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On the Time-Frequency Analysis Based
Filtering

LJubisa Stankovié

Abstract— Efficient processing of nonstation-
ary signals requires time-varying approach. An
interesting research area within this approach is
time-varying filtering. Since there is a certain
amount of freedom in the definition of time-
varying spectra, several definitions and solu-
tions for the time-varying filtering have been
proposed so far. Here we will consider the
Wigner distribution based time-varying filter-
ing form defined by using the Weyl correspon-
dence. Its slight modification will be proposed
and justified in the processing of noisy fre-
quency modulated signals based on a single sig-
nal realization. An algorithm for the efficient
determination of the filters’ region of support
in the time-frequency plane, in the case of noisy
signals, will be presented. In the second part
of the paper, the theory is applied on the fil-
tering of multicomponent noisy signals. The S-
method is used as a tool for the filters’ region of
support estimation in this case. This method,
combined with the presented algorithm, en-
ables very efficient time-varying filtering of the
multicomponent noisy signals based on a single
realization of the signal and noise. Theory is
illustrated by examples.

I. INTRODUCTION

Analysis and processing of stationary sig-
nals is usually performed either in time or in
frequency domain. However, when the signals
exhibit nonstationary characteristics more effi-
cient processing can be done using joint time-
frequency domain tools. They are based on
the time-frequency representations of signal.
Time-varying filtering is one of the challeng-
ing areas where one can benefit from the joint
time-frequency representations. This kind of
filtering can produce better results, in the
nonstationary signal cases, than the process-
ing of signals in either time or frequency do-
main separately. However, in the definition of
time-varying spectra there is a certain amount
of freedom [3], [5], [6], [8], [16], [26], what
has resulted in several solutions for this ap-
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proach. The first, classical solution, has been
presented by Zadeh [25]. It can be related to
the Richaczek distribution [16]. However, this
distribution exhibits some serious drawbacks
as a possible tool for the time-frequency repre-
sentation of signals [6], [8]. This fact was the
reason for a redefinition of the time-varying
filtering relations into the Wigner distribution
framework, using the Weyl correspondence [3],
[9], [13], [14], [18]. In this paper we will con-
sider the Wigner distribution approach. Its
slight modification will be proposed and justi-
fied in the treatment of noisy frequency modu-
lated signals when only one signal realization is
available. The algorithm proposed in [23] has
been used for determination of the filter’s re-
gion of support. This algorithm is based on the
optimal window length relation in the Wigner
distribution. It uses a specific statistics ap-
proach of comparing the bias and variance [11],
[23]. Theory is extended to the multicompo-
nent noisy signals. The S-method is used as
a basic tool for the time-varying filter support
estimation [20], [21]. This method combined
with the described algorithm, enables very ef-
ficient time-varying filtering of the multicom-
ponent noisy signals, based on a single signal
realization. Fxamples illustrate the presented
theory.

The paper is organized as follows. The ba-
sic theory, including the definitions of time-
varying filtering, its discrete and pseudo forms,
along with the illustrations, are given in Sec-
tion II. Filtering of a monocomponent signals
is considered in the next Section. In Section
IIT the algorithm for the region of support es-
timation is presented, as well. The algorithm
efficiency in the time-varying filtering applica-
tions is illustrated on examples. Time-varying
filtering of multicomponent signals is studied
and illustrated in Section IV.
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II. BAsic THEORY
A. Definitions

Time-varying filtering of a signal x(¢) has
been defined by, [13], [24], [25]:

oo

(Hz)(t) = / h(t,t — m)x(T)dT, (1)

—0o0

where h(t,7) is the impulse response of the
time-varying system H. If signal z(¢) is a sum
of a desired signal s(t) and noise v(t) then the
system H may be determined by minimizing
the mean square error [13], [24]

Hopt = arg min E {|s(t) - (Hx)(t)|2} G)

In the ideal case the system should produce
(13]

(Hs)(t) = s(t),

Since there is a certain amount of freedom in
the definition of a time-varying spectrum, sev-
eral solutions of this problem have been pro-
posed until now. The classical time-varying
filter function proposed by Zadeh [25]

(Hv)(t) =0 (3)

o0

Zh(t,w) = / h(t,t —T)e ™ Tdr  (4)

—00

with the impulse response

o

h(t,t—r):% / Zu(tw)e ™ dw.  (5)

—00

It can be related to the Richaczek distrib-
ution. Since this distribution exhibits very
serious drawbacks as tool for time-frequency
analysis, this may be also told for the Zadeh
time-varying filter function. This fact was the
reason for a redefinition of the time-varying
function using the Wigner distribution frame-
work.

Time-varying transfer function, in the
Wigner distribution framework, has been de-
fined as the Weyl symbol mapping of the im-
pulse response into the time-frequency plane
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[13], [14], [18]
Ly(t,w) = / h(t+ g,t - %)e*j‘”dr (6)

Using the desired properties of the time-
varying system (Hs)(t) = s(t), and (Hv)(t) =
0 and the Moyal’s formula relating the inner
products of signals and their Wigner distribu-
tions,

(WD, (t,w), WD, (t,w)) = |(2(t), y(0)I*,

the following properties of the system should
ideally hold

((Hs)(2), s(t)) = / ls(8)2dt =

(17 WDs(t7w)) = (LH(t7w)7 WDs(t7w)) (7)

((Hv)(t),v(t)) =0 = (Ly(t,w), WD, (t,w)).

(8)

Suppose that the Wigner distribution of the
signal s(t) defined by

oo

WD,(t,w) = /s(t+ %)s*(t— g)e*jww

—0o0

lies inside a region R, while the noise lies out-
side this area, except its small part that can be
neglected with respect to the part of noise out-
side R. A simple solution satisfying require-
ments (7),(8) is then given by [13]

[ 1 for (t,w) € R
Lu(t,w) = { 0 for (t,w) ¢ R 9)
Another way go get this relation is presented
in the Appendix. Note that nothing would
qualitatively change if Ly (¢,w) assumed any
other constant value within R. The impulse
response is obtained as

T T 1 Vi ;
T jwT
M+ - 0) = o /LH(t,w)e dw (10)

We will use a slightly modified version of
filtering relations (1). It turned out that it is
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necessary in order to get undistorted frequency
modulted signals, when time-varying filtering
relation is applied. Time-varying filtering is
here defined by

(Ha)(t) = /h(t+%,tf%)x(t+7)d7 (11)

with the impulse response as in (10). Using
the Parseval’s theorem, we get

o

(Hx)(t):% /LH(t,w)X(w)ej“tdw. (12)

—00

The realizations and properties of this filter-
ing relation will be studied next. The reason
for introducing and using filtering relation (11)
will be explained in the sequel. Its analysis is
given in the Apendix.

B. Illustration
Consider an FM signal

s(t) = A(t)el*® (13)
with a slow-varying amplitude A(t), such that
its Fourier transform may be obtained using
the stationary phase method [3], [15]

oo

/ Alt)e Hto)=iwto

—00

21y

¢” (to)

where (¢'(w))~! denotes an inverse function
of the instantaneous frequency ¢'(t). For as-
ymptotic signals it is equal to the group delay
function [3]. Assume that the Wigner distribu-
tion of s(t) +v(t) has provided a well localized
information about the signal’s support in the
time-frequency domain so that [3], [6]

S(to — (¢'(w)) " ")dto

Ly(t,w) = d(w = ¢'(t)).

Note that in the discrete domain, as it is used
in numerical realizations, function §(w) will
be a Kronecker delta function and will satisfy

(14)

unity amplitude condition (9) for the time-
varying filter. Applying now FT[s(t)] and
Ly(t,w) in (12) we get

o) =5 [ [ 8-

—00 —O0

21y
¢77 (to)
eIt dtodw + Vouy(t)

Altg)e?@lto)=iwto 3(to — (¢ (@) ™) x

27j
¢ (1)

[ [ P - o

3(to — (¢'(w)))dtodw = F(t)

for monotone instantaneous frequency func-
tion. For the signals with linear instantaneous
frequency, or the instantaneous frequency may
be considered as a linear function of time
within the considered interval, we get

(Hz)(t) = es(t) = cA(t)e??®),

= A(t)e?*® +vout(t)  (15)

since

(16)

where ¢ is a constant, since we assumed that
the derivative of the instantaneous frequency
is a constant. Other filtering relations than
(11) would produce distorted versions of the
original signal.

The amount of noise within the support de-
fined by d(w — ¢'(t)) is neglected, since its en-
ergy is reduced by the factor

- ffD dwdt
= 8w —F O)dedt

where D is the whole considered time-
frequency plane. In the case when the vari-
ations of the instantaneous frequency are not
small, an amplitude compensation for the IF
variations should be done. It could be done by
estimating the direction of the instantaneous
frequency in the time-frequency plane what,
according to the assumed known region of sup-
port R, is not difficult.

Note 1: There is an ambiguity in the defi-
nition of Ly (t,w) in (14). Instead of the delta

Q (17)
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pulse along the instantaneous frequency ¢’ (t),
we may impose the same condition, but with
respect to the group delay (¢'(w))™?, [3], [6],
what will give the support function

LY (t,w) = 6(t — (&' () ™).

It is interesting to point out that the support
function defined as a geometrical mean of (14)
and (18)

(18)

1
Liy(t:) = 1 3000 = 0)3( ~ (6
(19)
will produce correct both amplitude and
phase,

(Hz)(t) = A(t)e?*® (20)

for any frequency modulated signal, as far
as the stationary phase method (15) holds,
since 6(t — (¢'(w))™1) = d(w — ¢'(1))¢” (t) and
Litg(t,w) = 8(w—/ () /6" (D/(2r). The re-
quirement for monotonicity of ¢'(¢) is already
included in the stationary phase method defi-
nition.

Note 2: The signal to noise ratio im-
provement, that can be gained with the time-
varying filer, is defined as a difference of the
signal to noise ratio at the output (SN Ry.t)
and input (SNR;,) of the system, i.e., as

G =SNR,, — SNR;,.

According to (17) and (20) we get

G =10log Q. (21)

Having in mind (17), this improvement can be
significant.

Note 3: The Wigner distribution can

produce a completely concentrated distribu-
tion along the instantaneous frequency (group
delay) only for the linear frequency modu-
lated signals. The error analysis and the
optimal time-varying data-driven lag window
length for the Wigner distribution of nonlin-
ear frequency modulated signals is presented
in [11]. If the instantaneous frequency vari-
ations are not linear then the complete con-
centration along the instantaneous frequency,
i.e., Lg(w,t) ~ d(w— ¢'(t)), may be obtained

TIME-FREQUENCY SIGNAL ANALYSIS

using the S-distribution, [22] or the L-Wigner
distribution [21]

S
SD(w,t) = /S[L](t+ﬁ)$*[L](t*i)€7ﬂm—dT

where for the L-Wigner distribution s (t) is
the L — th power of the signal, while in the
S-distribution only the signal’s phase is mul-
tiplied by L. It has been shown that for any
FM signal [22], [21]

Jim SD(w,)/ARH (1) = d(w — ¢'(1)).

A similar concentration can be achieved by the
reassignment method [2], as well. In the case of
polynomial phase functions a complete distri-
bution concentration may be produced using
the polynomial Wigner-Ville distributions, [3],
[17], or the local polynomial distributions [12].

C. Discrete Form

In the numerical realizations a discrete form
of system (11)-(12), given by

o

(Ho)n)= > h(n+ 20—

5 m):c(n+ m)

2
m=—0oo
T

:% / Lu(n,0)X(0)e%do  (22)

-7

> k k. _.
u(n,0) = Z h(n+§,n——)e_39k

k=—o0 2
X(0) i x(m)e=70m (23)

should be used. This form will be used in
the analysis starting from the next Section, as
well.

D. Pseudo forms

Consider now the previous definitions and
representations with a limited lag variable 7.
This case is important for the practical realiza-
tions. Introducing a lag window w(7) in the
filtering definitions we get

oo

(Hz)(t) = /h(t—i—z,t— T

5 5 Yw(T)z(t + 7)dr

—00
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:% /LH(t,w)STFT(t,w)dw (24)
where
STFT(t,w) / w(r)a(t + 7)e~ITdr (25)

is the short time Fourier transform of signal
x(t), with w(0) = 1. Applying the same analy-
sis as in (15), and using (19) as the support,
we get

(Ho)O) = 5= [ [ =6 Oulro)x

—00 —O0

A(t + 7o) ed®(tHT0) im0
S(t+ 70 — (& (W)™ drodw + vou(t) =
= A(£)e?® 4 10, (8). (26)

This is a quite interesting conclusion. The
lag window does not influence the output sig-
nal (Hz)(t) as far as we are able to determine
the region of support R and w(0) = 1.

In the realizations, the pseudo Wigner dis-
tribution

PWD(t,w) =
/ welr)st+ 5)s"(t— H)erdr (27)

is used for the region of support determina-
tion, rather than the Wigner distribution it-
self. Note that the lag window w.(7) in the
Wigner distribution and the lag window w(7)
in (24) are not related, so they may be opti-
mized independently.

The window function w,(7) will smooth the
original Wigner distribution as

PWD,(t,w) = WDg(t,w) x, We(w).  (28)
It will result in a wider region of support
R, = R+ AR, where AR is determined by
the window w,(7), i.e., its Fourier transform
We(w), length. This will cause that larger
amount of the noise passes through the sys-
tem, than it is theoretically necessary. At the
first look it seems that the increase AR should

not influence the output signal since R C R,,.
Initially we made this conclusion, but after nu-
merical simulations we have learned that as
a result of AR # 0 some signal frequencies,
that do not belong to the considered time in-
stant t, may appear in the output signal and
degrade performance. This is the reason why
other smoothed forms of the Wigner distribu-
tion, like for example the spectrogram, would
not be appropriate for the region R determi-
nation and would not produce good results. In
order to reduce these effects the window w,(7)
should be as wide as possible, i.e., its Fourier
transform W, (w) should be as narrow as possi-
ble. This requirement is however contradictory
to the reduction of noise and low calculation
complexity requirements. Therefore, the opti-
mization of w,(7) length should be done.

III. TIME-VARYING FILTERING OF A
MONOCOMPONENT SIGNAL

If we have a stochastic process {s(t)}, whose
large number of realizations s(t) is known,
and zero-mean white noise v(t) being not cor-
related with signal, then the region of sup-
port R can be easily obtained. The mean of
the Wigner distribution of z(¢) = s(¢) + v(¢),
WD,(t,w), is just the Wigner distribution
of nonnoisy signal superposed to a pedestal
whose weight is equal to the noise variance [1],
(7], [19]

WD, (t,w) =
/ E {x(t + %)x*(t — %)} e IeTdr

=WD,(t,w) + o2 (29)

where o2 is the variance of noise.

The situation significantly complicates if we
have to perform time-varying filtering based on
a single realization of the signal and noise. In
practice this is a very common and important
case. Here we can distinguish two steps: 1)
Approximate Wigner distribution of the non-
noisy signal s(t), based on the single noisy ob-
servation, as accurately as possible, 2) Use this
distribution to determine region of support R
and perform time-varying filtering. The first
step is crucial, especially in the cases of a very
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high noise, i.e., low signal to noise ratio. In
the sequel we will describe a method for the
efficient implementation of this step, and then
demonstrate its accuracy, performing the sec-
ond (filtering) step. The analysis will be done
in the discrete-time domain, since in the analy-
sis of noise in the Wigner distribution in analog
domain some forms are not well-defined.

A. Region of support R estimation

Consider the case of a monocomponent de-
terministic discrete-time signal s(n) with a
random white Gaussian complex noise v(n),
with independent real and imaginary parts.
The variance of noise is assumed to be o2.
This is formally the same situation as the one
when the signal s(¢) is random, but we know

its single realization only.

The main problem lies in the determination
of the region of support R for Ly(t,w). It
requires the knowledge of the Wigner distrib-
ution of signal W Dg(t,w), see the Appendix.
Therefore, the Wigner distribution W Dg(t,w)
has to be estimated with the smallest possi-
ble error. There are two kind of errors in the
pseudo Wigner distribution: one due to the
used lag window causing bias and the other
due to the noise manifesting itself trough vari-
ance. Total squared error is defined as a sum
of the distribution variance and squared bias.
The minimization of this error gives the opti-
mal distribution. It will be then used for the
region of support estimation.

The Wigner distribution, in its pseudo form,
of a discrete-time noisy signal z(n) = s(n) +
v(n) is defined as

WD,(n,0;N) =

i we(k)x(n + k)x*(n — k)e %% (30)

k=—o00

where N is the window w.(k) = w(k)w(—k)
length. Simplified optimization procedure for
the Wigner distribution calculation, in the
case of a high noise, has been derived in [23]. Tt
results in the adaptive distribution with time-
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frequency varying window length

WDg(n,0; Ny) for ® = True
WD} (n,0) =
WD, (n,0; N3) otherwise
(31)
where the event ® = True is

& =True: |WDg(n,0; N1) — WD, (n,0; N2)|

< (5 + 30w (N0) + 72 (V2)]

and N1 < Nz. In order to implement (31)
we have to calculate the Wigner distribution
with a narrow and a wide lag windows N; and
N;. By using only two distributions, we can
expect a significant improvement in the time-
requency representation, since the distribution
is usually either very highly concentrated or
zero. A theoretical analysis, as in [23], with
a large number of window lengths within in-
terval (N7, N2) can prove that we may get
the optimal window length within the accu-
racy of the window length discretization. But,
we have concluded that the multi-window ap-
proach, although theoretically more accurate,
in practice, for the kind of problems treated
in this paper, does not produce significant im-
provement with respect to the very simple two-
windows approach, used here.

The only parameter that is required in (31)
is the Wigner distribution variance o, (N),
[1], [19], [23]. There are several ways for its
accurate estimation. For high noise cases,
02 > A% | which are treated in this paper, the
estimation is very simple since [1], [19], [23]

022(N)/Ew(N) = 03,(24%(n) + 7))
N/2-1

Y le k)P

k=—N/2

¥

1%

= (02 + A2(n))?

Factor E,,(N) ~ N is a constant for the given
window type. The variance o,,(N1) can be
calculated from the better estimated o, (N2)
as 02,(N1) = 02,(N2)N1/Ns. Some other ap-
proaches for the precise variance estimation,
including small noise cases are presented in
[11], [23].
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B. Ezample
Consider a sum of three noisy chirp signals

z(n) = A(6725(nT70.25)2eleOO(nT)2

— 2 5 2
e 20(nT—0.65) 6J750(7LT+0.75)
_ _ 2 4
3.5¢ 22500(nT —0.96875) eleOOnT) V(n)

(32)
The sampling interval T = 1/2048, with
N = {Ny, Na} = {64,512} samples within the
Hanning window is used. The signal am-
plitude and variance of noise are such that
10log(E¢/0%) = —3[dB]. The signal may
be treated as a monocomponent one since its
energy at each time instant ¢ is mainly con-
centrated around only one instantaneous fre-
quency.

Step 1. The Wigner distributions with con-
stant window widths and adaptive window
width, obtained according to algorithm (31),
are presented in Figures 1a),b), and c), respec-
tively. Algorithm (31) has chosen the distri-
bution with N; = 64 and very low variance
for all regions where the bias is small, includ-
ing the third signal component. Distribution
with No = 512 is chosen by the algorithm only
for the small regions where the first two signal
components exist, Figure 1. It is exactly what
we wanted and expected. Note that the sig-
nals do not significantly overlap in time, so
the lag-window was sufficient to reduce the
“inner interferences” in the Wigner distribu-
tion. In order to combine two Wigner distri-
butions, the distribution with N; = 64 is in-
terpolated (using zero padding prior the FFT)
up to Ny = 512.

Step 2. The distribution WD} (n,6), pre-
sented in Figure lc, is used as an estimate of
WDs(n,0) and its region of support in the
time-varying filter definition. According to
(10) and the Appendix, the following form
of Ly(n,0) is used: Lyg(n,0) = 1, for a
given time instant n, on 6 where the maxi-
mum of WD (n,0) is detected, and zero oth-
erwise. Using this transfer function the signal
x(n) = s(n) + v(n) is filtered and

y(n) = — / 2 L0, 0)STFT (n. 0)d0

2 —m/2
(33)

is produced. Original signal, the noisy signal
and the noisy signal after time-varying filter-
ing, by using H(n,0), are shown in Figures
2a),b) and c), respectively. Efficiency of the
time-varying filter is evident, especially if we
have in mind that the signal occupies a wide
frequency range and the time-invariant filter-
ing would not produce a significant noise re-
duction. The signal to noise ratio improve-
ment, that can be approximately expected
in this case, according to (17),(21), is G =
10log(512) = 27[dB]. Output signal to noise
ratio is then around SNR,,: = 24[dB]. In
practice this improvement is not so extremely
high due to the discretization effects, but it is
still evident, Figure 2c.

We may conclude that the presented algo-
rithm may be efficiently used in the time-
frequency representation and filtering of mono-
component noisy signals. The theory pre-
sented here is quit general and may easily be
extended to the other time-frequency distrib-
utions. It will be done in the next Section.

IV. TIME-VARYING FILTERING OF
MULTICOMPONENT SIGNALS

The Wigner distribution, when applied on
the multicomponent signals exhibits signifi-
cant drawbacks manifesting themselves as the
cross-terms. Consider first the random process
{s(t)} whose large number of observations is
known. In this case we may apply the time-
varying filter relations on the random multi-
component signals, using the expected values
of the Wigner distribution W D,(t,w), called
the Wigner spectrum. For the random signal
s(t) = Zf\il s;(t), assuming that the compo-
nents s;(t) are not correlated, the cross-terms
free Wigner spectrum

i=1
follows, where
WDs(t,w) =
I xrgp —JjwT
/E{s(t+2)s (t )}e dr
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Fig. 1. Wigner distribution of the noisy signal calculated using: a) The constant lag window length Ny = 64,

b) The constant lag window length No = 512, ¢) The adaptive time-frequency varying lag window length.
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Fig. 2. Time-varying filtering: a) Original signal without noise, b) Noisy signal, ¢) Signal filtered by using the
time-varying filter, with the region of support determination based on the distribution from Figure 1lc.
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The cross-terms do not exist since we assumed
that the components are not correlated

T, . T o
E {si(t +3)si(t = 5)} —0fori+#J.
These relations mean that if R; are the regions
of support of WDy, (t,w) then the region of
support of WDj(t,w) is

R=RiURyU..URy.

where R; N R; =0, for i # j.

With these definitions, the application of the
time-varying filtering on the multicomponent
signals, when a large number of realizations of
the same random process {s(¢)} is available, is
clear and direct.

In practice the time-varying filtering should
be performed on a single realization, in the
case of multicomponent signals, as well. The
classical Wigner distribution is not applicable
because of the cross-terms. In the case when
a single realization of the random process is
considered, the best solution would be a distri-
bution P(t,w) that would produce the sum of
the Wigner distributions or the pseudo Wigner
distributions of each individual signal compo-
nent

M
P(t,w) =Y PWD,(t,w). (34)
i=1
This distribution would have
M
1 for (t,w)e R= | R;
Lu(t,w) = =t
0 for (t,w) ¢ R
(35)

As an illustration of the time varying filter-
ing, consider the FM multicomponent signal

M
= Z Ay(t)

with the slow-varying amplitudes of each com-
ponent. Its short-time Fourier transform may
be obtained using the stationary phase method
as

ii0).

t+T0)

M o0
STFT(t,w) Z/w

i=1

. . 2mj
ed®i(t+70)—jwro ij) X
8(t+ 70 — (¢ (w))Hdro. (36)
Using the filtering function,
M
w) =Y 5w — (1) (37)
i=1

or its form given by (19), as it will be used
here, and applying STFT(t,w) and Ly (t,w)
in (24) we get

oo o0

t)ziff/ [ 80 = hiex

i=1k=1_"7_ "

w(T) Ai(t + T¢)el PtHTo)miwT0

8(t+ 7o — (¢ (w) ™

7214

It has been assumed that the signal compo-
nents do not simultaneously overlap in time
and frequency, what can be understood as: For
t and 7¢ such that ¢, (t) = ¢.(t + 7o), then
w(T9)A;(t + 79) = 0 for all 7o within the lag
window w(7g).

A distribution that has property (34) is the
S-method [20], [21]. It is defined by

YdTodw 4 vyt (t)

e”’ b4 Vout (t).

SM(t,w) =
_ ! / P(6)STFT(t,0-+0)STFT* (t, —6)df,
™

(38)
where STFT(t,w) is defined by (25), and P(6)
is a finite frequency domain window (we also
assume rectangular), P(8) = 0, for |8] > Wp.
Numerical realization of the S-method is very
simple, according to its discrete form

SM(n,k) = SPEC(n,k)+
Lp
+2) " Re[STFT(n, k +i)STFT*(n, k — i),
=1

(39)
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where SPEC(n,k) = |STFT(n,k)|* is the
spectrogram and the terms Re[STFT(n,k +
i)STFT*(n,k — i)] improve its concentration
to the Wigner distribution quality.

In the case when the instantaneous frequen-
cies of the signal components may not be con-
sidered as linear functions within the consid-
ered lag window, then the L-Wigner distrib-
utions or S-distributions realized using the S-
method, producing (37) as described in [20],
[21], [22], should be used for the regions of sup-
port estimation. An alternative approach for
these cases is described in [2].

A. Example

The S-method and algorithm (31) are ap-
plied in order to produce a time-frequency rep-
resentation, and then the time-varying filter-
ing, of the signal

J:(n) _ Ae—4(nT—9/16)2+j480(nT+1/5)2

_,’_Aef100(nT73/8)2+j525(nT+3/2)2

+A67100(nT713/16)2+j740(nT)2 +u(n) (40)

where the value of A is such that 10log(Ey/o2)
= —1[dB].

Step 1: The same parameters as in the first
example, and the algorithm described by (31)
in the form

SM(’I’L,]C;Nl,Lp = 0)

for ® = True
SM™*(n, k) =
SM(TL,]{?;NQ,LP = 2)
otherwise
(41)
are used. The lag window lengths are

{Ny, Ny} = {32,256} with the rectangular
window P(i) that includes only two samples
around the central frequency 6 = wk/N on
each side (Lp = 2). The distribution obtained
in this way is presented in Figure 3d. The
Wigner distribution of the original monnoisy
signal with the constant lag window length
N = 512 is given in Figure 3a, while Figure 3b
shows the Wigner distribution of noisy signal
with the same constant window length. Figure
3c presents the S-method with the constant
parameters No = 256, Lp = 2. Note that
the Wigner distribution has to be oversampled

TIME-FREQUENCY SIGNAL ANALYSIS

with a factor of 2, while the S-method does not
require this oversampling. It results in a twice
smaller number of samples within the same lag
window, i.e., within the basic frequency period
in the S-method. This is demonstrated on the
frequency axis labels in Figure 3a)-d). Vari-
ance for (31), i.e., (41), is estimated by using
the approach described in [23].

Step 2: Distribution from Figure 3d is used
for the regions of support Ly (n, k) determina~
tion. The simplest way to get this regions is by
comparing the value of SM™ (n, k) with a ref-
erence level defined, for example, as a fraction
of the maximal value of SM*(n, k). Here we
used M = O.lrga}cx{SM"’(n,k:)}, i.e., 1/10th

of the maximal distribution value. Then

Lu(n, k) =u(SM™*(n,k) — M), (42)
where u(x) is the unit step function. Now
we will describe one interesting effect due to
the frequency discretization, that may influ-
ence the quality of filtering. If the distribu-
tion is highly concentrated along the instan-
taneous frequency and we have an extremely
dense grid, then for each component and each
time instant n only one value of Ly (n, k) will,
for that component, assume value 1. How-
ever, the true instantaneous frequency value
may be, and generally always is, between the
grid points. Then it may happen that Ly (n, k)
in two or more points assumes value 1 for one
signal component and one time instant. From
the numerous experiments we concluded that
in those cases it is much better to use only one
unity value, where a larger value of SM ™ (n, k)
is detected, and then to force other points
within that component to take zero value, for
that time instant n. Practically, it may be
implemented in a simple way. Detect maxi-
mum of SM™(n, k) for given n. If it satisfies
the condition that (42) assumes unity value,
then assign value of 1 to Ly (n, k) in that point
(n, k). Exclude several neighboring points as
possible next maximums, find the second max-
imum check it for (42), and so on until the
number of maximums equal to the expected
number of components is determined. The re-
gion Ly (n,k) found in this way is shown in
Figure 3e.
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Fig. 3. Time-frequency representation of a multicomponent signal: a) Pseudo Wigner distribution of the original
signal without noise, b) Pseudo Wigner distribution of the noisy signal using the constant lag window length
Ny =512, ¢) S-method of the noisy signal with the constant lag window length No = 256, d) S-method of
the noisy signal with the adaptive time-frequency varying window length N € {32,256}, e) Time-varying
filter region of support. The number of samples is shown on the frequency axis. The Wigner distributions
have to be oversampled by factor of 2. Normalized values of distributions are shown.
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1 1 | 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5 T T T T T T T T
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1 1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 4. Time-varying filtering of the multicomponent signal: a) Original signal without noise, b) Noisy signal,
¢) Signal filtered by using the time-varying filter, with the region of support presented in Figure 3e.

After we have obtained Ly (n,k) we may
directly apply time-varying filtering relation
(33). The filtered signal, along with the origi-
nal one, and the nonfiltered noisy one, is shown
in Figure 4. The improvement is evident. The-
oretical analysis suggests that, since this signal
may be considered as a two-component one (at
each time instant there is no more than two
instantaneous frequencies where condition for
unity value of (42) is satisfied), we may expect
the improvement up to G = 10log(256/2) =
21[db], i.e., the output signal to noise ratio
SNRyut =~ 20[dB]. Due to the described dis-
cretization effects we can not get so high im-
provement, but it is still rather very high, Fig-
ure 4.

V. CONCLUSION

Time-varying filtering of noisy frequency
modulated signals is considered. After a slight
modification of the Wigner framework defin-
ition, algorithms and methods for the filter’s
support in the case on noisy multicomponent
and monocomponent signals, are presented.
They are based on a deterministic or a sin-
gle realization of random signal. Efficiency of
the presented theory is demonstrated on nu-
merical examples.

VI. Appenpix: Optimal Filtering

Time-varying filtering is one of the challeng-
ing areas where one may benefit from the joint

time-frequency representations. It has been
defined by (1), where h(¢,7) is the impulse re-
sponse of the time-varying system H whose
optimal form may be determined by minimiz-
ing the mean squared error

Hop = argmin B {|s(t) — H{z()}} . (43)

Here we will present a solution based on the
modification (11) of the time-varying filtering

y(t) = (Hz)(t) =

/ h(t + %,t - %)x(t Frydr. (44)

The optimal value of H will be derived by
analogy with the Wiener filter in the station-
ary signal cases. Suppose that the nonsta-
tionary stochastic process z(t) = s(t) + v(¢),
beside the desired component s(t) contains
noise v(t). When the mean square error
e2 = E{|s(t) —y(t)]* reaches its minimum,
the error s(t) — y(¢) is orthogonal to the data
z*(t + «), for any «. From this fact we get

B{s(t) - / Wi+ 2ot = D)

a(t+r)drla*(t+a)]} =0 (45)
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The expected value of the ambiguity function
is defined by

AF,,.(0,7) =
/_OO E{z(t+ %)x*(t - %)}e‘jetdt

Taking the Fourier transform over ¢ of (45), by
using appropriate substitutions

/ E{s(t)a*(t + a)be7dt —
AF (0, —a)e?@?/?
and
/ E{a(t+ )2 (t + a) e 70 dt —

AF 4 (0,7 — a)ed@F7)0/2

we get

ﬁsz(&a)e*j“em:/ / Ag(u, —7)%

AF 4 (0 — u, o — 7)e @O0/ 24y, (46)
where

Ap(0,7) = / h(t+ %,t - %)e‘j‘%dt. (47)
For

|07 —ua —ur| /2 <

when e/ (07—ua—un)/2 = | from (46) follows
AF (6, a) :/ / Ag(u, —7)x

AF (0 — u, o — T)drdu. (48)

Taking two-dimensional Fourier transform of
(48) we get

Wsz (t7 W) = LH(t7 w)WDCL‘CL‘ (t7 W)
where

WD,p(t,w) = FToq{AF,.(0,a)}

= /OO E{z(t+ %)x*(t - %)}eij‘”dT

is the Wigner spectrum. The Weyl symbol of
the filter impulse response is denoted by

Ly(t,w) = /h(tf %,t+%)efj‘”d7'. (49)

—00

Therefore, the optimal filter in time-frequency
domain is defined by

WDy (t,w)

Lattw) = g5 )

(50)
what corresponds to the well known Wiener
filter in the stationary cases H(w) =
Ssa(w)/Sez(w); here Ssp(w) = FT{rs:(7)},
since in the stationary cases rg(a) =
E{s(t)z*(t+a)}, roe(t—a) = B{z(t+7)x* (t+
a)}.
Relation (50) would be obtained if we as-
sumed at the beginning that the random sig-
nals are quasistationary when 7. (¢,t + «)
could be written as 74, (t + «/2,t — «/2), and
Tos(t+ T, 6+ @) as ry(t+ (71— @) /2,t — (7 —
a)/2).

For the signal not correlated with noise fol-
lows

W Dgs(t,w)

Lu(tw) = — hw)
1) = s ) T Do)

(51)

Suppose that the Wigner spectrum of the ran-
dom signal s(t) lies inside a region R in the
time-frequency plane, while the noise lies out-
side this area, except may be its small part
that can be neglected with respect to the part
of noise outside R. This is true, for example,
for a wide class of frequency modulated (highly
concentrated in the time-frequency plane) sig-
nals s(t), corrupted with a white noise v(t),
widely spread in the time-frequency plane. A
simple solution satisfying these requirements
is given by

1 for (t,w) € R

0 for (t,w) ¢ R (52)

Lu(t,w) = {

Applying this solution with (24), for example,
in frequency domain

oo

y(t) = (Hz)(t) = / Lit(t,w) STET(t, w)dw

—00
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we will be able to efficiently filter frequency
modulated monocomponent and multicompo-
nent signals corrupted with the white noise.
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