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Robust Time-Frequency Distributions
Based on the Robust Short Time
Fourier Transform

Igor Djurovié, LJubisa Stankovi¢ and Braham Barkat

Abstract— Design of time-frequency distrib-
utions (TFDs) that are robust to the impulse
noise influence is considered. The robust TFDs
based on the robust short-time Fourier trans-
form (STFT) are proposed. An efficient pro-
cedure to evaluate the robust STFT is given.
Robust TFDs based on the robust STFT have
better energy concentration around the signal
instantaneous frequency (IF) than the robust
STFT itself. Also, these TFDs are more resis-
tant to higher impulse noise than the robust
TFDs obtained using the local autocorrelation
function (LAF) based minimization problem.

I. INTRODUCTION

An overview of time-frequency distributions
(TFDs) that have attracted significant atten-
tion in the signal processing community can be
found in [1], [2]. Influence of Gaussian noise on
TFDs has been extensively studied [3]. The in-
stantaneous frequency (IF), a concept closely
related to time-frequency (T-F) analysis, has
attracted wide interest. The IF estimation of
signals embedded in Gaussian noise has been
addressed in several research works, among
them [4], [5]. However, only few research works
have dealt with other types of noise [6].

In numerous practical situations, environ-
ment cannot be modeled with Gaussian noise.
Namely, due to natural or man-made phenom-
enon, the resulting noise could have rare but
very strong values. This kind of noise is re-
ferred to as impulse noise. More details on
the impulse noise and impulse noise modeling
can be found in [7]. TFDs are sensitive to this
kind of noise. An intensive research effort has
been put into design of TFDs that are robust
to such a noise [8]-[10]. These TFDs are based
on the robust statistics concept, introduced by
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Huber [11]. This concept has been success-
fully used in various signal processing applica-
tions. Katkovnik introduced this concept into
spectral analysis by developing the robust M-
Fourier transform (M-FT) [8]. In the sequel,
transforms that are defined on the basis of the
robust statistics concept will be referred to as
‘robust’. The robust M-FT has been defined
in an implicit form. An iterative procedure is
required for its evaluation. In order to avoid
iterative procedures, the marginal-median fil-
ter form of the robust FT was proposed in [9].
Both forms of the robust FTs yield accurate
spectra estimates for stationary signals embed-
ded in impulse noises. They are almost as ac-
curate as the standard FT for Gaussian noise
environment. Generalization to the T-F analy-
sis of non-stationary signals corrupted by im-
pulse noise has been proposed in [9], [10]. The
robust Wigner distribution (WD) can be eval-
uated as a median of the modulated local auto-
correlation function (LAF) samples. Note that
all minimization problems based on the Her-
mitian LAF yield real-valued robust TFDs [9)].
The L-filter form of robust TFDs is proposed
for handling signals corrupted by a mixture of
Gaussian and impulse noise in [10].

Higher-order TFDs yield a better energy
concentration around their IF than the STFT
in the case of noiseless signals. In this pa-
per, we will show that the same fact holds
for the robust TFDs. In addition, IF esti-
mates based on peaks of the higher-order ro-
bust TFDs have smaller bias as compared to
those based on the robust STFT peaks. How-
ever, higher-order TFDs are more sensitive to
the impulsive noise than the robust STFT. To
mitigate this, we propose a new form of the ro-
bust TFDs based on the robust STFT. In this
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way, a significant improvement, comparing to
the results obtained by using the robust TFDs
based on the LAF, is achieved. In addition,
we propose a recursive technique to evaluate
the robust STFT. As a consequence, the ro-
bust TFDs based on the robust STFT can be
efficiently calculated in real-time.

After reviewing the existing robust TFDs in
Section II, we introduce robust TFDs based
on the robust STFT, as well as the recursive
procedure to evaluate them, in Section III. A
comparison study of various robust TFDs, us-
ing IF estimation, is presented in Section IV.

II. A REVIEW OF THE RoBuST FT AND
TFDs

A. Robust FT

Consider discretized version of the useful
signal f(n) that is embedded in a white noise
v(n), z(n) = f(n)+v(n). The standard FT of
noisy signal z(n),

X@) =43 (e

= mean{z(n)e 7“"| n € [0,N — 1]}, (1)

can be defined as a solution of the optimization
problem!:

X(w) = arg II},iLnJ(m; w) (2)

where the penalty function can be written as

Jmiw) =3 Fla(n)e " —m), (3)

for the loss-function F(e) = |e|?.

The standard DFT, X (w), is the ML esti-
mate of the useful signal spectra F(w) for a
Gaussian noise environment. It is sensitive
to the impulse noise. For a known probabil-
ity density function (pdf) of the noise the ML
estimate of the FT can be determined. The
ML estimates are sensitive to variations of the

IMinimizing the penalty function with respect to
the complex-valued argument is done in the follow-
ing manner. Penalty function J(m) is considered as
the 2D function of real-valued arguments J(m,, m;;w)
where m, and m; are real and imaginary part of m.
The searched solution is formed as X(w) = R(w) +
jI(w), where (R(w),I(w)) are solution of equation
(R(w), I(w)) = arg( min )J(mr,mi;w).

My, M
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noise pdf. To avoid this difficulty, Huber intro-
duced the M-estimation concept whose main
idea is as follows. A class of noises is consid-
ered. The ‘worst’ noise is defined as the one
whose pdf has the heaviest tail. The ML es-
timate for this noise is the M-estimate for the
used class. The M-estimate produces reason-
able accuracy for the entire class. The Lapla-
cian noise was found as the worst one for many
impulse noise classes considered in practice.
The loss-function F(e) = |e|, that produces
the ML estimate for the Laplace noise, results
in robust behavior for almost all other impulse
disturbances. The robust M-FT in implicit
form, obtained as the solution of the minimiza-
tion problem (2)-(3) for F'(e) = |e|, is given
by [8]

x(n)e Ivn

N-1
Zn:() |z(n)e=Jon —Xp(w)| )

XR(W) =

(4)

N-1 1
Zn:() [z(n)e=Ion —Xp(w)|

To avoid computational problems associated
with iterative procedures, required for solving
(4), an alternative form of the robust M-FT,
based on the loss function F(e) = |Re(e)| +
|Im(e)|, was proposed in [9]. This alternative
form, called the marginal median form of the
M-FT, is given by [9]

Xy (w) = median{Re{z(n)e 7"}

| ne0,N—1]}
+j median{Im{z(n)e~7“"}
| ne0,N—1]}. (5)

Transforms (4) and (5) behave similarly. Their
accuracy is high for impulse noise.  For
Gaussian noise they are slightly worse than the
standard FT. The median-filter form does not
suffer from convergence problem that may ex-
ist in (4).

B. Robust TFDs

Robust Short Time Fourier Trans-
form: The robust STFT forms, which can be
seen as an extension of the robust FT, are de-
fined by using the optimization problem

STFT(n,w) = arg minJ(m;n,w)
m
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N-1 .
= arg min Zkfo F(z(n+k)e 7k —m). (6)
For the loss functions F(e) = |e|?, F(e) = e

and F(e) = |Re(e)| + |Im(e)|, yield the stan-
dard STFT (STFTs(n,w)), the robust STFT
in the implicit form (STFTgr(n,w)), and the
robust STFT in the marginal-median form
(STFTy(n,w)), respectively. These trans-
forms are given by

STFTs(n,w)

_ 1 N-1 —jwk
=~ Zk:o z(n+k)e™? (7)
STFTRr(n,w)

z(ntk)e e Iwk
Zk‘ 0 |z(n+k)e—Iwk— STFTR (n,w)| (8)

Zk =0 |z(n+k)e— J“’k STFTr(n,w)|
STFTh(n,w)

= median{Re{z(n + k)e 7**}|k € [0, N — 1]}

+jmedian{Im{z(n +k)e 7*}|k € [0, N —1]}.
(9)

Robust TFDs Based on the LAF: The

robust WD was introduced in [9] as a solution

of the minimization problem

W D(n,w) = argminJ(m;n,w)
— m)

m
= argmin Z
(10)
where the LAF is given by 734(n, k) = 2(n +
k)z*(n — k). For F(e) = |e|?, we obtain the

standard WD (W Dg(n,w)) and for F(e) = |e|,
we obtain the robust WD (W Dg(n,w)), i.e.,

-+

"2k ke [0, N —1]},

F(rez(n, ke —2jwk

WDg(n,w) rm n, k)e~ 2wk

= mean{r,(n, k)e

(11)
W Dg(n,w)
= median{Re{r,(n, k)e 2*“*}| k € [0, N—1]}.
(12)
Here, the loss function F(e) |Re(e)| +

| Im(e)| yields the same solution as the one ob-
tained for F(e) = le|]. The LAFs, r;.(n, k),
of some common TFDs are given in Table
I [12]-[15], where the acronyms CD, LWD and

PWVD stand for the Cohen class of distri-
butions, the L-Wigner distribution and the
polynomial Wigner-Ville distribution, respec-
tively. It can be shown that for any Hermitian
LAF, ie., rue(n,k) = ri,.(n,—k), the opti-
mization problem (10) results in a real solution
for any even loss function. Using the appro-
priate LAF expression, we define the standard
TFD (TF(n,w)) as the solution of the above
optimization problem when F(e) = |e|?. Sim-
ilarly, we define the robust TFD (T'Fr(n,w))
as the solution obtained for F'(e) = |e|. These
two quantities are equal to

TF(n,w)
= mean {r,,(n, k)e ¥ k€ [0, N — 1]}
(13)
TFr(n,w)
= median{Re{r..(n, k)e 2“1
| kel0,N —1]} (14)

L-filter Forms: The L-filters are effec-
tive in filtering stationary signals embedded
in a mixture of Gaussian and impulsive noise.
They are also successfully applied to non-
stationary signals [10] and for design of the
robust filters of high-pass data [16]. The L-
form of the STFT is given as

STFTL(n,w)

r(n,w;l) 4+ 7 -i(n,w;l)], (15)

N—1

N Zl:o “
where r(n,w;l) and i(n,w;l) are elements of
the sets R(n,w) = {Re{z(n + k)e /“F}| k €
0,N — 1]} and I(n,w) = {Im{z(n +
k)e 3Ry k € [0,N — 1]}, ie., r(n,w;l) €
R(n,w), and i(n,w;l) € I(n,w), sorted into
non-decreasing order as r(n,w;l) < r(n,w;l +
1), i(n,w;1) < i(n,w;l+1). The L-filter forms
of the TFDs given in Table I, can be written
as

N-1

20

where r(n,w;l) are sorted elements of the set
R(n,w) = {Re{rye(n,k)e 2}k € [0,N —
1]}. The filter coefficients a;, I = 0,1,..., N—1,
are usually determined to satisfy the con-
straints Zl]\ial a; = 1and a; = any_;—1. We

TFp(n,w) = arr(n,w;l), (16)
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TABLE 1
Leq(n, k) REAL AND SYMMETRIC KERNEL FUNCTION IN THE TIME-LAG DOMAIN. 2 THE PWVD FORM USED IN THE
PAPER.

| Representation | LAF r,,(n, k) |
WD z(n+k)x*(n —k)
CD! er(n, k) #, x(n+ k)a*(n — k)
LWD wl(n+k/L)z™*(n — k/L)
PWVDZ =4 || 2%(n + 0.675k)z% (n — 0.675k)z" (1 + 0.85k)z(n — 0.85k)

will use the a-trimmed form of the L-filter
whereby the coefficients are given as: a; =
1/[N—a(N=2)],l € [(N=2)a,(-N +2)a+
N-1], a €[0,0.5], and a; = 0 elsewhere. Note
that, for « = 0 and a = 0.5, the standard and
the median forms follow, respectively.

II1I. RoBusT TFDSs BASED ON THE
RoBusT STFT

Realization of standard TFDs, based on the
standard STFT, is a well known and described
in numerous research papers [13]-[17]. This
realization technique is used for many rea-
sons, such as: computational efficiency, to
avoid aliasing effects in TFDs, or to produce
highly concentrated TFDs with reduced inter-
ferences. Since the STFT can be calculated
recursively, it means that different TFDs can
be realized in real-time. In addition to the
just stated benefits, our main objective in this
section is to introduce robust TFDs based on
the robust STFT, that have stronger resistance
to the impulse noise than the previously re-
viewed robust TFDs. To this aim, a recursive
realization of the robust STFT is proposed in
this section. As we have previously seen, the
robust STFT can be realized by using expres-
sions (8), (9) or (15). In the sequel, we can use
any of these forms to realize the robust TFDs.
These robust TFDs will be more resilient to
impulsive noise than those realized by using
the minimization problems discussed earlier.
The robust STFT used to realize the robust
TFDs will be denoted by STFT,(t,w), where
p can be any of the letters M, R or L, used
to refer to the robust STFT forms in (8), (9)
and (15). The notation of the various robust
TFDs, obtained by using the robust STFT,
will be preceded by 7.

A. Proposed Transforms

In the light of what we discussed above, and
using the same technique to realize standard
TFDs based on the standard STFT, we itemize
below the different forms of the robust TFDs
based on the robust STFT.

o The windowed robust STFT can be cal-
culated by rSTFT(n,w) = STFT,(n,w) *,
W(w), where W(w) is the FT of the de-
sired window function and %, represents the
convolution in frequency. For instance, for
a Hanning window (discrete domain), this
convolution reduces to rSTFT(n,kAw)
Z}:A ¢ STFT,(n, (k + i)Aw), where ¢y =
1/2, c41 = 1/4, and Aw is the frequency step.
Similar expressions can be derived for other
window types.

o The robust forms of the WD based on the
robust STFT are determined as [12]

rWD(n,w)

= l/STFT,J(n,erH)
™ Jo

xSTFT, (n,w — 0)do. (17)

The pseudo form of the rWD can be deter-
mined in the same manner as the windowed
form of STFT,(n,w).

e The S-method (SM) [12] combines favorable
properties of the STFT (non-aliasing for the
Nyquist rate sampled signal and cross-terms
reduction) and the WD (high concentration).
We define its robust counterpart as

rSM(n,k)

%/P(G) STFT,(n,w+0)
0



ROBUST TIME-FREQUENCY DISTRIBUTIONS BASED ON THE... 713

xSTFT;(n,w — 0)do, (18)

where P(0) is the window function in the fre-
quency domain. Wider window means bet-
ter T-F concentration, while narrower window
means better cross-terms interference suppres-
sion. Full details on the window length deter-
mination can be found in [12].

o Realization of the quadratic Cohen’s class of
TFDs by using the standard STFT was intro-
duced in [17]. We define their corresponding
robust Cohen distributions as

rCD'(n, kAw)

=Y NISTFT,(n, kAw) ., Qi(kAw)|?.
(19)
Here, \; represents the eigenvalues of the ro-
tated kernel function in the time-lag domain of
the particular member of the CD class, while
Qi (kAw) represents the FT of the correspond-
ing eigenvectors. Details about this decom-
position and its associated quantities can be
found in [17].
e The LWD, proposed in [13], is an appropri-
ate tool for nonlinear FM signals. This distrib-
ution can be evaluated recursively by using the
WD or the SM. In a similar way, we propose
to evaluate its robust counterpart based on the
rWD or the rSM defined in (17) and (18). We
define the robust LWD by using the recursive
expression

rLW Dy (n,w)
1
0
XT'LWDL/Q(H,CU — 9)d9, (20)
where rLWDi(n,w) = rWD(n,w) or

rLW Dy (n,w) = rSM(n,w).

e The PWVD is a T-F distribution proposed
to deal with polynomial FM signals. For mul-
ticomponent signals, this distribution suffers
from the presence of cross-terms. To mitigate
this problem, an implementation procedure for
the fourth order PWVD was proposed in [14].
Its robust counterpart can be defined as

rPWV D(n, kAw)

=, PUAW)rLW Da(n, (k + 1) Aw)

xrWD(n, (k+ [l/A])Aw), (21)

where A = 0.85/1.35 and [-] denotes rounding
to the closest integer value.

B. Ezxample

In this subsection, we illustrate the reason
for introducing robust TFDs based on the ro-
bust STFT. Let us consider an FM signal given
by

f(t) = exp{jo(t)}

= exp{jl12n[t arctan(27t)
—In(1 + 47%t?) /4x]},

for —1/2 <t < 1/2, sampled at At = 1/512.
Performance of the TFD used in the analysis
will be measured based on its accuracy in es-
timating the signal’s IF given by?

w(t) = ¢'(t) = 1127 arctan(27t). (22)

Peak of the TFD is used as an IF estimator®,

W(t) = arg max TF(t,w). (23)

The impulsive noise is added to the noiseless
signal, z(t) = f(t) +&3(v3(¢) + jv3(t)), where
v;(t), i = 1,2, are zero-mean Gaussian noises

2Relation (22) represents semi-intuitive definition of
the instantaneous frequency for complex-valued sig-
nals. We assume that the complex-valued signal is
produced as an analytical extension of the correspond-
ing real-valued signal. The analytical extension is valid
mapping to complex domain signals that satisfy condi-
tions defined by Vakman [18]. In order to meet these
requirements we assume that the amplitude in our
signal is slow varying comparing to the signal phase
|A’(t)] < |¢'(t)]. Other forms of complex-domain sig-
nal representations are studied in [19] and references
therein.

3TFDs are commonly used as the IF estimators. The
simplest used approach is based on the maxima of the
T-F representation. Namely, the standard T-F repre-
sentations are usually highly concentrated around the
IF of the FM signals. The robust TFDs used as the IF
estimators should meet the same condition. Katkovnik
studied the robust periodogram as an IF estimator [24].
He developed asymptotic expressions for bias and vari-
ance for this transform. He has also shown that the
robust periodogram has the same bias as the standard
one. It can be proven that the same conclusion holds
in the case of robust TFDs. This topic is briefly ad-
dressed in the Appendix. It can be concluded that the
robust TFDs are also highly concentrated along the
IF, and that they can be good IF estimators. Detailed
numerical study of the robust WD as an IF estimator
has been done in [20].
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whose variance is equal to 1. We assume v (t)
and va(t) to be uncorrelated. This impulsive
noise model was proposed in [8]. We compared
the robust TFDs realized by using the robust
STFT with those realized by using the LAF
optimization problem. Some of these results
are depicted in Figs.1,2, fore = 0.65ande = 1,
respectively. The following TFDs are shown:
standard and median-filter based STFTs (the
squared magnitude of the robust STFT is de-
picted, i.e., robust spectrogram), rWDs and
rPWVDs calculated based on the LAF and
the rSTFT. It can be seen that in a moderate
impulse noise environment (Fig.1) both rtWD
forms are of the same accuracy. However, the
rPWVD produced by using the LAF is inac-
curate. In a heavier noise (Fig.2) both robust
TFDs calculated by using the LAF are inac-
curate, while the rTFDs calculated by using
the rSTFT in initial stage are accurate, indi-
cating that these robust TFDs are more resis-
tant to the high impulsive noise. To validate
and quantify these results, a statistical perfor-
mance analysis will be presented in the next
section. An explanation of the above behav-
ior can be given as follows. The performance
of all robust techniques based on the robust
statistics concept degrade as the noise impulse
rate increases [11]. For instance, the number
of noise impulses in the LAF expression, used
for the robust WD, is approximately double of
that in the signal used for the robust STFT.
For the robust PWVD, the number is much
higher. Thus, this representation yields the
worst results when the noise increases. There-
fore, we propose elimination of the impulse
noise influence by using the rSTFT in ini-
tial stage, and after that applying well known
procedures for realization of the higher order
TFDs based on the STFT.

C. Recursive Procedure for the rSTFT Real-
1zation

Evaluation of various forms of the robust
STFT requires computationally demanding it-
erative or sorting procedures for each point
in the T-F domain. To avoid this situation,
a recursive procedure to evaluate the robust
STFT is proposed [21]. Consequently, the dif-
ferent robust TFDs discussed previously can

TIME-FREQUENCY SIGNAL ANALYSIS

be implemented in real-time. Let us first re-
call the recursive procedure to evaluate the
standard STFT. A (discrete domain) recursive
expression of the standard STFT is given by:
STFTs(n+1,kAw) = [£z(n+N)—+z(n)+
STFTs(n, kAw)]e’>™ /N After a number of
recursions, and due to accumulation of the
round-off error in the registers, the calcula-
tion of the STEF'T by using the FFT algorithm
should be repeated. This recursive procedure
can be used for a large number of consecutive
samples with an acceptable small error. For
the robust STFT, which can be evaluated by
using any of the forms discussed earlier, the re-
cursive expression cannot be directly used be-
cause, in this case, the sample z(n + N) may
be heavily corrupted by the impulse noise. To
remedy this situation, we need to estimate the
noiseless signal samples from the noise obser-
vation. Common tool for denoising in the im-
pulse noise environment are median and other
related filters [22]. These filters are lowpass
and they are not suitable for signals with high
spectral content. To this aim robust filters
based on the median and myriad filters, ad-
mitting negative weights, are proposed in [23].
Here, de-noising is performed on the robust fil-
ter designed in the spectral domain [16]. The
de-noised (enhanced) signal can be calculated
as [16]
™

foln+k)=2 [ STFT,(n,w)e’*dw,

—T

k=0,1,..,.N—1 (24)
where it is assumed that this inversion sig-
nificantly reduces the impulsive noise influ-
ence. Now, if the magnitude of z(n + N)
is smaller than, or close to, the maximum of
|fo(n+ k)| (ie., |z(n+ N)| <max|f,(n+k)|
or |z(n+ N)| ~ max |f,(n + k)|), then we can
assume that 2(n+ N) is not heavily corrupted
by the impulsive noise. Otherwise, we assume
that it is corrupted by the noise, and we should
take the previous known sample f,(n+ N —1)
as an estimate of f,(n+N). The recursive pro-
cedure is given in Table II. Note that R, the
maximal number of recurrences used to com-
pute STFT,(n,w), is now smaller than in the
case of the standard STFT due to the con-
straint imposed by Step 3. In the previous
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Fig. 1. TFDs for moderate impulse noise environment £ = 0.65: (a) Standard STFT; (b) Median-filter based

rSTFT; (e) rWD calculated by using the median filter and LAF; (f) rWD calculated by using median filter
form of STFT; (i) rtPWVD calculated by using median filter and LAF; (j) tPWVD calculated by using
median filter form of STFT. Third and fourth columns - IF estimates obtained by using the TFD depicted

in the first and second column.

examples, we set R = N/4. In some situa-
tions, the value of |x(n 4+ N)| could be larger
than magnitude of the samples in the interval
[n,n + N —1]. To discriminate this sample
from an impulsive noise, we set larger mar-
gins for the signal in Step 3. In our examples,
we set 7 = 0.25. In other situations, it could
happen that there is no signal within an in-
terval of time, and suddenly a signal sample
appears. This sample might be missidentified
by the algorithm as an impulse noise. In this
situation, if the signal magnitude is larger than
(14 n)max|f,(n + k)| k € [0,N) for P con-
secutive samples, then, we go back to Step 1
and recalculate the initial robust STFT for the
new sample.

To validate the proposed recursive proce-
dure, we compare it with the median-filter pro-
cedure in the evaluation of the robust STFT.
The same noisy signal is considered as in the
previous example. Results of the compar-
isons are displayed in Fig.3. The rows of this
figure correspond to € = 0.65 and ¢ = 1,
respectively. The first two columns corre-
spond to the median-filter and recursive ro-
bust STFTs. The IF estimates based on the
peaks of these two robust STFT forms are dis-
played in the third and fourth columns. Un-
der the same noise conditions, we have also
considered a time-varying amplitude signal
f(t) = exp(j64nt?) exp(—12t?). The recursive
and median-based robust STFTs are shown in
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Fig. 2. TFDs for high impulse noise environment € = 1: (a) Standard STFT; (b) Median-filter based rSTFT;
(e) tWD calculated by using median filter and LAF; (f) tWD calculated by using median filter form of
STFT; (i) tPWVD calculated by using median filter and LAF; (j) rPWVD calculated by using median filter
form of STFT. Third and fourth columns - IF estimates obtained by using the TFD depicted in the first
and second column.

TABLE 11
RECURSIVE PROCEDURE FOR THE EVALUATION OF THE ROBUST SHORT-TIME FOURIER TRANSFORM.

1. Evaluate, for the first sample, the initial robust STFT STFT,(n,w) by using
either (8), (9) or (15).

2. Determine the inverse function f,(n + k) using (24). Set r =0 and p = 0.

3. If [x(n+ N)| < (1+n) max |f,(n+k)| k € [0, N) is satisfied, then, set f,(n+N) =
xz(n+ N) and p = 0. Otherwise, set f,(n +N) = f,(n+ N —1)andp=p+ 1.

4. Evaluate the robust STFT at the new time instant n+1 as STFT,(n+ 1, kAw) =
[+ fo(n+ N) — % fo(n) + STFT,(n, kAw)]e??™ /N and set r =r + 1 and n =n+ 1.
5. If r < R or p < P then and go to Step 3, else go to Step 1.
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Fig.4. From these examples we can conclude
that the robust STFTs, calculated directly and
recursively, are very similar. Thus, the robust
STFEF'T form computed recursively can be used
in the realization of robust TFDs. The over-
all computational complexity, in the recursive
procedure, is decreased about R times, com-
pared to the other methods. In addition, the
recursive procedure is appropriate and useful
to realize robust TFDs in real time. We should
note that some delay may appear, since the
calculation of initial STFT, in Step 1 of the
algorithm, is done by time-consuming proce-
dures. After that, the calculation can be per-
formed according to the signal sampling pe-
riod.

IV. StaTisTICAL COMPARISON STUDY

In this section, we compare various forms
of the robust STFT implemented by using the
direct procedure, with the robust STFT im-
plemented by using the recursive procedure.
Also, the robust TFDs, realized based on the
LAF optimization problem are compared with
those realized based the robust STFT. The
comparison is given in terms of the mean-
square-error (MSE) in the IF estimates. The
considered signal was the same as in the pre-
vious examples. Signal is considered in the
interval T € [—1, 1] sampled with At = 1/512.
The Hanning window with N, = 256 sam-
ples is used. In each experiment, the noise-
less signal is embedded in the additive noise
v(n) = B(ri(n)+jva(n)) +e* @3 (n)+jvi(n)).
We assume that the noise components v;(n),
1 = 1,2,3,4, are mutually uncorrelated, zero-
mean, white, Gaussian with a unit variance.
Two series of experiments are performed. In
the first one, only the impulsive noise compo-
nent is considered (i.e., = 0) with ¢ € [0, 2].
In the second series, a mixture of Gaussian
and impulsive noise is considered, 8 = 0.4 and
e € [0,2]. For each noise amount we per-
formed 50 independent trials. The following
TFDs are considered in the comparisons: the
STFT forms (standard and robust calculated
by the iterative, the median-filter, the L-filter
(e = 3/8), and the recursive procedures); the
WD forms; the SM forms; the LWD forms
for L = 2; the PWVD forms. Quadratic and

higher order TFDs are calculated based on the
LAF (Section IT) and based on the STFT (Sec-
tion IIL.A, II1.C).

Some of the most important results are dis-
played in Fig.5. The MSE of IF estimates is
plotted against the impulsive noise amount «.
The first row of the figure shows that the ro-
bust STFT forms, including those calculated
recursively, perform better than the standard
STFT, even for a small amount of noise. The
second row of the figure displays the results
based on the median STFT form, the median
WD and PWVD forms realized by using the
LAF and robust STFT. As expected, for small
€ the robust WD and PWVD forms outper-
form the robust STFT. However, for larger val-
ues of g, the robust TFDs based on the LAF
are inaccurate, while their counterparts calcu-
lated by using the robust STFT outperform
the robust STFT for all values of €. These re-
sults clearly confirm that robust TFDs realized
by using the robust STFT are not only accu-
rate but are also more resistant to impulsive
noise than those realized by using the LAF.

V. CONCLUSION

The robust TFDs realized based on the ro-
bust STFT are presented. These TFDs have
better T-F resolution than the robust STFT
itself. They have stronger resistance to impul-
sive noise than their counterparts realized by
using the LAF based optimization approach.
Validity of the presented analysis is demon-
strated on several examples. A recursive pro-
cedure for the robust STFT computation was
also proposed. Results obtained by using this
procedure were as accurate as in the other
methods of the robust STFT computation.
The proposed recursive procedure significantly
improves the computational efficiency of the
algorithm and offers the possibility to evalu-
ate the robust TFDs in real-time.

VI. APPENDIX

Spectral estimation of the complex-valued
harmonic f(t) = Aexp(jo(t)) embedded in a
white impulse noise v(t) based on the robust
periodogram has been considered in [24]. The
robust periodogram is squared magnitude of
the robust DFT defined in an implicit man-
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Fig. 3. Robust STFTs based on the median filter and recursive realization: First row - impulse noise ¢ = 0.65;
Second row - heavy impulse noise € = 1; First column - median based rSTFT; Second column - recursive
calculation; Third and fourth columns - IF estimates obtained by using the TFD depicted in the first and
second column.
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Fig. 4. TFDs based on the median filter and recursive realization: (a) Median filter form, e = 0.65; (b) Recursive
realization, e = 0.65; (c) Median filter form, e = 1; (d) Recursive realization, ¢ = 1.
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Fig. 5. Statistical analysis of the IF estimator based on the robust TFDs: (a) robust STFT forms and impulse
noise; (b) robust STFT forms and mixed Gaussian and impulse noise environment; (¢) robust TFDs and
impulse noise environment; (d) robust TFDs and mixed Gaussian and impulse noise environment.

ner (4) and determined from the iterative al-
gorithm [24]. Assume the following.

1. The window is bounded, real-valued and
even function: w(t) = 0 for |¢| > T/2 and
w(t) = w*(—t).

2. Loss function F() is convex, bounded and
twice differentiable function.

3. Loss function F() and noise pdf g()
should satisfy the following requirements:

/F'(x)g(x)dw =0
0< /[F’(x)]zg(x)dx <o

0< /F"(x)g(x)d:c < o0

4. The signal phase function is limited and
piece-wise differentiable with limited deriva-
tives up to the third order: |¢"'(t)| < L < oo.

Under assumptions (1)-(4) the following as-
ymptotic expressions for variance and bias of
the IF estimator based on the STFT forms
hold (for details refer to [24]):

bias{@(t)} = B{&(t) — w(t)}

= BT?¢"(t) + o(T?)

. 2At
var{@(t)} = ¢V (F, g)W + o(At/T)
where constants B and ¢ depend on the used
window function:
75 w(t)ttdt

B=_——— 7
37 w(t)t2dt

[ w2 (t)tdt
(ffzo w(t)t%lt)z’
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while V(F, g) depends on the used loss func-
tion and noise distribution:

JIF' (x)]*g(x)dx
[f F”(x)g(:c)dx]2

and o(x) represents a small value, such that
o(x)/x — 0 for z — 0.

The most interesting conclusion is that the
bias doesn’t depend on noise or the used
loss function (under introduced assumptions).
Therefore, the robust STFT is a valid IF esti-
mator. Based on the analysis from [24] it can
be seen that, in impulse noise environment,
the loss function F'(e) = |e| produces smaller
V(F,g) than the loss function F(e) = le|?.
It makes the robust STFT based estimator
more reliable function in the impulse noise
environment. In the Gaussian noise environ-
ment ratio between two functions V(F,g) is
V(lel?,9)/V(lel,g) = 2/m =~ 0.64, i.e., the ro-
bust STFT is not significantly worse than the
standard one.

The remaining problem is how to calculate
the bias and variance in the case of the higher-
order TFDs. Here we will briefly consider only
the WD forms. The standard WD can be con-
sidered as the FT of the auto-correlation func-
tion:

V(F7g) -

x(t+7/2)x*(t —7/2)
= ft+7/2)f*(t—7/2)+ f(t+7/2)v" (t—T/2)+
v(t+71/2)f (t—7/2)+v(t+T/2*(t—7/2) =
f+7/2)f(=7/2) +vr(t;7)

where v, (t;7) is the resulting noise. The re-
sulting noise pdf is g-(). It can happen that
this function doesn’t satisfy some of the re-
lated assumptions. Namely, F{v.(¢;7)} can
be different from zero since E{v(t+7/2)v*(t—
7/2)} = E{|v(t)|?}, for T = 0, is different from
zero even if the noise is of zero mean. How-
ever, it means that the WD will be increased
for a term E{|v(t)]*}, E{rWD,(t,w)} =
rW Dy (t,w) + E{|v(t)|*}. This term will not
change the IF estimation performances. Then,
variance of the WD based estimator is similar
to those in the STFT based estimator:

2A¢

var{@(t)} = cV(F, gT)|A|TT?’-
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Signal auto-correlation can be written as:
fE+7/2)f(t—7/2)

= |AZexp(j¢ (t)7 + jo" (£)73 /24 + ..).

Assuming that the fifth derivative of the sig-
nal phase is limited and following the deriva-
tion from [24] and [25], the bias in the Wigner
distribution can be approximatively written
as:

bias{w(t)} = B{&(t) — w(t)} = BiT?¢" (1)

where By = B/4. Again the bias is noise in-
dependent. It is the same as in the case of
the standard transform. Similar derivations
can be done for other robust TFDs follow-
ing scheme derived in the case of the standard
TFDs.
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