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Local Polynomial Fourier Transform
Receiver for Nonstationary Interference

Excision in DSSS Communications
Slobodan Djukanović, Miloš Dakovíc, LJubiša Stanković

Abstract– The problem treated in this pa-
per is monocomponent nonstationary inter-
ference excision in direct sequence spread
spectrum (DSSS) communication systems by
means of the local polynomial Fourier trans-
form (LPFT). First, the interference is opti-
mally concentrated in the time-frequency (t-f )
plane and then its t-f signature is removed via a
binary mask. The LPFT receiver is derived in
matrix form and its optimization is performed,
having in mind an influence of the binary mask
on the received signal. The conventional (sub-
optimal) and the optimal LPFT receiver perfor-
mances are compared by means of simulations
carried out on the received signal corrupted by
different FM types of interferences. The short-
time Fourier transform (STFT) receiver is con-
sidered as a special case of the LPFT receiver
and its performance is assessed simultaneously
with the LPFT receiver, both in conventional
and optimal case.

I. I������	�
��

Direct sequence spread spectrum (DSSS) is
a type of the spread spectrum (SS) commu-
nication systems where a pseudo-noise (PN)
code sequence modulates an information signal
before its transmission. Since the PN sequence
varies faster than the information signal, the
modulation expands its spectrum at the rate of
processing gain G = Tb/Tc, where Tb is the in-
formation symbol (bit) duration and Tc is the
PN sequence symbol (chip) duration. DSSS
systems exhibit narrowband and broadband
interference resistance, since the information
signal is restored to its original frequency band
(i.e., despread) by multiplying the received sig-
nal with a synchronized replica of the PN se-
quence at the receiver side, while everything
else is additionally spread. In this way, de-
spreading provides resistance to the multipath
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fading, since it also spreads all versions of the
SS signal delayed by more than one chip du-
ration. Moreover, since the PN sequence is
known only to the transmitter and receiver,
the privacy of the transmission is provided.

The interference (jammer) may be inten-
tionally (military communications) or unin-
tentionally (commercial communications) su-
perimposed on the transmitted signal. Low
power interferences are substantially neutral-
ized by despreading, but signals contaminated
by high power interferences have to be pre-
processed before the correlation at the receiver
side is done. Numerous interference suppres-
sion techniques have been proposed in the lit-
erature in order to enhance the performance
of the DSSS receiver in such severe interfering
environment [1]-[8]. Most of these techniques
employ an interference suppression filter pre-
ceding the correlator in the receiver scheme.
This is usually an adaptive filter which exploits
the pseudo-white properties of the SS signals.
Recently, time-frequency (t-f) based methods
have appeared, which have been shown to be
very effective in improving the receiver perfor-
mance when the desired signal is corrupted by
broadband interferences characterized by nar-
rowband instantaneous bandwidths.

Among significant contributions, several pa-
pers will be mentioned. Amin and coauthors
[1]-[3] proposed several methods that used
adaptive filtering for the nonstationary inter-
ference suppression. The instantaneous fre-
quency (IF) of the interference can be success-
fully estimated by means of t-f distributions
and used to construct a finite impulse response
filter that reduces an interference power with
a minimum possible distortion of the desired
signal [1]. The optimum receiver implement-
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ing the short-time Fourier transform (STFT)
interference excision system is developed in
[3]. Another t-f method, namely generalized
Wigner-Hough transform, has been proposed
for the multiple interferences rejection [4]. The
fractional Fourier transform can be a useful
tool for the case of linear FM interferences
[5]. A comprehensive analysis of DFT-based
frequency excision algorithms has been pre-
sented in [6]. A nonparametric approach for
the multiple jammers excision by using the lo-
cal polynomial Fourier transform (LPFT) has
been presented in [7].

This paper presents an optimization of the
method proposed in [7]. In particular, in-
troduced time-varying filtering procedure em-
ployes a binary mask to remove the interfer-
ence, which was previously optimally concen-
trated in the t-f plane by means of the LPFT
[9]. The binary mask is a two-dimensional
function of time and frequency with values 0
(interference exists in (t, f)) and 1 (interfer-
ence does not exist in (t, f)). However, the
binary mask introduces a distinction between
the received and original PN sequence, and
therefore their correlation is suboptimal. This
paper develops an optimal LPFT based re-
ceiver which takes into account a distortion
effect of the binary mask on the received PN
sequence. This receiver is shown to depend on
the analysis window, the binary excision mask,
the white noise power and optimal LPFT co-
efficients.

The paper is organized as follows. Section
II presents the conventional LPFT receiver for
the nonstationary interference excision in ma-
trix form, along with a simple signal synthe-
sis procedure. The optimal LPFT receiver
is analyzed in Section III. The original PN
sequence at the receiver side is modified so
that it optimally corresponds to a distorted
received PN sequence. The modification is
obtained by means of a multiplicative matrix
C. The LPFT receiver with maximum out-
put signal-to-noise ratio (SNRout) is referred
to as optimal receiver and the matrix C that
maximizes SNRout is calculated. Section IV
presents results, showing analytically and nu-
merically (by simulations) obtained SNRout
values and numerically obtained bit error rate

(BER) values for two types of simulated FM
interferences with varying parameters, linear
and sinusoidal FM interferences.

II. C���
��
���� ��	�� �������
��

F���

� ��������� �
	

�
�

The DSSS signal description can be found
in [7], [11]. The baseband received signal x(n)
comprises three sequences as follows

x (n) = s (n) + j (n) + ξ (n) (1)

where s(n) is an SS sequence of unit ampli-
tude, j(n) is a jammer sequence and ξ(n) is an
additive white Gaussian noise sequence with
zero mean and variance σ2ξ. The mutual un-
correlatedness of all the three sequences is as-
sumed. For the SS signal of unit amplitude,
SNR is defined as SNR = −20log10(σξ). The
jammer can be analytically expressed as

j (n) = aj cos (ϕ (n)) (2)

where ϕ(n) is the phase and aj is the ampli-
tude of the jammer. Jammer-to-signal ratio
(JSR) is defined as JSR = 10log10(Pj/Ps),
where Pj and Ps represent the power of the
jammer and SS signal, respectively [11], [13].
Besides, the SS signal characterized by one
sample per chip is assumed, when perfectly
flat spectrum of the SS signal is obtained [6].
Therefore, s (n) equals p (n) when bit “1” is
transmitted and −p (n) when “−1” is trans-
mitted, where p (n) is a PN sequence charac-
terized by the length L and

E [p (n)] = 0

E [p (n) p∗ (m)] = δ (n−m)

where E [·] is the expectation operator, δ (n)
the Dirac delta and “∗” the conjugation oper-
ator.

The LPFT has been introduced in the t-f
analysis by Katkovnik [7], [9], and the Mth or-
der discrete form of the LPFT of the sequence
x(n) is defined by
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LPFT(n, k) =

N

2 −1∑

m=−N

2

x (n+m)w(m)
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−j

M∑

i=1
ωi

m
i+1

(i+1)!
e−j

2π
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mk

= DFT



x(n+m)w(m) e
−j

M∑

i=1
ωi

m
i+1

(i+1)!



 (3)

where w(m) represents an analysis window,
N is the number of frequency bins and ωi is
the ith transform parameter. Hereinafter, all
DFTs will be calculated at a number of fre-
quency bins equal to the PN sequence length
L [3]. As (3) indicates, the LPFT of the re-
ceived signal can be calculated analogously to
the STFT, i.e., by sliding the analysis window
w(m) over the modulated received signal

x(n+m)e
−j

M∑

i=1
ωi

m
i+1

(i+1)!

and implementing the FFT routine on the
product of the modulated signal and window
at the current position.

In order to analyze the LPFT receiver, equa-
tion (3) will be expressed in matrix form.
First, a zero-padding of the sequence x should
be performed by concatenating N/2 zeros both
to the beginning and the end of x, thus creat-
ing the sequence xz. Then, the N ×N matrix
X is formed as follows:

X =





xz(1)Θ(1,1) · · · xz(N)Θ(1,N)
xz(2)Θ(2,1) · · · xz(N+1)Θ(2,N)

...
. . .

...
xz(N)Θ(N,1) · · · xz(2N−1)Θ(N,N)





(4)

where Θ is the N ×N matrix with the (n,m)
entry

Θ(n,m) = e
−j

M∑

i=1
ωi(n)

(m−
N

2
−1)i+1

(i+1)!
(5)

where ωi (n) is the ith LPFT parameter at the
nth window position. Also, define the N ×N

matrix

W =





w(1)W 0
N w(1)W 0

N · · · w(1)W 0
N

w(2)W 0
N w(2)W 1

N · · · w(2)WN−1
N

...
...

. . .
...

w(N)W 0
N w(N)WN−1

N · · · w(N)W
(N−1)2

N





(6)

with WN = e−j
2π
N . Now, the LPFT of the

received signal x (n) may be written in matrix
form as

LPFT = X W. (7)

The LPFT is a linear transform and re-
construction (synthesis) of the signal from its
LPFT at the time instant n is simply obtained
by summing elements of the nth row of the ma-
trix LPFT [7], i.e.,

x′ (n) =
1

N

N∑

k=1

LPFT (n, k)

where x′ (n) represents the reconstructed sig-
nal. In the previous equation, w(0) = 1 is as-
sumed.

The LPFT parameters ωi for i = 1, 2, ...,M
are calculated so as to optimally concentrate
the interference in the t-f plane for a given
analysis window. To that aim, an order adap-
tive algorithm is developed in [7] and it is
shown to keep a calculation complexity at a
relatively low level. Furthermore, it is shown
that the second-order LPFT produces results
almost independent of the parameters of FM
interferences, thus preventing a need for a
time-consuming calculation of a higher-order
LPFT1 . The jammer excision is then obtained
in the optimal LPFT domain by removing its
t-f signature via the binary mask B, which
is the matrix with the same dimensions as
LPFT and values 0 in all points (n, k) of the

1For a stationary jammer, the STFT and the opti-
mal LPFT are the same, and therefore their calcula-
tion complexities coincide. For a linear FM jammer,
the optimal LPFT complexity exceeds the STFT com-
plexity for a number of operations required by relations
(16)-(19) given in [7]. Finally, for a highly nonstation-
ary jammer, such as sinusoidal FM jammer, the opti-
mal LPFT calculation requires an additional number
of operations for the iterative optimization of the sec-
ond order parameter.
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LPFT corrupted by the jammer and 1 other-
wise. The synthesis is then performed on the
masked LPFT to recover the jammer-free de-
sired signal as follows:

x′ (n) =
1

N

N∑

k=1

LPFT (n, k)B (n, k)

=
1

N

N∑

k=1

[
N∑

l=1

X (n, l)W (l, k)

]

B (n, k)

=
1

N

N∑

l=1

X (n, l)
N∑

k=1

W (l, k)B (n, k) .

Denoting the product ofW and BT asWB =
WBT, where “T” stands for the transpose op-
erator, we obtain

x′ (n) =
1

N

N∑

l=1

X (n, l)WB (l, n)

=
1

N

N∑

l=1

(P (n, l) + Ξ (n, l))WB (l, n) (8)

which implies that the main diagonal of the
matrix product XWB represents the scaled
reconstructed signal. In addition, since it is
assumed that the excision mask B completely
removes the jammer2 [3], the only two compo-
nents of the matrix X that will be hereafter
considered are the PN matrix P and the noise
matrix Ξ, which can be obtained from (4) by
setting xz (n) = pz (n) and xz (n) = ξz (n), re-
spectively. The sequences pz (n) and ξz (n) are
the zero-padded PN sequence p (n) and zero-
padded noise sequence ξ (n), respectively.

Naturally, if the LPFT is modified by the ex-
cision mask, then the synthesized PN sequence
will no longer coincide with the original one.
More precisely, the synthesized PN sequence
becomes a time-varying convolution between
the original PN sequence and binary mask.

2Strictly speaking, the jammer cannot be completely
removed from the t-f plane because of a finite length
of the analysis window. However, for a given time in-
stant, one can neglect a portion of a jammer power con-
centrated in sidelobes of its spectrum, especially when
windows characterized by highly suppressed sidelobes
are used (e.g., Kaiser window [7]). Therefore, in this
paper, to completely remove the jammer means to ex-
cise only its main lobe. In addition, the procedure for
the matrix B obtaining is presented in [7, Section V].

In particular, by setting all elements of the
matrix Θ to 1, i.e., each ωi to 0, the LPFT
receiver becomes the STFT receiver, so the
STFT receiver can be considered as the spe-
cial case of the LPFT receiver. The com-
parison between the conventional STFT and
LPFT receiver performances for received sig-
nals corrupted by nonstationary FM interfer-
ences with variable parameters is drawn in [7].

III. O��
��� ��	�� �������
�� F���

�

��������� �
	

�
�

For the detection of an information sym-
bol, the decision variable d is formed as
the correlation of the reconstructed signal
x′(n) and modified receiver PN sequence q =
[q (1) ,q (2) , · · · ,q (N)] , that is

d =
∑N

n=1
x′ (n) q (n) . (9)

The sequence q and the original one p will
be related through the N ×N matrix C, i.e.,
q = C p. The conventional receiver is ob-
tained by setting C = I, that is q = p, where
I is the N×N identity matrix. The correlation
performed between x′ (n) and q = p produces
suboptimal results, since it does not take into
account the modification of the received PN
sequence induced by the binary mask B.

The SNR at the output of the receiver cor-
relator [12]

SNRout =
E2 [d]

V ar [d]
(10)

depends on the matrix C. The receiver with
maximal SNRout will be referred to as opti-
mal receiver and the matrix C that maximizes
SNRout will be herein calculated.

To start with, let us calculate E [d].

E [d] =
1

N
E

[
N∑

n=1

q (n)
N∑

k=1

X (n, k)WB (k, n)

]

=
1

N

N∑

n=1

N∑

k=1

E [X (n, k) q (n)]WB (k, n)

=
1

N

N∑

n,k,i=1

C (n, i)E [X (n, k) p (i)]WB (k, n) .

(11)
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For the sake of brevity, the abbreviated form
of the triple summation is introduced in (11).
Furthermore, since E [Ξ (n, k) p (i)] = 0 holds,
E [d] reduces to

E [d] =
1

N

N∑

n,k,i=1

C (n, i)

×E [P (n, k) p (i)]WB (k, n) . (12)

Since P (n, k) = p
(
n+ k − N

2 − 1
)
Θ(n, k),

we get

E[P (n, k)p(i)] =

δ(i− n− k +
N

2
+ 1)Θ(n, k)

and therefore

E[d] =
1

N

N∑

n,k,i=1

δ(i− n− k +
N

2
+ 1)

×WB (k, n)C(n, i)Θ (n, k) . (13)

Introducing the N×N matrix S with the (i, n)
entry

S (i, n) =
N∑

k=1

δ

(
i− n− k +

N

2
+ 1

)

×Θ(n, k)WB (k, n) (14)

we obtain

E [d] =
1

N

N∑

n=1

N∑

i=1

C (n, i)S (i, n) . (15)

Define

CH1 = [c1 c2 · · · cN] S1 =






s1
s2
...
sN






(16)
where the superscript “H” stands for the Her-
mitian transpose, ci is the 1 × N vector (ith
row of the matrixC), si is the N×1 vector (ith
column of the matrix S) and i = 1, 2, ..., N .
Now E [d] can be expressed in the following
manner:

E [d] =
1

N
CH
1
S1. (17)

We proceed with a V ar [d] calculation,
which is, by definition, V ar [d] = E

[
d2
]
−

E2 [d]. The second component of V ar [d] has
already been calculated (17), and the first one
is

E
[
d2
]
=

1

N2

×

N∑

n1,k1,i1,
n2,k2,i2=1

E [X (n1, k1)X
∗ (n2, k2) p (i1) p

∗ (i2)]

×WB (k1, n1)C (n1, i1)W
∗

B (k2, n2)C
∗ (n2, i2) .

(18)

The expectation term within the summation
in (18) contains two additive terms as follows:

E[X(n1, k1)X
∗(n2, k2)p(i1)p

∗(i2)] =

E[P (n1, k1)P
∗(n2, k2)p(i1)p

∗(i2)]

+ E[Ξ(n1, k1)Ξ
∗(n2, k2)]E[p(i1)p

∗(i2)] (19)

and components of E
[
d2
]
that correspond to

these terms will be calculated separately. The
first component, denoted as A, equals

A =
1

N2

×

N∑

n1,k1,i1,
n2,k2,i2=1

E [P (n1, k1)P
∗ (n2, k2) p (i1) p

∗ (i2)]

×WB (k1, n1)C (n1, i1)W
∗

B (k2, n2)C
∗ (n2, i2)

=
1

N2

N∑

n1,k1,i1,
n2,k2,i2=1

E[p

(
n1+k1−

N

2
−1

)

× p∗
(

n2+k2−
N

2
−1

)
p (i1) p

∗ (i2)]

×Θ(n1, k1)WB(k1, n1)C(n1, i1)

×Θ∗ (n2, k2)W
∗

B(k2, n2)C
∗(n2, i2) .

Since the PN sequence is assumed to be a
white non-Gaussian random signal of unit vari-
ance, one gets (the conjugation operator “∗” is
discarded, since p (n) is real)

E[p(i)p(j)p(k)p(l)] = δ(i− j)δ(k − l)

+ δ(i− l)δ(j − k) + δ(i− k)δ(j − l)

− 2δ(i− j)δ(k − l)δ(i− k)
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which, in turn, yields

E[p

(
n1+k1−

N

2
−1

)

× p

(
n2+k2−

N

2
−1

)
p (i1) p (i2)] =

δ (n1 + k1 − n2 − k2) δ (i1 − i2)

+ δ

(
n1 + k1 −

N

2
− 1− i2

)

× δ

(
n2 + k2 −

N

2
− 1− i1

)

+ δ

(
n1 + k1 −

N

2
− 1− i1

)

× δ

(
n2 + k2 −

N

2
− 1− i2

)

− 2δ (n1+k1−n2−k2) δ (i1− i2)

× δ

(
n1+k1−

N

2
−1− i1

)
. (20)

Now, according to (20), the component A will
be separated into four different components as
A = A1 + A2 + A3 − 2A4. Let us start with
A1, i.e.,

A1 =
1

N2

N∑

n1,k1,i1,
n2,k2,i2=1

δ (n1+k1−n2−k2) δ (i1−i2)

×Θ(n1, k1)WB (k1, n1)C (n1, i1)

×Θ∗ (n2, k2)W
∗

B (k2, n2)C
∗ (n2, i2)

=
1

N2

N∑

i1,n1,n2=1

C(n1, i1)C
∗(n2, i1)

×

N∑

k1=1

N∑

k2=1

δ(n1+k1−n2−k2)Θ (n1, k1)

×WB (k1, n1)Θ
∗ (n2, k2)W

∗

B (k2, n2) .

Introducing the N × N matrix T with the
(n1, n2) entry

T (n1, n2) =

N∑

k1=1

N∑

k2=1

δ (n1 + k1 − n2 − k2)Θ (n1, k1)

×WB (k1, n1)Θ
∗ (n2, k2)W

∗

B (k2, n2) (21)

A1 may be written as

A1 =
1

N2

N∑

i1,n1,n2=1

C (n1, i1)

×C∗ (n2, i1)T (n1, n2) . (22)

In order to express the component A1 in ma-
trix form, define the auxiliary matrix t1

k1k2

with the main diagonal entries T (k1, k2) and
0 otherwise, that is

t1k1k2 =






T (k1, k2) · · · 0
0 · · · 0
...

. . .
...

0 · · · T (k1, k2)






N×N

and define the matrix T1 as

T1 =






t1
11

t1
12

· · · t1
1N

t1
21

t1
22

· · · t1
2N

...
...

. . .
...

t1
N1

t1
N2

· · · t1
NN






N2×N2

.

Thus we get

A1 =
1

N2
CH
1
T1C1. (23)

Let us proceed with the calculation of the
component A2, i.e.,

A2 =
1

N2

N∑

n1,k1,i1,
n2,k2,i2=1

δ

(
n1+k1−

N

2
−1−i2

)

× δ

(
n2+k2−

N

2
−1−i1

)

×Θ(n1, k1)WB (k1, n1)C (n1, i1)

×Θ∗ (n2, k2)W
∗

B (k2, n2)C
∗ (n2, i2)

=
1

N2

N∑

i1,i2,n1,n2=1

C (n1, i1)C
∗ (n2, i2)

×

N∑

k1=1

δ

(
n1 + k1 −

N

2
− 1− i2

)

×Θ(n1, k1)WB (k1, n1)

×

N∑

k2=1

δ

(
n2 + k2 −

N

2
− 1− i1

)

×Θ∗ (n2, k2)W
∗

B (k2, n2)
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which, by using (14), becomes

A2=
1

N2

N∑

i1,i2,n1,n2=1

C (n1, i1)C
∗ (n2, i2)

× S (i2, n1)S
∗ (i1, n2) .

Finally, the matrix form of A2 is

A2 =
1

N2
CH1 S2S

T

3C1 (24)

where S2 and S3 are defined in the following
manner:

S2 =






S∗ 0 · · · 0

0 S∗ · · · 0
...

...
. . .

...
0 0 · · · S∗






N2×N2

and the N2
×N2 matrix

S3=





s1 0 · · · 0 s2 0 · · · 0 · · · sN 0 · · · 0

0 s1 · · · 0 0 s2 · · · 0 · · · 0 sN · · · 0
...

...
. . .

...
...

...
. . .

... · · ·

...
...

. . .
...

0 0 · · · s1 0 0 · · · s2 · · · 0 0 · · · sN






.

The boldface zero in S2 represents the N ×N
zero matrix, and in S3 represents the N × 1
zero vector.

The component A3 is given by

A3 =
1

N2

N∑

n1,k1,i1,
n2,k2,i2=1

δ

(
n1+k1−

N

2
−1−i1

)

× δ

(
n2+k2−

N

2
−1−i2

)

×Θ(n1, k1)WB (k1, n1)C (n1, i1)

×Θ∗ (n2, k2)W
∗

B (k2, n2)C
∗ (n2, i2)

which, by using (17), leads to

A3 = E2 [d] =
1

N2
CH
1
S1S

H

1
C1. (25)

The component A4 is defined by

A4 =
1

N2

N∑

n1,k1,i1,
n2,k2,i2=1

δ (n1 + k1 − n2 − k2)

× δ (i1 − i2) δ

(
n1+k1−

N

2
−1−i1

)

×Θ(n1, k1)WB (k1, n1)C (n1, i1)

×Θ∗ (n2, k2)W
∗

B (k2, n2)C
∗ (n2, i2)

=
1

N2

N∑

i1,n1,n2=1

C (n1, i1)C
∗ (n2, i1)

×

N∑

k1=1

N∑

k2=1

δ (n1+k1−n2− k2)

× δ

(
n1+k1−

N

2
−1−i1

)
Θ(n1, k1)

×WB (k1, n1)Θ
∗ (n2, k2)W

∗

B (k2, n2) .

Introducing

R (i1, n1, n2) =
N∑

k1=1

N∑

k2=1

δ (n1+k1−n2−k2)

× δ

(
n1+k1−

N

2
−1− i1

)
Θ(n1, k1)

×WB (k1, n1)Θ
∗ (n2, k2)W

∗

B (k2, n2)
(26)

A4 can be rewritten in the form

A4 =
1

N2

N∑

i1,n1,n2=1

C (n1, i1)C
∗ (n2, i1)

×R (i1, n1, n2) .

Similar to the A2 calculation case, define the
N ×N auxiliary matrix t2

k1k2
as

t2k1k2=




R (1, k1, k2) 0 · · · 0
0 R (2, k1, k2) · · · 0
...

...
. . .

...
0 0 · · · R (N, k1, k2)






and the matrix T2 as

T2 =






t2
11

t2
12

· · · t2
1N

t2
21

t2
22

· · · t2
2N

...
...

. . .
...

t2
N1

t2
N2

· · · t2
NN






N2×N2

.
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Fig. 1. Block diagram of the optimal LPFT receiver. The conventional receiver is obtained when no modification
of the receiver PN sequence is performed (dashed line).

Thus we obtain

A4 =
1

N2
CH1 T2C1. (27)

Now that we have completed the calcula-
tion of the first component of E

[
d2
]

(recall
(18) and (19)), we can return to calculate the
second one, which will be denoted as D. We
have

D =
1

N2

N∑

n1,k1,i1,
n2,k2,i2=1

E [Ξ (n1, k1) Ξ
∗ (n2, k2)]

× E [p (i1) p
∗ (i2)]WB (k1, n1)

× C (n1, i1)W
∗

B (k2, n2)C
∗ (n2, i2)

=
1

N2

N∑

i1,n1,n2=1

C (n1, i1)C
∗ (n2, i1)

×

N∑

k1=1

N∑

k2=1

E [Ξ(n1, k1) Ξ
∗(n2, k2)]

×WB (k1, n1)W
∗

B (k2, n2)

which comes to the A1 calculation case, i.e.,

D = σ2ξA1 =
σ2ξ
N2
CH1 T1C1. (28)

Finally, the SNR at the output of the re-

ceiver correlator is

SNRout =
A3

A+D−A3

=
CH1 S1S

H
1 C1

CH
1

(
(1 + σ2ξ)T1 + S2S

T
3
− 2T2

)
C1

=
CH
1
ZC1

CH
1
YC1

(29)

where Z and Y are the N2
×N2 matrices de-

fined by

Z = S1S
H

1

Y =
(
1 + σ2ξ

)
T1 + S2S

T

3
− 2T2. (30)

The final form of SNRout in (29) can be con-
sidered to be a Rayleigh quotient. Matrices
T1, S2S

T
3 and T2 are Hermitian, which im-

plies that the matricesY andY
1

2 are also Her-
mitian. This fact allows us to define the vector
Ĉ1 = Y

1

2C1 and to rewrite (29) as follows:

SNRout =

ĈH1

[(
Y−

1

2

)H
Z Y−

1

2

]
Ĉ1

ĈH
1
Ĉ1

.

(31)
The Rayleigh quotient states that SNRout
reaches its maximum when Ĉ1 is an eigenvec-

tor of the N2
×N2 matrix

(
Y−

1

2

)H
Z Y−

1

2

corresponding to its largest eigenvalue. We
will denote such a vector as Ĉ1max. The opti-
mal correlator is then obtained by rearranging
the N2

× 1 optimal vector

C1 opt = Y
−
1

2 Ĉ1max (32)
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Fig. 2. Output SNR for the conventional (suboptimal) and the optimal receiver under the binary excision of the
LPFT. Curves represent analytical results according to (31). Triangles represent numerical values according
to (10) over 20000 realizations.
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Fig. 3. Linear FM interference case. Left side : Output SNR for (a) conventional and (c) optimal receivers.
Curves represent analytical results according to (31). Triangles represent numerical values according to (10)
over 20000 realizations. Right side : Numerical BER for (b) conventional and (d) optimal receivers.

back into the N × N matrix C according to
(16).

The equations (29)-(32) and the previous
analysis show that the optimal LPFT receiver
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depends on the analysis window employed in
the LPFT calculation, optimal LPFT para-
meters obtained in the jammer concentration
procedure, the binary excision mask and the
added white noise variance σ2ξ. The optimal
LPFT receiver block diagram is shown in Fig.
1. A variance σ2ξ estimation procedure is pre-
sented in [14]. The conventional LPFT re-
ceiver is simply obtained by bypassing the PN
sequence modification block (dashed-line).

xample 1: To compare the conventional and
the optimal LPFT receiver, we calculated the
corresponding SNRout values for two different
excision cases. In the first case, the binary
mask cancels frequency slices in the middle of
both the positive and negative part of the spec-
trum (stationary jammer case), from 0 up to
10 slices. We begin with the central frequency,
and then cancel one adjacent upper frequency,
one adjacent lower frequency and so forth. In
the second case, the binary mask cancels di-
agonal slices of both the positive and nega-
tive part of the spectrum (linear FM jammer
case), from 0 up to 10 slices. We begin with
the main diagonal, and then cancel one adja-
cent upper diagonal, one adjacent lower diag-
onal and so forth. In both cases, the length
of the PN sequence was set to 32, the Han-
ning window characterized by 32 samples was
employed as the analysis window and σ2ξ = 2.
In addition, numerical SNR values were calcu-
lated according to (10) over 20000 realizations
of the decision variable d.

The obtained analytical SNRout curves are
shown in Fig. 2, along with the correspond-
ing numerical values shown with triangles. In
the first excision case, all the LPFT parame-
ters in Θ were set to 0, since this case cor-
responds to the stationary interference exci-
sion, i.e., the LPFT and STFT receiver coin-
cide. In the second case, only ω1 parameters
were non-zero, since this case corresponds to a
linear FM interference excision. Furthermore,
ω1 is constant and set to a predefined value at
which the interference that diagonally sweeps
the entire t-f plane (i.e., IF trajectory of the
interference coincides with the main diagonal
of the positive part of the LPFT spectrum) is
optimally concentrated. With this setup, the
LPFT also produces the same SNR values as

the STFT receiver, which is quite straightfor-
ward to prove analytically. Nevertheless, for
a given nonstationary interference, the LPFT
will always produce better results, since it op-
timally concentrates the interference in the t-f
plane and therefore excises less number of di-
agonals.

It is evident from Fig. 2 that the optimal
receiver is less immune to the frequency slices
excision than to the diagonal slices excision.
This kind of difference stems from the fact
that by removing a single frequency we per-
manently lose an information component at
that frequency, while with removing a single
diagonal a removed frequency bin at one time
instant is still available at another one.

IV. S
�����
���

In the examples we present hereinafter, two
types of simulated monocomponent interfer-
ences with variable parameters are considered,
linear and sinusoidal FM interference. Analyt-
ically obtained SNRout curves are numerically
confirmed over 20000 realizations of the de-
cision variable d, while BER values are com-
puted over 20 million runs. As in the first ex-
ample, the PN sequence length is L = 32, the
Hanning window with 32 samples is used as
the analysis window and σ2ξ = 2. Besides, it
should be acknowledged that, for each value of
an interference parameter, the excision matrix
B (and therefore C1 opt) is not determined for
each run separately, but only once, i.e., for the
first realization of the STFT and LPFT of the
received signal. Therefore, for each value of
the interference parameter, the optimal LPFT
parameters are also calculated only in the first
run and such parameters were used in all other
runs. The STFT receiver is considered as the
special case of the LPFT receiver.

xample 2: The aim of this example is to
assess performances of the conventional and
the optimal STFT and LPFT receivers when
the desired signal is corrupted by a linear FM
interference with a variable modulation index
(chirp rate). The interference is character-
ized by JSR = 30dB3 and its chirp rate varies

3The proposed method will produce satisfying results
as long as a remaining jammer power, concentrated in
its sidelobes, can be neglected. For the applied Han-
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Fig. 4. Sinusoidal FM interference case. Left side : Output SNR for (a) conventional and (c) optimal receivers.
Curves represent analytical results according to (31). Triangles represent numerical values according to (10)
over 20000 realizations. Right side : Numerical BER for (b) conventional and (d) optimal receivers.

from 0 (a pure sinusoid in the middle of the
spectrum) to a value at which the interference
sweeps the entire spectrum, i.e., when we get
the chirp with the IF values f(t1) = 0 and
f(t2) = fmax, where [t1, t2] is the time interval
considered in the LPFT calculation and fmax
is the highest frequency in the LPFT spec-
trum. Obtained SNRout values versus chirp
rate are shown in Fig. 3(a) and (c). The
STFT and LPFT BER values versus chirp rate
for both the conventional and the optimal case
are shown in Fig. 3(b) and (d).

xample 3: In this example, performances of
the conventional and the optimal STFT and
LPFT receivers, when the desired signal is cor-
rupted by a sinusoidal FM signal with a vari-
able amplitude of an IF variation, are eval-
uated. The interference is characterized by
JSR = 20dB and the amplitude of its sinu-
soidal IF law varies from 0 (a pure sinusoid in

ning window, this holds for the JSR up to approx-
imately 40dB. For higher JSR values other windows
should be used (see [7]).

the middle of the spectrum) to a value at which
the interference sweeps the entire frequency
spectrum, i.e., when the lowest frequency in
the LPFT spectrum corrupted by the interfer-
ence is 0 and the highest corrupted frequency
is fmax. Obtained SNRout values versus am-
plitude of the sinusoidal IF law are shown in
Fig. 4(a) and (c). The STFT and LPFT BER
values versus amplitude of the sinusoidal IF
law for both the conventional and the optimal
case are shown in Fig. 4(b) and (d).

As Fig. 3 and 4 indicate, the optimal STFT
and LPFT receivers exhibit significantly im-
proved performances respectively compared to
the conventional ones. In addition, LPFTopt
always produces the best results. It may seem
unexpected that the SNRout curves in the op-
timal LPFT case exhibit increasing trend (i.e.,
corresponding BER curves exhibit decreasing
trend) as the interference parameter increases
in both examples, but having in mind that
with the optimal LPFT receiver the excised
area in the t-f plane is approximately the same
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for all interference parameter values [7], this
ambiguity is partially resolved. Furthermore,
for small parameter values, the interference
is nearly stationary, which corresponds to the
frequencies excision case from the first exam-
ple. By increasing the parameter value we are
approaching the diagonals excision case, which
is characterized by better receiver performance
(see Fig. 2).

V. C��	���
��

This paper has presented an optimal lo-
cal polynomial Fourier transform approach for
a monocomponent jammer excision in DSSS
communication systems. The purpose of the
LPFT was to optimally concentrate the jam-
mer in the t-f plane. The jammer excision
was then obtained by removing its t-f signa-
ture via a binary mask. The binary mask in-
herently introduces a distortion of the received
PN sequence, and therefore the decision mak-
ing process at the output of the receiver cor-
relator is suboptimal. The LPFT receiver was
derived in matrix form and its optimization
was performed, i.e., the receiver PN sequence
was modified so as to maximize SNRout. The
conventional and the optimal LPFT receiver
performances were evaluated by means of sim-
ulations carried out on the received signal cor-
rupted by monocomponent linear and sinu-
soidal FM jammers with variable parameters.
The optimal LPFT receiver exhibits signifi-
cantly improved performance compared to the
conventional one, which was verified by means
of analytically obtained (and numerically con-
firmed) SNRout values and numerically com-
puted BER values. The STFT receiver was
considered as the special case of the LPFT
receiver and its performance was assessed si-
multaneously with the LPFT receiver perfor-
mance.
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