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About Time-Variant Filtering of Speech
Signals with Time-Frequency

Distributions for Hands-Free Telephone
Systems
Srdjan Stanković

Abstract– Joint time-frequency distributions
represent the energy or intensity of signal si-
multaneously in time and frequency. In this
paper we introduce a smoothed version of the
method denoted as S-method (SM) [18]. It
is shown that it is an effective tool for repre-
sentation of speech signals disturbed by noise.
As a consequence, it can be efficiently ap-
plied to time-variant filter problems, as they
occur in hands-free telephones. The optimal
time-variant filter is derived in terms of the
smoothed SM, and is illustrated by examples.

I. I������	�
��

Speech signals are highly nonstationary,
with a wide dynamic range of multiple fre-
quency components in the short-time spec-
tra [2], [6], [26]. Time-frequency distribu-
tions have been introduced for analyzing the
frequency components as a function of time
of nonstationary signals. The most com-
mon time-frequency representation, the spec-
trogram, is characterized by a trade-off be-
tween time and frequency resolution. Conse-
quently, the development of other quadratic
time-frequency distributions for representa-
tion and processing of nonstationary signals is
an interesting challenge. One possible appli-
cation is e.g. the Wiener optimum filtering of
speech signals corrupted by noise. The more
accurate the desired signal spectrum can be es-
timated, the better the noise components can
be filtered.

There are few time-frequency distributions
which are used in practical applications. They
belong to the general class of quadratic time-
frequency distributions, the Cohen class [5].
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Among all distributions of this class, the best
auto-terms concentration is obtained with the
Wigner distribution [5], [21]. However, for
multicomponent signals, such as speech sig-
nals, the Wigner distribution is useless because
of the great number of strong cross-terms [8],
[19]. The SM has been introduced with the
aim to avoid the cross-terms while keeping the
auto-terms concentration of the Wigner dis-
tribution [18], [20]. Thereby, it is possible to
combine the advantage of the spectrogram (ab-
sence of cross-terms) with those of the Wigner
distribution (high time and frequency resolu-
tion). When comparing the SM with other
distributions, it can be seen that the cross-
terms are not reduced at the expense of the
auto-terms concentration [21].

Because of the nonstationary nature of
speech signals, statistically optimum filtering
requires time-variant filtering methods. Filter-
ing in the time-frequency domain could be ad-
vantageous compared to separate filtering in
the time or frequency domain. Since there
exists no unique definition of time-frequency
spectra, many approaches for time-variant fil-
tering have been proposed. Zadeh [27] sug-
gested to use the Rihaczek distribution [17].
However, this time-frequency spectrum is com-
plex valued and badly concentrated in time.
Therefore, filtering in the time-frequency do-
main has been redefined using the Wigner dis-
tribution with the drawbacks mentioned above
[3], [9], [13], [23]. In this paper we will con-
sider this approach by using the Weyl cor-
respondence [9], [11], [12], [13]. The time-
variant transfer function has been defined as
the Weyl symbol mapping of the impulse re-
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sponse into the time-frequency plane. The
Wigner spectrum is used in order to average
out the cross-terms. Many different realiza-
tions of the same random process, at a given
instant, are necessary to obtain the mean value
of the Wigner distribution, i.e. the Wigner
spectrum. However, since our processing will
be based on a single noisy speech signal real-
ization, the original definitions, which use the
mean value of the Wigner distribution, are not
applicable since the cross-terms are not aver-
aged out. By using the SM for statistically
optimum filtering in the time-frequency do-
main cross-terms are suppressed and a more
accurate time-frequency spectrum is obtained
[23]. Here, a smoothed version of the SM is
introduced. It improves the Wiener optimum
filtering. Experiments with speech signals dis-
turbed by car noise illustrate the advantages
of the presented approach.
The paper is organized as follows. The SM

and its application on time-frequency repre-
sentation of speech signals are presented in
Section II. Theory and definition of time-
variant filtering are given in Section III. In
Section IV time-frequency representation and
time-variant filtering of speech signals cor-
rupted by car noise are illustrated by some
experiments.

II. T�
��
�
	�� B�	�������

The general class of quadratic time-
frequency distributions, the Cohen class, is de-
fined as [5]:
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where f(t) is a signal, and c(τ , θ) is a kernel
function. Consider the kernel function in the
form [21]:
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The SM follows from (1) with the kernel

function defined by (2):
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Keeping in mind the definition of the short-
time Fourier transform:

STFT (t, ω) =

∞∫

−∞

f(t+ τ)w(τ)e−jωτdτ (4)

the SM can be written as [18]:

SMff (t, ω) =
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(5)
Discretization of the SM (5) produces:

SMff (n, k) =

L∑

l=−L

P (l)STFT (n, k+l)STFT ∗(n, k−l), (6)

where 2L+1 is the window length of P (l), and
n and k are the discrete time and frequency
parameters, respectively. Noting that:

STFT (n, k + l)STFT ∗(n, k − l)+
STFT (n, k − l)STFT ∗(n, k + l) =

= 2Re{STFT (n, k + l)STFT ∗(k − l)}

and taking a rectangular window for P (l), we
get:

SMff (n, k) = |STFT (n, k)|
2

+2Re{
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STFT (n, k + l)STFT ∗(n, k − l)},

(7)

where |STFT (n, k)|2 is the spectrogram.
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The pseudo Wigner distribution (as it is
used in practical applications) is defined by:
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In the case of multicomponent signals f(t) =∑N

i=1 fi(t), (where fi(t) represents the i − th
component of the signal f(t)) the SM has the
form [24]:

SMff (t, ω) = π
N∑

i=1

WDfifi(t, ω),

i.e., it is equal to the sum of the pseudoWigner
distributions of the auto components. Thus,
the SM is the distribution that produces the
cross-terms free pseudo Wigner distribution
[24]. Factor 1/π could be included into the
wondow P (θ).
Now consider the SM in the case of a noisy

signal. It has been shown that there is a trade-
off in changing the window width L, [22]: (1)
by increasing L, the auto-term concentration
tends toward the one obtained by the Wigner
distribution, (2) by decreasing L, smaller noise
is added, while the auto-term concentration
could be lower, as in the spectrogram. For
reduction of the noise influence and keeping
sufficient energy concentration, the smoothed
SM is now introduced:

P (θ) =

{
1−

∣∣ θ
a

∣∣ for − a ≤ θ ≤ a
0 elsewhere

. (9)

The motivation for introducing this form of
the SM, that is not based on the rectangular
window P (θ), has been found in the analysis of
the maximal auto-term value and the variance
in the SM [1], [21], [22] (see Appendix).
The discrete version of the window (9) is:

P (l) =

{
1−

∣∣∣ l
L+1

∣∣∣ for − L ≤ l ≤ L
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.

(10)

For example, the smoothed SM for the par-
ticular value of L = 3 can be written in the
form:

SMff (n, k) = |STFT (n, k)|
2+
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3
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4
STFT (n, k + 3)STFT ∗(n, k − 3)}. (11)

This smoothed version of the SM turns out to
be very simple and suitable for representation
and processing of noisy speech signals.
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Within the Wigner distribution framework,
time-variant filtering of noisy signals x(t) =
f(t) + n(t) with the desired signal f(t) and
the noise signal n(t) is defined by [11], [13],
[23]:

(Hx)(t) =

∞∫

−∞
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2
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2
)x(t+ τ)dτ, (12)

where h(t + τ
2
, t − τ

2
) is the impulse response

of the time-variant filter. The optimal transfer
function may be derived in analogy with the
Wiener filter derivation for the case of station-
ary signals [13], [14]. When the mean square
error reaches its minimum [14],

Hopt = arg{min
H

E{|f(t)− (Hx)(t)|2}}, (13)

the error e(t) = f(t) − (Hx)(t) is orthogonal
to the signal x∗(t+ τ + α) [14]:
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2
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2
) x

x(t+ τ)dτ ]x∗(t+ τ + α)} = 0, (14)

where α is an arbitrary constant. Let us define
the expected value of the ambiguity function
AFxx(τ, θ) as [12]:

AFxx(τ , θ) =
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Assuming that the processes are mainly con-
centrated around the origin and the axes of the
ambiguity plane (underspread processes [10],
[12], [23]), it follows then from (14):
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∫∫

∞

−∞
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(17)
Note that relation (17) directly follows from
(14), without additional assumptions, if the
considered processes are quasistationary [14],
i.e., if E{f(t)x∗(t+α)} = E{f(t−α
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and E{x(t + τ)x∗(t + α)} = E{x(t + (τ −
α)/2)x∗(t− (τ − α)/2)}.
The two-dimensional Fourier transform of

(17) results in:

WDfx(t, ω) = LH(t, ω)WDxx(t, ω), (18)

where

WDxx(t, ω) = E{WDxx(t, ω)} =
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is the mean value of the Wigner distribution
WDxx(t, ω) of the signal x(t). It is referred to
as the Wigner spectrum of the signal x(t) [7].
The support function LH(t, ω) is defined by:
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If the signal and noise are not correlated, we
have:

LH(t, ω) = 1−
WDnn(t, ω)

WDff (t, ω) +WDnn(t, ω)
.

(21)

In general, the mean value E{WDff (t, ω)} =
WDff (t, ω) will eliminate uncorrelated cross-
terms in the Wigner distribution, since
E{fi(t +

τ
2
)f∗j (t −

τ
2
} = 0 for i �= j, as long

as components fi(t) and fj(t) are uncorrelated
[4], [7], [23]. Thus, the problem of cross-terms
does not exist in the Wigner spectrum, if we
are able to use a large number of realizations
belonging to the same random process. Note
that the filter is also signal dependent, since its
region of support depends on the signal form,
and it is signal adaptive.

In numerical implementations the pseudo
(i.e., windowed) form of the filtering relation
(12):

(Hx)(t) =
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(22)
should be used. In this version a lag win-
dow w(τ) is introduced. In [23] it is shown
that w(τ) does not influence the output sig-
nal (Hx)(t) if w(0) = 1. By using Parseval’s
theorem, (22) can be written in the form:

(Hx)(t) =
1

2π

∞∫

−∞

LH(t, ω)STFT (t, ω)dω.

(23)

Consider the determination of the support
function LH(t, ω), that plays a crucial role in
time-variant filtering. In most practical ap-
plications filtering must be based on a sin-
gle noisy signal realization. Therefore, it
is not possible to calculate the mean value
Wigner distribution to obtain the cross-terms
free Wigner spectrum. By using the SM in
(21) we obtain a cross-term free version of the
Wigner distribution:

LH(t, ω) = 1−
SMnn(t, ω)

SMxx(t, ω)
, (24)

where SMxx(t, ω) and SMnn(t, ω) represent
the SM of the noisy signal x(t) and the SM
of the noise n(t), respectively.

A realization of the proposed time-variant
Wiener optimum filter is illustrated in Fig.1.



ABOUT TIME-VARIANT FILTERING OF SPEECH SIGNALS... 773

Fig. 1. The filter scheme for time-variant filtering of speech signals.

IV. E��
�
�
���� I��������
���

A. Example 1

First, we compare the spectrogram and the
SM of a speech signal (see Fig.2). The SM
is realized with a rectangular window P (l) of
length 2L + 1 = 7 and a Hanning window of
length 1024 for the short-time Fourier trans-
form. The spectrogram is implemented with a
window length of 1024 for ensuring good fre-
quency resolution. However, the SM frequency
resolution is still higher, since the SM is able
to concentrate the components with variations
in the instantaneous frequency. Time reso-
lution is also better as the SM is based on
the Wigner distribution (see frequency com-
ponents above 1kHz). In summary, informa-
tion about time-frequency characteristics from
the SM are much more reliable than from the
spectrogram.

B. Example 2

The spectrogram, the SM with L = 3 and
the smoothed SM realized by using the window
function (10) with L = 4 of a noisy speech sig-
nal are shown in Fig.3. The speech signal is
recorded in a middle class car cruising along
the highway. The noise results from motor
hum and from noise produced by wind and
wheels. The same window type and window
width is used for the short-time Fourier trans-
form calculation as in Example 1. Observe
that the noise in the whole time-frequency
plane, especially within the frequency range
from 500Hz to 2kHz (Figs.3 a) and b)), is

significantly reduced using the smoothed SM,
Fig.3 c). This fact justifies the use of smoothed
version of the SM in a time-variant filter real-
ization (24).

C. Example 3

The above theoretical considerations are ap-
plied to the filtering of noisy speech signals.
The signal has been recorded in the same way
as in Example 2. Estimations of the spectro-
gram and of the SM of noise are performed
during a speech pause. A window width of 256
samples (with zero padding up to 1024 sam-
ples) has been used for the calculation of the
short-time Fourier transform. The same short-
time Fourier transform has been used in (23).
The calculation of SMxx(t, ω) is performed by
using the smoothed version (10). The time-
variant filter has also been realized by using
the spectrogram in (24). In both realizations,
equation (24) has been slightly modified, by
using the spectral floor [6], [26]:

LH(t, ω) = max

{
1−

SMnn(t, ω)

SMxx(t, ω)
, β

}
(25)

and:

LH(t, ω) = max

{
1−

SPECnn(t, ω)

SPECxx(t, ω)
, β

}
.

(26)
The spectral floor is set to β = 0.12.
Time-frequency representations of: a) a

noisy signal, b) a denoised signal filtered by
using the spectrogram (26), and c) a denoised
signal filtered by using (25) are shown in Fig.4.
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Fig. 2. Time-frequency representation of the speech signal without noise: a) Spectrogram; b) SM with L=3.

We see that the noise suppression for the
whole time-frequency plane is better when the
smoothed SM is used. In the noise compo-
nents of about 1 kHz are efficiently filtered.
The energy ratio for the noise present after fil-
tering by using the spectrogram and the SM,
during the speech pause, is 2.3 dB. This ratio
for the spectrogram based filtered signal and
the smoothed SM based one is 8 dB. In addi-
tion, from Fig.4, we can conclude that better
time resolution is achieved by filtering based
on the smoothed SM (Fig.4 b)) than by us-
ing the spectrogram (Fig.4 a)). These results
are expected since the Wigner distribution is
introduced in order to improve time and fre-
quency resolution in time-frequency analysis.

It is important to note that the SM has a
form very suitable for simple hardware real-
ization. This property is attractive for on-line
applications in processing of signals. Note that

the hardware realization of the smoothed ver-
sion of SM would be a straightforward exten-
sion of the realization presented in [15], [25].

V. C��	���
��

Time-variant filtering of speech signals dis-
turbed by car noise is presented. It has been
shown that by using the smoothed version of
the SM, as a basic distribution in the filtering
definition, noise reduction is better than in the
case when the spectrogram is used. Important
properties of the proposed filter scheme are its
efficiency and suitability for hardware realiza-
tion.

VI. A	�����
���
��
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Fig. 3. Time-frequency representation of the noisy speech signal: a) Spectrogram; b) SM with L=3; c) Smoothed
SM with L=4.
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VII. A��
��
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According to the auto-term analysis [21],
the maximal squared auto-term value in the
SM (5), for linear FM chirp signals, is

proportional to
∫ a
−a

P (θ)dθ. The value of
a should lie within the auto-term width.
The SM variance is approximately propor-
tional, for white noise, to the window en-
ergy

∫ a
−a

P 2(θ)dθ, [1]. One can easily calcu-
late the squared-amplitude-to-variance ratio,

R =
∣∣∣
∫ a
−a

P (θ)dθ
∣∣∣
2

/
∫ a
−a

P 2(θ)dθ, for various

commonly used windows: rectangular, Han-
ning, Hamming, and triangular ones. For each
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Fig. 4. Time-frequency representation of the noisy speech signal and denoised speech signals filtered by using
time-variant filters: a) Spectrogram of noisy signal b) Spectrogram of the denoised signal, filtered by using
the spectrogram c) Spectrogram of the denoised signal, filtered by using the smoothed SM with L=4.

considered window we assume the value of
a such that the maximal value of the auto-
term in the SM remains invariant. The val-
ues of R, normalized with the value of R for
the rectangular window (the standard SM),
are 1, 4/3, 1.36, 3/2, for rectangular, Han-
ning, Hamming and triangular windows, re-
spectively. Thus, we conclude that the tri-
angular window, as in (9), could improve re-
sults in the SM based time-frequency analysis
of noisy signals. This is confirmed by exam-
ples and by the application of the proposed
smoothed SM in time-variant filtering.

Application of the smoothed SM in time-
variant filtering is one of the main objec-
tives of this paper. Here, we have to esti-
mate the mean value of the Wigner distri-
bution of a noisy signal, E{WDxx(t, ω)} =
E{WDff (t, ω) +WDnn(t, ω)}. We have con-
cluded that the smoothed SM, based on one
signal realization, would produce a reliable es-
timate of the cross-term free Wigner spectrum.
The term E{WDnn(t, ω)} represents the noise
spectral density function. Its estimation, ob-
tained by using one signal realization and the
smoothed SM, is biased. The bias is propor-
tional to

∫ a
−a

P (θ)dθ = const., while the esti-
mation variance is proportional to the window
P (θ) energy [1], [14]. Therefore, the estima-
tion of noise spectral density will be the best
for the window P (θ) having minimal energy,
i.e. maximal ratio R.

Note that the harmonic shaped distur-

bances, which are stationary during the con-
sidered time interval, are also efficiently
removed. For the points (t, ω) where
SMnn(t, ω) has significantly greater values
than SMff (t, ω), we have LH(t, ω) = 1 −
SMnn(t, ω)/ (SMff (t, ω) + SMnn(t, ω))→ 0.
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