Igor Djurovi¢, LJubisa Stankovié and Johann F. Béhme

Abstract— A simple algorithm based on dis-
crete chirp Fourier transform (DCFT) is used
for the chirp signal parameters estimation in
impulse noise environments. A modification of
the DCFT is introduced in order to produce
accurate estimates in this case. This modifica-
tion, called the robust DCFT, produces highly
accurate results in impulse noise environments,
while for the Gaussian noise it is only slightly
worse than the standard one. Generalization to
the parametric estimation of polynomial phase
signals is given. It is based on the robust form
of the integrated generalized ambiguity func-
tion (IGAF). We applied the IGAF-based pro-
cedure on the signal filtered by using the robust
filter designed in the frequency domain.

I. INTRODUCTION

Numerous methods exist for frequency mod-
ulated (FM) signal parameters estimation in
the Gaussian noise environment [1]-[4]. In
particular, methods based on time-frequency
(TF) analysis are proposed in [5]-[8] for lin-
ear FM (chirp) signal parameters estimation.
Signal parameters are estimated by using pro-
jections of the TF representations along as-
sumed instantaneous frequency lines. Other
techniques are related to the fractional Fourier
transform [9]-[11]. Third group of techniques
is based on the signal auto-correlation function
as a higher order ambiguity function [12]. In
principle, most of the mentioned approaches
can be reduced to the de-chirping and sinu-
soidal signal analysis. A simple de-chirping
technique for discrete-time signals is proposed
in [13]. It is based on the discrete chirp
Fourier transform (DCFT). This technique can
be understood as a discrete-time version of
the maximum likelihood (ML) estimator for
continuous-time signals from [4]. It has been
shown in [13] that the maximum of side lobes,
in the DCFT, is smallest for a prime num-
ber of considered samples. Therefore, the best
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separation of close signal components in the
parameter space, as well as high accuracy in
the presence of significant amount of Gaussian
noise, can be achieved for a sequence with
prime lengths.

In numerous practical situations, noise envi-
ronment cannot be modeled with the Gaussian
probability density function (pdf). Namely,
due to the natural disturbances (caused by at-
mospheric or underwater phenomena) or man-
made disturbances (for example, effects in
power lines), the resulting noise has very high
values with a rare occurrence'. These dis-
turbances are usually modeled by long-tailed
pdfs. Classical spectral estimators, like, for
example, the Fourier transform (FT), or esti-
mators of non-stationary signal spectra, such
as the TF representations, are very sensitive
to this kind of noise. Therefore, new ap-
proaches are required to handle parametric es-
timation of FM signal parameters in impulse
noise environments. Fundamental approaches
for handling data in impulse environments
are proposed (or systematized) by Huber [14],
[15]. Three basic groups of approaches for
signal parametric estimation in impulse noise
environments are proposed: M-, L- and R-
estimates. In the case of M-estimates, a class
of noises has been considered and the ML es-
timate for the noise from this class having the
longest tail is used as the estimate for the en-
tire class. This estimate is worse than any par-
ticular ML estimate for noises from the con-
sidered class, but it produces relatively accu-
rate results for the entire class. For numerous
classes considered in practice, the Laplacian
noise is the worst one. Commonly, the M-
estimate is designed as the ML estimate for the
Laplacian noise environment. The L-estimates

1Under high magnitude noise we assume distur-
bances several times larger than the signal amplitude.



ESTIMATION OF FM SIGNAL PARAMETERS...

are based on the order statistics. They are
suitable for signal denoising and parametric es-
timation in mixed Gaussian and impulse noise
environment. In the past 20 years these es-
timates have found numerous applications in
signal processing. Important field for appli-
cation of this concept is nonlinear filtering
of digital images [16]. The R-estimates are
based on the rank tests. Since this group of
techniques is assumed to be computationally
very demanding, with similar results as the L-
estimate, it will remain outside the scope of
this paper.

Based on the Huber’s derivations, Katkovnik
[17] developed the robust periodogram (i.e.,
the robust Fourier transform). Robust forms
of the discrete unitary transforms and TF
representations have been introduced recently
[17]-[23]. These transforms are used for non-
parametric spectral estimation.

Efficient methods for polynomial-phase FM
signals parametric estimation are proposed for
the Gaussian noise environment [1], [2], [13],
[24], [25]. The goal of this paper is to de-
velop techniques for parametric estimation of
FM signals embedded in impulse noise envi-
ronments. In the first step, an extension of
the DCFT is proposed for parametric estima-
tion of chirp signal parameters in impulse noise
environments. In the next step, an approach
based on the integrated generalized ambiguity
function (IGAF) [24], has been modified for
parametric estimation of higher order polyno-
mial phase signals embedded in impulse noise
environments. Note that the IGAF based ap-
proach is very efficient since two parameters
are estimated in each algorithm stage, avoid-
ing search over a large set of parameters. The
L-filter form of DCFT and IGAF are used for
estimation. Reasons for using L-estimates in
this research are: (a) The resulting noise in
the IGAF can be considered as a mixture of
Gaussian and impulse noise, even for Gaussian
input noise [20], [21]; (b) The M-estimates,
that are robust to the impulse noise influence,
can introduce spectral distortion, since they
are commonly produced by a small number
of signal samples. It is shown that the L-
filter form produces accurate results for im-
pulse noise environments, while its behavior
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is similar to the standard one for the pure
Gaussian noise [20], [21]. Analysis of multi-
component signal estimation is performed, as
well.

The paper is organized as follows. An
overview of the robust FT forms is given in
Section II. The DCFT and the proposed mod-
ification are considered in Section III. General-
ization for the polynomial phase signals case is
done in Section IV. Two forms of IGAF mod-
ification are proposed: one is based on the L-
filter form of the kernel function, while in the
other form impulse noise has been filtered in an
initial stage by using the denoising technique
from [26]. Numerical study covering different
noise environments and multicomponent sig-
nals is presented in Section V. Concluding re-
marks are given in Section VI.

II. RoBusT FT

Consider a signal z(n) = f(n) + v(n),
where f(n) is the useful signal component,
while v(n) is a white noise that can be of
impulse nature, with statistically indepen-
dent real and imaginary parts, E{v(n)} = 0,
E{Re{v(n)}Im{v(n)}} = 0. Consider estima-
tion of the useful signal’s F'T defined by:

1 N-1
(k) = < > Wik

n=0

= mean{V'N f(n)Wx¥|n € [0,N)},
ke [0,N), (1)

with Wy = exp(—3j27/N), based on noisy ob-
servations. The standard DFT of signal z(n),
X (k) =mean{v/Nz(n)Wik|n € [0,N)}, can
be obtained as a solution of the following op-
timization problem:

X(k) = argminJ(k;m),
N-1
J(kym) = Y Fle(n,k;m),  (2)
n=0
where F(e) = |e|? is the loss function, while

the error function is given by:

e(n, k;m) = VNz(n)WEF —m. (3)
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Definition (2) is formally the same as the
optimization problem employed for the mov-
ing average filter definition [16]. The standard
DFT is the ML estimate of signal spectra for
the Gaussian noise environment (in the same
way as the output from the moving average fil-
ter is the ML estimate of the signal corrupted
by the Gaussian noise).

However, both these linear solutions have
poor accuracy for an impulse noise environ-
ment. This is the reason for introducing other
loss function forms. Application of the loss
function F'(e) = |e| results in the median filter
[16]. The median filter output is the ML esti-
mate of the signal corrupted by the Laplacian
noise. In addition, this filter is a very accu-
rate tool for almost all impulse noise environ-
ments. These facts have motivated application
of the loss function F'(e) = |e| to the optimiza-
tion problem defined by (2), (3). Due to the
complex-valued nature of (2), (3), the robust
M-DFT cannot be given in a closed form ex-
pression, but only in an implicit form [17], [18]:

Xg(k) = :

N-1 1
Lm0 TR W =X (P

e z(n) Wik

2 [N (W — Xa(k)

For calculation of Xg(k) it is necessary to use
an appropriate iterative procedure.

In order to avoid handling the iterative pro-
cedures, a separable loss function

F(e) = |Re(e)| + [Im(e)| (5)

is used in [19]. For minimization problem
(2), and loss function (5) the marginal-median
form of the DFT follows [19]:

(4)

Xr(k)
= median{Re{VNz(n)WZ*}|k € [0, N)}

+jmedian{Im{vNx(n)WiF}|k € [0, N)}.
(6)
Two reasons motivated introduction of the
L-filter forms in the robust spectral analysis
[26]:
« spectral distortion that can be introduced by
the median-filter form (6). Reason for spectral
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distortion is in the fact that in the robust FT
realization the F'T is replaced with one or two
modulated signal samples;
o the L-filter can produce accurate spectra es-
timate for a mixture of the Gaussian and im-
pulse noise environment.

The L-filter form of the DFT can be defined
as [20], [21]:

N-1
Xy (k) = an, [rn(k) +jin(k)]7 (7)
n=0
where 27127:—01 ap, = 1, rap(k) and iy(k)

represent values from the sets R(k) =
{Re{vNx(n)Wk}n € [0,N)} and I(k) =
{Im{vNx(n)Wg}ln € [0,N)}, ry(k) €
R(k), in(k) € I(k), n € [0,N), sorted into
nondecreasing order: rij(k) < ri11(k), ij(k) <
iiy1(k). Fora, = 1/N, foralln =0,1,...., N —
1 this transform is reduced to the standard
DFT, while for a(y_1)/2 = 1 and a;, = 0, for
k # (N—-1)/2 (odd N is assumed) it is reduced
to the marginal-median form (6).

Here, we will use the a—trimmed form of
the L-filter with coefficients a,, given by [20]:

ap =
n € [(N —1)a,
Y0a2=2N)+ N, T T
0, elsewhere,
(8)

where ¢ = 0 produces the standard FT (1),
while for @ = 0.5 the median filter form (6)
follows. Selected values of filter parameter a
within the range 0 < a < 0.5 can produce solu-
tion robust to both the Gaussian and impulse
noise, avoiding spectral distortion effects.

IIT. RoBusT DISCRETE CHIRP-FT
A. Standard Discrete Chirp FT
Consider paremeters estimation of a chirp
signal,

o 7nk07n2l07<p0
f(n) =AWy , neO,N), (9)

from noisy observations z(n) = f(n) + v(n).
We will assume that ky and [y are integers.
Signal phase is denoted by g, ¢, € [0,27).
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The discrete chirp-FT defined in [13],

Z

nO

(k1) €

achieves maximum for the non-noisy signal (9)
at the position corresponding to the signal pa-
rameters

W'n 2l4nk

)

[0,N), (10)

(ko,lo) = argrglljgchc(k,l)l- (11)

These parameters can be estimated for noisy
signals by using the previous relation. A spe-
cial case of the discrete chirp-FT is the discrete
Fourier transform X (k) = Xc(k,0). Analy-
sis of estimator (11) and its continuous time
counterpart for Gaussian noise environment is
given in [4], [6], [13], [27], [28]. This solution is
not efficient in an impulse noise environment.
In order to treat this kind of problems, here
we propose the robust discrete chirp-FT.

B. Robust discrete chirp-FT

By analogy with the robust DFT, the robust
L-filter form of the discrete chirp-F'T can be
defined as:

Xre(k, 1) alrn(k, 1) + jin(k, D], (12)

HMZ

where rp(k,1) and in(k,1) represent values
from the sets R(k,1) = {Re{\/_x W"k’“m}
In € [0,N)} and I(k,1 {Im{vNx(n)
W n € [0, M)}, rn<k, ) € R(k, 1>,
in(k,1) € I(k,1), n € [0, N), sorted into nonde-
creasing order: ri(k,1) < riy1(k,1), ij(k,1) <
ii+1(k,1). Here, we will use the weighting co-
efficients a,, given by (8), when X1 (k,1) is an
a-trimmed mean.

The parameters estimate can be obtained
from:

(Ko, lo) = argmax| Xzo(k, Dl (13)
For a,, = 1/N, foralln =0,1,..., N —1, this

transform is reduced to the standard DCFT
(10).
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C. Breakdown Point of the Algorithm

The breakdown concept is introduced in the
robust estimation theory in [29]. For a finite
number of samples it is the smallest percent-
age of observations that must be replaced by
arbitrary values in order to force an estimator
to produce values arbitrary far from the pa-
rameter values generated by non-noisy data.
For standard transforms (DFT and DCFT)
the breakdown point is 1/N, since only one
sample can make an arbitrary estimate. The
breakdown point in the a—trimmed form is
[(N —1)a+ 1] /N. Note that the breakdown
point is the same for any L-filter form (with
the same number of non-zero values of a;)
and the corresponding a—trimmed mean filter.
Roughly speaking, it means that inaccurate re-
sults can be expected if probability of impulse
appearance is higher than [(N — 1)a + 1] /N.
In our application the real part of the resulting
noise in (10) is given as:

Vre(n; k, 1) = Re{v(n)}

x cos(2mnk/N + 2mn?l/N)+

Im{v(n)}sin(2rnk/N + 27mn%l/N).  (14)
A similar conclusion holds for the imaginary
part. It can be seen that if the probability of
impulses in both real and imaginary parts of
the input noise is p, then the probability that
impulses will affect resulting noise is 2p — p?.
For example, it can be expected that a median
form exhibits inaccurate behavior for 2p—p? >
0.5, i.e., p > 1 —+/2/2, while for a = 1/4 it is
the case for 2p — p? > 0.25, i.e., p > 1—/3/2.
These results are proven within the numerical
study.

From this analysis it can be concluded that
higher values of a produce representations
more robust to the impulse noise influence.
However, higher a means also that smaller
number of signal samples is used to produce
the estimate, and, therefore, it means higher
spectra distortion. This effect is numerically
analyzed in [26], where it is shown that for a
very wide range of a, between two limit values
a =0 and a = 0.5, the results are satisfactory.
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IV. POLYNOMIAL PHASE SIGNALS

A de-chirping procedure similar to that from
Section III can be implemented for paramet-
ric estimation of general polynomial phase sig-
nals. Unfortunately, multidimensional search
can be very demanding. This is the reason why
numerous sub-optimal strategies are proposed
in this area. Here, we will mention the method
derived by Peleg, Porat and Friedlander [1],
[30], [31], as well as the method presented in
[2]. A modification of the integrated gener-
alized ambiguity function (IGAF) [24] will be
used in this paper for the parameter estima-
tion of polynomial phase signals embedded in
an impulse noise. Consider a polynomial phase
signal:

f(n) AeXp< Zam ) (15)

m=0

The signal is corrupted by a white noise v(n)
with independent real and imaginary parts,
z(n) = f(n) + v(n). Without loss of gener-
ality it will be assumed that the highest order
of polynomial M is known in advance. In [24],
the Gaussian noise environment is assumed,
while we will here consider noise that can be
of impulse nature?. A generalized kernel func-
tion is defined recursively as:

Ki\/[(n;Tl,....,TM_l)
=KY '(n+Thmo15T1, e Ti—2)
XKy(:M_l)*(n_TMfl;Tl,...,TMfz), (16)

and Kl(n) = x(n) is the initial step. The
IGAF is defined as:

P (g, h)

QZ > PO,

TM-—2

2
TM*€)| )

(;Toos oy
(17)

2Tt has been shown in [20], [21] that resulting noise in
the local auto-correlation function of signals corrupted
by pure Gaussian noise can be considered as a mixture
of the Gaussian and impulse noise. Then, the L-filter
forms can produce more accurate spectra estimates
than the standard forms. This effect is even more em-
phatic here, due to the higher order auto-correlations
used for evaluation of the IGAF.
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where:
P(}7 <;Tooa"'7TM*€)
= ZKy_l(f;Tl, ...,TM,Q)
xexp( 2M 2(g£+h£ /2)H77L 1Tm) . (18)

For non-noisy signal the IGAF Pf (g9,h) is
maximized for h = ap; and g = apr—1. There-
fore, the estimation of ap; and ap;_q can be
performed as:

(&Mfl,dM) = argmaxPéW(g, h) (19)

(g,h)

After de-chirping:

Mo M1
xexp( Jam 3 ]aM1m>a (20)

the next two coefficients of the polynomial
phase signal (ap;_3,ap—2) can be estimated
by using the IGAF PX7%(g, k). In this way,
two coeflicients of the polynomial phase signal
are estimated in each algorithm stage. Un-
fortunately, error in estimation of the higher
order coeflicients propagates to the estimates
of low order coefficients. For M = 2, the pro-
posed approach can be reduced to the discrete
chirp-F'T. This method is very accurate. It
approaches the Cramer-Rao lower bound de-
rived in [32] for a relatively high amount of
Gaussian noise [24], but it is sensitive to even
small amount of impulse noise.

Two approaches for estimation of the poly-
nomial phase signals parameters in the im-
pulse noise can be employed. The first
one is a straightforward extension of the

robust DCFT approach, where, instead of
P(}, (; Tooy o TM—€), WE USE:
P—((}; <;TOO7"'7TM—E)
N—
Z nlrx(m; g, hy Ty, Tv—2)
+]1x(n;g7h;7—17 "'7TM72)]7 (21)

where ry(n; g, h; 71, ..., 7m—2) and ix(n; g, h;
T1,.., Ta—2) are elements from the sets

{Re[Ky71(£3 T1yeeey TM*Q)
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X exXp (7.j2M72 (g€ + héz/Q)H%:_me)];

£e[0,N)} (22)

and
{Im[Kyil(é-? T1lyeeny TM72)

X exp (—j2M_2(g€ + th/Q)H%;ETm)L
£ €0,N)}, (23)

respectively, sorted in the nondecreasing or-
der. Coefficients a,, given by (8) are used.
The function P4(}, (; Tooy -, TM—e) is applied
in (17) instead of P(}, (; Too, .-y TAM—e ). Then,
the procedure can be conducted as in the pre-
vious cases. We will denote this form of the
IGAF as PM+%(g, h). The main problem in this
approach is in a low breakdown point of the
algorithm. For example, consider K2(&;11) =
(€ +71)a* (6 — 1) = K& 1) +750(671),
where 77, (§;71) = f(E+T) v (§—T1) +v(E+
T (€—71)+v(E+71)v* (€ —71). Let the im-
pulse appearance probability in both real and
imaginary part of noise v(7) be p. Then, prob-
ability of impulse appearance in the resulting
noise 7, (&;71) is 1—(1—p)* = 4p—6p* +4p> —
p* for 71 # 0. For example, if the input noise
impulse probability is p = 0.1, the resulting
noise will be influenced by impulse noise with
probability of &~ 0.34. If the a—trimmed filter,
with parameter a, is used to produce the ro-
bust estimate, then the breakdown point is the
largest p that gives 4p — 6p® +4p3 —p* < a. In
the case of median-filter form of the IGAF, i.e.,
a = 0.5, the breakdown point is p = 0.1591,
while for a = 0.25it is only p = 0.0694. Note
that the usage of higher order kernel functions
causes decrease of the algorithm breakdown
point. Namely, for K3(&;71,72) the break-
down point for ¢ = 0.5 (median filter real-
ization of the IGAF) is p = 0.083, while for
a = 0.25 it is only p = 0.0353.

The second approach, that can be more ac-
curate in this case, is based on the filtering (de-
noising) of FM signals in the first stage and on
performing the standard IGAF based proce-
dure for this signal. Three forms of the robust
filters of signals with high frequency content
are proposed so far:

o myriad and median filters admitting nega-
tive weights [33];
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o robust filters designed in the frequency do-
main [26] and

o filters based on the minimax description
length based thresholding in the wavelet do-
main [34].

Here, we will perform the robust filtering in
the frequency domain based on the robust L-
filter form of the DFT. The filtered signal can
be calculated as:

N—
" Xp(W5"n € [0,N)
k=0

—

CZ’L(TL) =

==

(24)
where X (k) is the L-filter form of the DFT
(7). In the next step, estimation of signal pa-
rameters is done, as in the case of the stan-
dard IGAF procedure. This IGAF form will
be denoted by PM:4(g, h), where a is the cor-
responding parameter in the a-trimmed mean
DFT form used in (24) for signal filtering. The
main advantage of the proposed approach is in
a higher breakdown point (the same as in the
previously described robust DFT and robust
DCFT based on the L-filter form) than in the
case of the first approach.

V. NUMERICAL STUDY

A. Monocomponent Chirp Signal

Signal f(n) = W™~ with (ko,lo) =
(12,2), is assumed. Prime number N = 67
of samples is used. As the accuracy measure
we have used the number of exact estimates
of (ko,lo) parameters for various noises and
various values of a in (8), in 100 trials. Nu-
merical study of accuracy of the robust DCFT
is performed for numerous noise environments,
including the a—stable noise [35], mixed (con-
taminated) Gaussian noise [36], etc. For the
sake of brevity, here we present results for
the mixed Gaussian and Poisson noise environ-
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Fig. 1. Accuracy of the standard DCFT (a = 0) and robust DCFT forms for various a = 0.1, 0.2, 0.3, 0.4, 0.5.
Accuracy measure is depicted in gray shades. Pure white represents accuracy in all 100 trials while pure

black depicts no accurate trial.

ment?, when the resulting noise is given as:
v(n) = olvai(n) + jraz(n)]

+vp1(n;p) + jvpa(n;p), (25)

where vgi(n), ¢ = 1,2 are mutually inde-
pendent white Gaussian noises with unitary
variance, F{vgi(n)} = 0, ¢ = 1,2 and
E{vgi(n)vgj(n)} = 6(i — j), while vp;(n;p),
1 = 1,2 are mutually independent Poisson
noises with probability of impulse appearance
of p (probability of both positive and negative
impulses is the same, p/2). In our numerical
study we set impulses to be 5 times larger in
magnitude than the useful signal amplitude.
Results obtained by using the standard
DCFT (a = 0, the first column, the first row)

3This noise can be assumed as a special case from the
Middleton class A of noises. Noises from the Middle-
ton class A can be written as: vg(n) + 2?:1 ui(n; 0),
where u;(n;0) is a waveform from interfering source
and 0 is a set of waveform parameters. It is commonly
assumed that waveforms are emitted independently ac-
cording to the Poisson pdf in time. Here we consider a
single interfering waveform case Q = 1, distributed ac-
cording to the Poisson pdf with amplitude significantly
higher than the signal amplitude.

and the robust DCFT for ¢ = 0.1, 0.2, 0.3, 0.4
and 0.5 are depicted in Fig.1. Pure white color
means 100 accurate trials, while pure black
color represents 0 accurate trials. It can be
seen that the region of white color is the small-
est for the standard DCFT. It is very narrow in
the z—axis direction (axis of probability of im-
pulse noise appearance), showing sensitivity of
the standard approach to the impulse noise en-
vironment. Roughly speaking, white color re-
gion expands with the increase of a. Note that
the results obtained with a = 0.5 are slightly
worse than those obtained with a = 0.4, due
to the spectra distortion effect. It can be seen
that for a pure Gaussian noise (first column
in the figures) results obtained by using the
robust DCFT are only slightly worse (for high
Gaussian environment) than those obtained by
using the standard DCFT.

Realizations of the standard and the robust
discrete chirp-F'T form, in the case of Gaussian
noise with ¢ = 1, and the Poisson noise for
15% of impulses, are shown in Fig.2. For the
Gaussian noise, both the standard form for
a = 0 and the robust form for a = 0.4, ex-
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Fig. 2.

hibit clear maxima of | X (k,1)| at the correct
position (kg,lp). However, it can be observed
that the standard transform behaves slightly
better, i.e., values of | X1 (k,1)| outside (ko,lo)
are higher in the case of the robust form than
in the case of the standard one. In the second
example for the Poisson noise, the standard
discrete chirp-FT is useless, Fig.2c. In this
case the robust form is still accurate, with po-

sition of the true maximum being clearly em-
phasized, Fig.2d.

B. Multicomponent Chirp Signals

In this group of experiments we considered
three- and four-component signal cases:

m—1
_ —1kim —nlim
n) = E Wy .
=0

For three-component signal, m = 3, parame-
ters are (kis,lis) = (12,2),(49,35), (18,24).
In the case of a four-component sig-
nal, m = 4, we assumed (kj,lia) =

(26)

Discrete chirp-FT |X (k,l)| for monocomponent signal: (a)
Gaussian noise 0 =1 and a = 0.4; (c) Poisson noise 15% and a = 0;
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Gaussian noise 0 = 1 and a = 0; (b)
(d) Poisson noise 15% and a = 0. 4

(44,57), (36,65), (53,10), (55, 12). A four-
component signal case is shown in Fig.3. Sim-
ilar conclusions as in the case of monocom-
ponent signals can be drawn from these fig-
ures. Namely, in the case of a pure Gaussian
noise (see Fig.3a), the standard DCFT pro-
duces clear peaks corresponding to parame-
ters of the signal components. These peaks
can also be recognized in the case of the ro-
bust DCFT form (dark spots marked with ar-
rows) Fig.3b. In the case of impulse noise, the
standard DCFT produces poor results (Fig.3c)
since we cannot recognize peaks that corre-
spond to the signal components. In the case of
robust counterpart of this transform, the sig-
nal components can be easily seen. These facts
confirm our previous considerations. The ro-
bust forms are slightly worse than the standard
form in the case of a pure Gaussian noise. In
impulse noise the standard DCFT is useless,
while the robust forms behave accurately.

In order to reaffirm these conclusions we
present numerical analysis of the DCFT forms
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for noise environments. Ratio between its
mean value at the true signal positions, in pa-
rameter space (kim,lim), and the mean value
in the entire (k,[) plane:

- 1 )
7 2k [ Xeo(k, 1)

is used as a quality measure of the DCFT
forms. This ratio is evaluated for the Gaussian
and Poisson noise in Monte-Carlo simulation
with 100 trials. The left column of Fig.4 de-
picts results obtained for three-component sig-
nal, while corresponding results for the four-
component signal are given in the right col-
umn. The first row (Figs.4a,b) presents re-
sults for pure Gaussian noise. It can be seen
that the best results are produced for the stan-
dard form. Also, it can be noted that the ra-
tio B decreases as a increases, i.e., worse re-
sults are achieved for the a—trimmed forms
with higher a. In the case of Poisson noise
(Figs.4c,d) the standard discrete chirp-FT pro-

(27)

duces the worst ratio B. Only in the range
of a small impulse noise probability (less than
1%) it is better than the robust forms. Note
that in this case 1% of impulses is smaller than
the breakdown point of the standard trans-
form, that exhibits 1/N = 1/67. For higher
p it behaves poorly. Reason why the stan-
dard form could produce better results for
very small percentage of impulse noise appear-
ance is in nonlinearity introduced by the ro-
bust methods. Ratio B, as a function of a,
is depicted in Fig.4e-h. Three and four com-
ponent signal cases, for pure Gaussian noise
environment and a fixed signal to noise ratio,
are given in Figs.4de and 4f, respectively. It
can be seen that B decreases almost linearly
for SNR = 20dB and SNR = 0dB, while for
very high noise, SN R = —20dB, the obtained
ratio is almost constant. In the case of a pure
Poisson noise (depicted results are obtained for
p = 1%, p = 10%, p = 25% and p = 35%)
ratio B increases to the breakdown point, cor-
responding to the considered noise case, and
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after that it slightly decreases, Figs.4g and 4h.
However, for a wide range between the break-
down point and a = 0.5, results are almost
the same. From Figs.4g and 4h can be noticed
that the standard DCFT produces better re-
sults for p = 1% of impulses than robust coun-
terparts with a > 0.25. It can be concluded
from Figs.4g and 4h that in impulse noise en-
vironments, with at least several percents of
impulses, good empirical value of parameter
a could by anywhere within a € [0.25,0.45].
However, a question how precisely to select pa-
rameter @ in the a—trimmed mean form of the
robust DCFT in order to obtain the best re-
sults, remains to be addressed. It is an impor-
tant issue in all techniques based on the robust
statistics methods. An approach proposed by
[37] has been recently applied in [38] for se-
lection of the parameter a in signal denoising
based on the robust FT. Obtained results are
encouraging. Our plan is to apply them in the
case of robust DCFT.

C. IGAF - Monocomponent signal

Consider a signal with cubic phase:

f(n) = exp(jagn®/6 + jasn?® /2 + jayn + jao),

(28)
with N = 128 samples and coefficients ag =
48/N3, ay = 48/N?, a; = 12/N, and ap =
0. The signal is corrupted by Gaussian noise
with variance 02 = 1. The standard IGAF,
P2%(g, h), the median-based form pii? (9,h),
and the a—trimmed form for a = 3/8,
Pg’?’/s(g,h) are depicted in Figs.ba-c. Func-
tions are evaluated over a grid g = i/N? and
h = j/N3, where i, € [0,N). It can be eas-
ily concluded that these three forms produce
results of the same accuracy. Namely, peak
depicted in dark shades, representing the true
signal parameters in the parameter space, can
be easily seen in all three cases. The second
considered case was signal embedded in the
Poisson noise with 10% impulses in both real
and imaginary part. The IGAF forms for this
noise are shown in Figs.5d-f. The standard
IGAF is useless in this case, while two other
forms produce quite accurate results. Note
that in this case similar results can be obtained
by using the IGAF form with application of
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the robust pre-filter.

We checked the performance of the IGAF
forms for a mixture of Gaussian and impulse
noise. The amount of Gaussian noise is fixed
to 02 = 0.25, while the impulse noise is var-
ied within the range [0%,25%]. Results are
depicted with black lines in Fig.6 for 25 in-
dependent trials. Results obtained with these
forms of the robust IGAF are denoted with v;.
Note that, due to the used calculation method
(g and h are calculated over a grid where the
exact values are located), these results are only
description of the general algorithm behavior,
but not a detailed statistical analysis. From
the figure it can be seen that even for a small
amount of impulse noise the new IGAF per-
forms better than the standard one. Note that
estimation of the parameter ag is more accu-
rate than the estimation of ao. This fact is
analyzed in [24]. In the impulse noise case we
could not get so high robustness to the im-
pulse noise as in the case of discrete robust
DCFT. Namely, the kernel used in this exam-
ple, K2(&71) = x(§ 4+ 71)2*(§ — 1) in (21),
has twice more impulses than the signal z(¢).
Thus, situation is worse in the case of higher
order kernels. In order to improve results we
applied signal pre-filtering with a robust filter
in the frequency domain. These results are de-
noted as vg, i.e., with gray lines in Fig.6. Com-
paring results with the first form of the robust
IGAF, a significant improvement in accuracy
(lower MSE) may be observed.

D. IGAF - Multicomponent signal

Consider a two-component signal:
fn)

= exp(ja31n3/6 +ja21n2/2 + jaiin + jaor)

+exp(jasan® /6 + jasen® /2 + jaran + jag2)

(29)
corrupted with the same noises as in the case
from Fig.5. Signal parameters are az; =
48/N3, a1 — 48/N2, ay; — 12/N, apgr — 0,
azg — 24/N3, agg — 24/N2, a2 = 12/N, and
ap2 = 0. Results are depicted in Fig.7. It
can be seen that in the Gaussian noise envi-
ronment all IGAF forms perform with similar
accuracy, while in the impulse noise only the
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Third column - a—trimmed form P§’3/8(g, h).

IGAF form P2/ 8(9, h) performs in a satisfac-
tory manner. Namely, the marginal-median
form, due to the nonlinearity, doesn’t produce
so good resolution to separate signal compo-
nents in the parameter space.

VI. CONCLUSION

Robust discrete chirp-FT is proposed in this
paper. It is a very accurate tool for the chirp
signal parameters estimation in impulse noise
environments. Performance of this transform
is evaluated for various noise environments.
It is shown that the transform with parame-
ter a, corresponding to higher robustness, per-
forms better in heavier impulse noise environ-
ments. However, the largest values of a, close
to a = 0.5, introduce spectra distortion, caus-
ing slightly less accurate results comparing to
those obtained with a < 0.5. We have gener-
alized this approach to the higher-order poly-
nomial phase signals. Since de-chirping proce-

dure can be very demanding, we have used ap-
proach based on the robust form of the IGAF.
Again, the a—trimmed forms behave better
than the standard one in impulse noise envi-
ronments. At the same time, they are better
than the marginal-median form in the case of
multicomponent signals. In order to decrease
breakdown point in the IGAF based estima-
tor, the robust pre-filtering is performed in the
first algorithm stage. Adaptive techniques for
selecting parameter a in the a—trimmed mean
based estimators will be the topic of our fur-
ther research.
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