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Order Adaptive Local Polynomial FT
Based Interference Rejection In Spread
Spectrum Communication Systems

LJubiša Stanković, Slobodan Djukanović

Abstract– Methods for jammer rejection in
the spread spectrum communications, based on
the time-frequency representations, have been
proposed in order to improve the desired sig-
nal receiving performances. In this paper we
consider the nonstationary jammer case. The
local polynomial Fourier transform (LPFT) is
used to represent the received corrupted signal.
Time-varying filtering is implemented in this
domain, having in mind that the LPFT is lin-
ear with respect to the signal. An order adap-
tive algorithm of the LPFT calculation is pre-
sented. Performance of the proposed nonpara-
metric method is tested in the presence of lin-
ear and sinusoidal FM interferences in the noisy
signal, without any a priori assumption about
the jammer form. The proposed method may
be successfully extended to the case of the mul-
tiple jammers. Obtained results in the terms
of the bit error rate (BER) values show the
achieved improvements. Since the first order
LPFT is closely related to the windowed modi-
fied fractional Fourier transform, procedure for
an efficient optimization is presented.

I. INTRODUCTION

Spread spectrum is a transmission coding
technique used in digital telecommunication
systems, where pseudo-noise (PN), or pseudo-
random code, independent of the information
data, is employed as modulation waveform.
This code significantly expands the bandwidth
of original signal. Original purpose of this kind
of modulation lied in the need for providing ef-
ficient jammer resistant communication, and
low probability of intercepting. The spread
signal has a lower power density, but the same
total power. At the receiver side signal is ”de-
spreaded” using the synchronized replica of
the pseudo-noise code. Despreading provides
resistance to the interference and multipath
fading. Spread spectrum technology has been
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recognized as a good alternative to both fre-
quency division multiple access (FDMA) and
time division multiple access (TDMA) for the
cellular systems. The most common spread
spectrum systems are of the direct sequence
(DS) or frequency hopping (FH) type. Direct
sequence SS systems employ a high-speed code
sequence to introduce rapid phase transitions
into the carrier containing the data. The re-
sult of modulating the carrier is a signal cen-
tered at the carrier frequency, but with main
lobe bandwidth significantly wider than the
original bandwidth. The FH spread spectrum
achieves the band spreading by using the PN
sequence to pseudo-randomly hop the carrier
frequency.

While the influence of low power interfering
signals is significantly reduced by despreading
process at the receiver, in case of very high
power interferences preprocessing is required.
This is a common case, when the interference
stations are much closer to the receiver than
the signal transmitting station.

Different methods have been proposed for
rejection or mitigation of interferences of this
kind, in order to improve interference immu-
nity of SS systems and more reliable receiving
and decoding of the useful signal. In [3] Amin
proposed open-loop adaptive filtering method
for the case of narrowband jammer. In [4]
Wang and Amin applied multiple-zero FIR fil-
ters whose notch is in synchronization with
the jammer instantaneous frequency (IF), in
order to remove the jammer power at every
time sample. Barbarossa and Scaglione have
proposed in [5] a method based on generalized
Wigner-Hough transform. They characterize
linear and sinusoidal jammer by the appropri-
ate parametric models. Suleesathira and Cha-
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paro used a method for interference mitigation
based on the evolutionary and Hough trans-
form [6]. The fractional Fourier transform for
the case of linear chirp signals can improve the
presentation and overall bit error performance
of the receiver when the angular parameter of
the transform matches chirp rate of the inter-
ferences [7].

In this paper we propose a nonparametric
approach for the jammer excision by using
local polynomial Fourier transform (LPFT),
which is linear with respect to the signal [8],
[9]. Optimal order of the LPFT was deter-
mined and calculated for each considered in-
stant with appropriate optimization of the se-
lected order transform parameters. The jam-
mer was represented in the domain of its best
concentration. Time-varying filtering is then
implemented in that domain. In this way the
LPFT based method can be used for a general,
including nonlinear FM type of interferences.
The method was tested on the single linear
and sinusoidal FM type of interferences and
on their sum, as well. The first order LPFT
may be related to the fractional FT by defin-
ing the windowed modified fractional Fourier
transform (FRFT). Simple expressions for the
calculation of the optimal angular parameter,
based on the three fractional second order mo-
ments only, can then be used [2]. By increas-
ing the LPFT order, removal of the higher
order nonstationarities in the interference is
achieved. The presented algorithm for order
selection keeps the calculation complexity at a
relatively low level.

Paper is organized as follows. The DS
spread spectrum model was presented in Sec-
tion 2. Section 3. deals with the STFT as
a model of jammer filtering and signal recon-
struction. In Section 4. we introduced the
LPFT as a way to represent and filter jammer
in optimal transform parameters domain. Sec-
tion 5 presents the order adaptive algorithm
and examples. Multiple jammers removal and
corresponding examples are presented in Sec-
tion 6.

II. DS SPREAD SPECTRUM MODEL

Let us assume a digital signal that is going
to be transmitted in the waveform:

x(t) =
∑

n

xnhT (t− nT ) (1)

where x = {xn : xn ∈ {+1,−1}} is the data se-
quence and T represents data symbol duration
and hT (t) is a rectangular pulse of duration T .
In the DS spread spectrum systems PN se-

quence may be expressed in the following man-
ner:

a(t) =
∑

k

akhc(t− kTc) (2)

where a = {ak : ak ∈ {+1,−1}} is a spreading
sequence, Tc is the PN symbol or chip period.
Pseudo-random sequence is actually a periodic
deterministic sequence with period N .
It is necessary that T is an integer multi-

ple of Tc. The ratio G = T/Tc, defined as
a number of PN chips per data symbol, is
called processing gain. There are two types
of spreading codes, short code and long code.
The short code is one with G = N , i.e. when
PN code length is equal to a data symbol. The
long-code has G << N , i.e. PN code length is
much longer than the data symbol, so that a
different chip pattern is associated with each
symbol. The total transmitted signal may be
expressed in the form:

s(t) =
∑

n

xna(t− nT )

=
∑

n

xn
∑

k

akhc(t− kTc − nT ). (3)

The received signal is of the following form:

r(t) = s(t) + J(t) +w(t), (4)

where s(t) is the desired signal, J(t) is an in-
terference and w(t) is the uncorrelated white
noise process with the autocorrelation func-
tion: Rww(t) = σ2wδ(t). Amount of noise
in the received signal is described by the
signal-to-noise ratio (SNR), defined SNR =
20log10(A/σw), where A is the signal ampli-
tude. The interference (jammer) has the form:

J(t) = aJ cos(ϕ(t)), (5)
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Fig. 1. Block diagram of the DS spread spectrum system. Plots above the multiplicator at the transmitter side
show pdf-s of the original (before multiplication) and the spreaded signal (after multiplication).

where ϕ(t) is the phase and aJ is the mag-
nitude of the jammer. Amount of the jam-
mer in the received signal can be described
by the jammer-to-signal ratio (JSR), defined
as JSR = 10log10(PJ/Ps), where PJ and Ps
represent power of the jammer and the signal,
respectively, [11], [13]. Block diagram of the
DS spread spectrum (DSSS) system is given
in Fig.1.

III. FILTERING AND

RECONSTRUCTION MODEL

First let us use the well-known Short Time
Fourier Transform (STFT) as the analysis tool
for both filtering of the jammer and recon-
struction of the desired signal. The STFT is
defined by:

STFT (t, ω) =

+∞∫

−∞

x(t+ τ)w∗(τ)e−jωτdτ, (6)

where w∗(t) denotes a conjugated lag-window
function. One of the most important proper-
ties that STFT inherited from the FT is full
reversibility. This property means that the
original signal can be fully recovered from its
STFT. Product of the signal and the window
may be obtained by using the inverse FT, i.e.:

x(t+τ)w∗(τ)=
1

2π

+∞∫

−∞

STFT (t, ω)ejωτdω. (7)

Based on this relation and the property of

the window function that w∗(0) = 1, it follows:

x(t) =
1

2π

+∞∫

−∞

STFT (t, ω)dω. (8)

The signal x(t), at any instant, may be ob-
tained by integrating the STFT, at the same
instant, over the frequency.
The STFT is linear transform and therefore

for the received signal it is composed of three
components: the STFT of the desired signal,
the STFT of the noise, and the STFT of the
jammer. Because of spreading at the trans-
mitter side, bandwidth of the desired signal
is wider than the bandwidth of jammer. We
may assume that the desired signal and noise
exist over all frequencies, while the jammer ex-
ists only in a certain frequency interval of the
STFT. This assumption leads to the idea of
filtering jammer in the time-frequency plane.
The desired signal is then reconstructed by in-
verting the filtered STFT. The filtering and
signal reconstruction may be modeled by the
following expression:

rf (t) =
1

2π

+∞∫

−∞

Lf (t, ω)STFT (t, ω)dω. (9)

where rf (t) is the filtered signal, Lf (t, ω) is a
rectangular support function used for filtering.
Analytical expression of this window is given
by:

Lf (t, ω) =

{
0, ω ∈ Bj(t)
1, elsewhere

, (10)
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Fig. 2. Block diagram of the DSSS receiver in case of a high power jammer.

where Bj(t) is the frequency band around the
jammer’s instantaneous frequency ϕ′(t), i.e.
the region in which we assume that the jammer
exists. Because of its narrow frequency band
it is easy to detect the jammer, even when its
total power is lower or equal to the power of
signal.
Block diagram of the DSSS receiver in case

of a high power jammer is shown in Fig.2.
Now we will illustrate this simple and

straightforward filtering forms on examples.
Example 1: Here we will demonstrate per-

formance of the presented filtering of received
signal based on the direct STFT application.
Consider signal defined by (3) and (4), that
has a length of 1 bit. The number of chips per
bit was set to 128. The same parameters are
going to be used in all further examples. Stan-
dard deviation of the added white Gaussian
noise was assumed to be σw = 2A, where A
is the amplitude of the received BPSK signal.
Jammer is assumed in the form of a linear fre-
quency modulated (FM) signal. The power of
jammer was varied from 0 to 145 dB (relative
to the signal’s energy, JSR) in increments of 5
dB. Bit error rate (BER) values are calculated
from corresponding CER (Chip Error Rate)
values. We applied Kaiser and Hanning win-
dow in the STFT, both with length of 128 time
samples. For Kaiser window β = 15 is used.
After time-varying filtering based on (9) and
(10) we reconstructed the signal, and got CER
(Chip Error Rate) values. The BER values are
shown in Fig. 3. The Hanning window has
narrower main lobe, producing slightly better
results for low JSR, while the Kaiser window
has much lower side lobes, resulting in a more
robust system for high JSR.
Example 2: Interference is taken as a linear-

frequency modulated signal. The interference
power was set to 30 dB (relative to the sig-
nal’s energy). Here we vary the modulation
index (slope) of the jammer in the STFT from
0 (the case that corresponds to a pure sinu-
soidal interference) to the value at which jam-
mer sweeps the entire considered frequency
area (the area where components of the de-
sired signal exist). Filtering of the interference
component in the received signal was done in
the same way as in the previous example. The
results are illustrated in Fig. 4.

Example 3: In this example we consider 2
bits of signal. Kaiser window with length 128
and beta value 15 was implemented. Interfer-
ence is taken as a sinusoidal-frequency modu-
lated signal. JSR was set to 30 dB. Here we
varied the magnitude of interference frequency
from 0 to the value at which jammer covers en-
tire frequency range where the signal exist. In-
terference filtering was done in the same way
as before. Results in BER as a function of
the jammer rate are illustrated in Fig.5. As
expected, when the jammer rate increases it
occupies wider frequency range in the STFT,
covering wider area of the desired signal, and
thus increasing the BER.

IV. LOCAL POLYNOMIAL FOURIER

TRANSFORM

In order to define a more robust system to
the jammer variation here we will consider the
Local polynomial Fourier transform (LPFT).

The LPFT has been introduced by Katkovnik
as:

LPFT (t, ω;ω1, ω2, ..., ωN) =
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Fig. 3. Bit error rate (BER) curves: Thick line for the Hanning window; Thin lines for the Kaiser window;
Windows width was 128 samples; Beta value for Kaiser window is 15.
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Fig. 4. Bit error rate (BER) for linear FM signal as a function of the jammer rate: Thick lines for the Hanning
window; Thin lines for the Kaiser window; Upper lines for the standard and lower for the fractional based
filtering. JSR=30 [dB], Windows width was 128 samples. STFT-standard short time Fourier transform
based filtering. Algorithm (first order LPFT (LPFT1)) - based filtering.

∫ +∞

−∞

x(t+ τ)w(τ)e−j(ωτ+ω1
τ
2

2!
+...+ωN

τ
N

N!
)dτ,

(11)
where %ω = {ω1, ω2, ..., ωN} represents N-
dimensional parameter space. The LPFT pre-
serves the linearity property of the STFT, with
respect to the signal.

The original signal can be reconstructed

from its LPFT by using:

x(t)=

∫ +∞

−∞

LPFT (t, ω;ω1, ω2, ..., ωN)dω.

(12)
It is interesting to note that the integral (12)
does not depend on the parameters of the N-
dimensional parameter space, ω1, ω2, ..., ωN .
The optimal LPFT is the transform that
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Fig. 5. Bit error rate (BER) for sinusoidal FM signal as a function of the jammer rate: Kaiser window with 128
samples is used in the implementation. JSR=30 [dB]. STFT-standard short time Fourier transform based
filtering. Algorithm with the LPFTs up to the first and the second order (LPFT1 and LPFT2) - based
filtering.

satisfies:
LPFTopt(t, ω) =

max
ω1,ω2,...,ωN

{abs[LPFT (t, ω;ω1, ω2, ..., ωN)]}

(13)
Basically, optimization can be done over N-
dimension parameter space. However, since
the significance of the parameters decreases as
their index increases, we can first optimize the
LPFT with respect to ω1, then vary ω2 for the
obtained fixed ω1, and so on. In this way, the
realization procedure may be computationally
efficient.
Filtering was done in the same way as in the

STFT case, i.e.:

xf (t) =
1

2π

+∞∫

−∞

Lf (t, ω)LPFTopt(t, ω)dω.

(14)
where xf (t) is the filtered received signal,
Lf (t, ω) is a rectangular excision function used
for filtering. Analytical expression of this win-
dow is given by:

Lf (t, ω) =

{
0, ω ∈ Bj(t)
1, elsewhere

, (15)

where Bj(t) is the frequency band where the
concentrated jammer exists.

As a special case of the LPFT, let us
first consider the simplest, first order LPFT,
LPFT (t, ω;ω1). The optimization of this
transform can be done directly by varying the
parameter ω1. After the optimal (maximally
concentrated) LPFT is found, the filtering re-
lation (14) is performed. The optimization
procedure may be done in a much more effi-
cient way by exploiting the relations derived
for the fractional Fourier transform [2], [12].
The first order LPFT can be related to

a form of the fractional Fourier transform
(FRFT), that will be referred to as the win-
dowed modified FRFT. The FRFT of the sig-
nal x(t) is defined by:

Xα(u)=

√
1−j cotα

2π

∫ +∞

−∞

x(t)ej
τ
2+u2

2 e−jut cscαdt.

(16)
Here we will introduce the windowed FRFT:

WXα(t, u) =

√
1− j cotα

2π
ej

u
2

2
cotα

×

+∞∫

−∞

x(t+τ)w∗(τ)ej
τ
2

2
cotαe−jut cscαdt. (17)

We may denote x(t+τ) as xt(τ) and instead of
WXα(t, u) we will consider its modified form
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WX̃α(t, u):

WX̃α(t, u)=

+∞∫

−∞

xt(τ)w
∗(τ)ej

τ
2

2
cotαe−jut cscαdt.

(18)
The relationship between WXα(t, u) and
WX̃α(t, u) is:

WX̃α(t, u) =
WXα(t, u)√

1−j cotα
2π ej

u2

2
cotα

(19)

Parameters in (11) and (18) are related by
ω = u cscα and ω1 = − cotα. Optimal frac-
tional domain can be found by maximizing the
concentration of WX̃α(t, u) by varying the pa-
rameter α (angle of rotation). Alternative way
for obtaining optimal α value, i.e. parameters
in the first order LPFT, is based on the results
presented in [1], [12]. The optimal α value can
analytically be determined as:

αopt =
1

2
arctan

(
−
m0 +mπ/2 − 2mπ/4

m0 −mπ/2

)
,

(20)
wherem0,mπ/2 andmπ/4 are (normalized and
centered) second order moments for α = 0,
α = π/2 and α = π/4, respectively:

mα =
1

E

+∞∫

−∞

|Fα(x)|
2 x2dx, (21)

where Fα(x) represents the fractional FT, and
E represents the zero order moment (the en-
ergy of the signal):

E =

+∞∫

−∞

|Fα(x)|
2 dx. (22)

Notice that the optimal value for α can be cal-
culated if we know second order moments of
the fractional FT for three angle values only.
After αopt is calculated, we are able to filter
received signal in new domain, with optimally
concentrated jammer.

Now we are going to describe algorithm of
adaptive interference rejection.

V. ORDER ADAPTIVE ALGORITHM

Within this section we will introduce and
present an order adaptive algorithm that will
provide additional savings in computation. It
is based on the following property of the
LPFT. Consider definition (11). It is easy to
conclude that when we achieve that the jam-
mer form and the LPFT order are matched
within the window w(t) then:

LPFT (t, ω;ω1, ω2, ..., ωN) = aJW (ω − ϕ′(t)).
(23)

Thus, the LPFT order is matched to the jam-
mer form when the filtering region Lf (t, ω), for
a given t, is approximatelly equal to the width
of the window’s main lobe.
Take initial time instant of the received sig-

nal into consideration.
Step 1. Calculate STFT (t, ω) for a given

instant t and determine the filtering region
Lf (t, ω) (frequency range) covered by the jam-
mer for that instant.
If the width of Lf (t, ω) is approximately

equal to the width of the main lobe of applied
window, it means that the jammer frequency
is constant within the considered time interval
(width of the lag window). Filtering is done
according to relation (14). Go to step 4.
Otherwise go to the next step.
Step 2. Calculate the first order LPFT

and perform its optimization (maximizing of
concentration) by varying the parameter ω1.
Optimization of the first order LPFT can be
done in an efficient manner by maximizing
the concentration of WX̃(t, u) exploiting re-
lation (20). If the width of such a deter-
mined Lf (t, ω), in the optimal ω1 domain (for
α = αopt), is approximately equal to the width
of the main lobe of applied window, the filter-
ing is realized based on relation (14). Go to
step 4. Otherwise go to the next step.

Step 3. Calculate the second order LPFT
and perform its optimization by varying the
parameter ω2. Apply filtering, like in the pre-
vious steps, and go to step 4. We may pro-
ceed with this algorithm, for third, fourth...,
order LPFT, but we will restrict ourselves to
the second order LPFT. The reason for that is
in fact that the results obtained for up to the
second order LPFT are almost independent of
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the jammer rate.

Step 4. Take a next time instant t, and go
to step 1.

In the next two examples we are going to
demonstrate contribution in the jammer exci-
sion provided by the described algorithm. As
it can be seen from Fig. 6, this contribution is
reflected in ”narrowing” of the area corrupted
by the jammer.

Example 4: Consider the received signal
composed of the same components as in Exam-
ple 2. Now, in addition to the standard STFT
we will use the presented algorithm. The jam-
mer parameters are the same as in Example
2. Since the jammer is a linear FM signal the
algorithm used the first order LPFT. After cal-
culating the filtering range and interference fil-
tration based on (14) and (15), we got results
for BER illustrated in Fig. 4.

Example 5: Now consider received signal
composed of the same components as in Exam-
ple 3 and apply the order adaptive LPFT. Two
forms of the algorithm are used. In the first
case we limited the algorithm up to the first
order LPFT (represented by LPFT1). In the
second case a full form of the presented algo-
rithm was used (up to the second order LPFT
(represented by LPFT2). In this way we ob-
tained the filtered signal and BER curves de-
noted by LPFT1 and LPFT2 in Fig. 3. The al-
gorithm, up to the first order LPFT, improved
significantly BER with respect to one obtained
by using the STFT. Further improvement is
achieved by using the algorithm up to the sec-
ond order LPFT. As we can see the algorithm
here produces results almost independent of
the signal rate (amplitude of the jammer fre-
quency variations). It means that there is no
need for increasing the LPFT order in the al-
gorithm, in this case.

Illustration of the filtering region for one
realization and all three used filtering forms
(STFT, LPFT1 and LPFT2) is given in Fig.6.
Filtered out area in the time frequency plane is
shown in white. Transforms are calculated for
2 bits of signal with 128 chips in each bit. Sinu-
soidal jammer with JSR=30 dB is considered.
From this figure we see improvement in local-
ization when the algorithm uses higher order
LPFTs. It results in the performance improve-

ment.

VI. ORDER ADAPTIVE ALGORITHM

FOR MULTIPLE JAMMERS

REMOVAL

Proposed algorithm may be extended to the
case of the multiple jammers. Now we treat
interference as a sum of P components:

J(t) =

p∑

k=1

ak cos(ϕk(t)), (24)

where ϕk(t) is the phase and ak is the magni-
tude of the k-th jammer.
Filtering of the k-th jammer can be done in

the same way as in (14), i.e.:

xkf (t) =
1

2π

+∞∫

−∞

Lkf (t, ω)LPFT
k
opt(t, ω)dω

Lkf (t, ω) =

{
0, ω ∈ Bk(t), k = 1, 2, ..., P
1, elsewhere

,

(25)

where xfk(t) is the received signal with k-th
jammer filtered out, Lkf (t, ω) is a rectangular
excision function used for filtering of the k-
th jammer, and the LPFT kf (t, ω) is LPFT of
the received signal with k-th jammer optimally
concentrated. Analytical expression of the ex-
cision function is of the form (25), where Bk(t)
is the frequency band where the optimally con-
centrated k-th jammer exists.
Algorithm for the multiple jammers removal

is based on the algorithm for the single jammer
removal. The only difference lies in the need
for repeating steps 1, 2 and 3 in succession, un-
til the all jammer components are completelly
removed.
Take the initial time instant of the received

signal into consideration.
Step 1. Calculate STFT (t, ω) for a given

instant t. Detect the existence of a very strong
jammer and the number of its components
(high peaks in the STFT for a given instant).
If STFT (t, ω) does not contain interferences
go to step 4. Otherwise, adapt the signal
transform to the strongest jammer component.
To this aim form an auxiliary spectrum that
contains only one jammer by setting all fre-
quency components ”corrupted” by the other
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Fig. 6. Absolute values of the transforms: 1) STFT, 2) transform obtained with the algorithm up to the first
order LPFT (LPFT1), and 3) transform obtained with the algorithm up to the second order LPFT (LPFT2)
with corresponding filtered out areas for one realization of the received signal and sinusoidally modulated
FM jammer. Horizontal axis - time, Vertical axis -frequency.

Fig. 7. Absolute values of the transforms: 1) STFT, 2) LPFT, with corresponding filtered out areas for one
realization of the received signal and sum of the two sinusoidally modulated FM jammers. Horizontal axis
- time, Vertical axis - frequency.

jammers to zero, and form the auxiliary sig-
nal as inverse FT of the auxiliary spectrum.
Determine the frequency range covered by the
jammer left in the auxiliary signal for that in-
stant. If that range is approximately equal to
the width of the main lobe of applied window
(the jammer is pure sinusoid) perform filter-
ing of the original signal according to relation
(25). Go to step 1 with this filtered signal.

Otherwise, go to the next step.

Step 2. Calculate the first order LPFT of
the auxiliary signal and perform its optimiza-

tion. If the width of the concentrated jammer,
in the optimal ω1 domain, is approximately
equal to the width of the main lobe of applied
window (the jammer is linear FM signal) cal-
culate the first order LPFT of the original sig-
nal with ω1 = αopt and apply filtering based
on relation (25). Go to step 1 with this filtered
signal. Otherwise, go to the next step.

Step 3. Calculate the second order LPFT of
the auxiliary signal and perform its optimiza-
tion by varying the parameter ω2. Calculate
the second order LPFT of the original signal
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Fig. 8. Absolute values of the transforms: 1) STFT, 2) LPFT, with corresponding filtered out areas for
one realization of the received signal and sum of one linear frequency modulated jammer and one jammer
modulated by a sum of linear function and a sinusoid.

for obtained ω2opt and ω1opt and apply filter-
ing like in the previous steps, and go to step
1. We will not proceed with this algorithm
for higher order LPFTs because of the reason
given in the third step of the first algorithm.

Step 4. The original signal at considered
time instant contains no jammers, i.e. rela-
tion (25) previously used corresponds to the
removal of the last jammer in the spectrum
and the signal reconstruction, for that instant.
Take a next time instant t, and go to step 1.

The next two examples demonstrate perfor-
mances of the described algorithm in the mul-
tiple jammers excision.

Example 6:. Instead of one jammer we now
consider a case of two jammers, which are
taken as sinusoidal frequency modulated sig-
nals. Parameters of the signal and noise are
the same as in the first example. Jammers are
assumed not to intersect in the time-frequency
plane. After performing 50 runs of the STFT
and LPFT based filtrations and signal recon-
structions, we got results for BER: 1.52x10−2

for the STFT and 2.69x10−3 for the LPFT.
Illustrations of the filtering regions for one re-
alization of these filtering forms are given in
Fig.7.

Example 7:. In this example as interference
we take sum of one linear frequency modulated
jammer and one jammer modulated by a sum
of linear function and a sinusoid. Frequency

ranges of the jammers are chosen in order to
sweep the entire frequency area of the signal.
Now we assume that the jammers intersect in
the time-frequency plane. After performing
50 runs of the STFT and LPFT based filtra-
tions and signal reconstructions, we got results
for BER: 2.18x10−2 for STFT and 3.12x10−3

for LPFT. Illustrations of the filtering regions
for one realization of these filtering forms are
given in Fig.8. As it was expected, the jam-
mer concentration is not achieved in the area
of intersection of the jammers.

VII. CONCLUSION

Local polynomial Fourier transform is used
to represent and filter jammer in communica-
tion systems. Time-varying filtering was im-
plemented in the optimal transform parame-
ters domain. This nonparametric approach is
tested on the linear and sinusoidal FM sig-
nals with the algorithms using the first and
the second order LPFTs. Proposed method
is extended to the case of the multiple jam-
mers. Bit error performances are significantly
improved with respect to the standard STFT
based systems.
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