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Bit error probability approximation for
short-time Fourier transform based
nonstationary interference excision in

DS-SS systems
Slobodan Djukanović, Miloš Dakovíc, LJubiša Stanković

Abstract– The problem addressed in this pa-
per is bit error probability (BEP) approxima-
tion in direct sequence spread-spectrum (DS-
SS) systems that implement the short-time
Fourier transform (STFT) as a means of non-
stationary jammer excision. The jammer, pre-
viously concentrated in the time-frequency (t-
f ) plane, is suppressed by removing its t-f sig-
nature via a binary mask. The applied binary
mask gives rise to odd higher-order central mo-
ments of the decision variable d, i.e., introduces
a deviation in the probability density function
of d, fd (x), from a Gaussian law. Two analytical
approximations to fd (x) are proposed, Gaussian
approximation (GA) and Hermite-Gaussian ap-
proximation (HGA). The HGA takes advan-
tage of the Hermite polynomials and central
moments of d thus reducing approximation er-
ror introduced by the GA. Analytical expres-
sions for the mean, variance and third cen-
tral moment of d, when the STFT of the re-
ceived signal is modified by an arbitrary two-
dimensional function, are derived and numer-
ically confirmed. The HGA outperforms the
GA for various types of monocomponent and
multicomponent jammers, which was verified
by simulations.

I. I������	�
��

Numerous methods for nonstationary jam-
mer suppression in direct sequence spread-
spectrum (DS-SS) systems have been proposed
in the literature. In particular, it is shown
that time-frequency (t-f) based methods ef-
fectively enhance the performance of DS-SS
receiver when the received SS signal is cor-
rupted by broadband interferences character-
ized by narrowband instantaneous bandwidths
[1]. Linear t-f methods [2] can filter a cor-
rupted SS signal in the transform domain,
with corresponding reconstruction (synthesis)
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procedure outputting the jammer-free received
signal. Proposed linear t-f methods include
the well-known short-time Fourier transform
(STFT) [3], the fractional Fourier transform
(FRFT) [4] and the local polynomial Fourier
transform (LPFT) [5], [6]. In these papers, the
jammer removal is performed in the transform
domain via a binary mask, which excises fre-
quency bins of the representation corrupted by
jammer.

However, the problem of bit error probabil-
ity (BEP) calculation, or approximation, has
not been treated in [3]-[6]. This paper ad-
dresses the problem of BEP approximation in
DS-SS systems that implement the STFT as a
means of jammer suppression, which is equiv-
alent to the problem of modelling the deci-
sion variable d output by the receiver corre-
lator. When no modification is made in the
t-f domain, the decision variable can be well
approximated by a Gaussian one according to
the central limit theorem (CLT). Nonetheless,
by modifying the STFT, the binary mask gives
rise to odd higher-order central moments of d,
implying that its probability density function
(p.d.f.) deviates from the Gaussian law.

Two analytical approximations to the BEP
are herein proposed, Gaussian approximation
(GA) and Hermite-Gaussian approximation
(HGA). The former models the decision vari-
able as a Gaussian one, whereas the latter uses
the Hermite polynomials and the third central
moment of the decision variable to reduce the
approximation error introduced by the former.

Paper is organized as follows. Section 2
briefly describes the STFT based filtering and
simple synthesis procedure. The mean, vari-
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ance and third central moment of the decision
variable are analytically derived in Section 3,
showing their dependence on the applied bi-
nary excision mask. In addition, two BEP
approximations are introduced. Performance
of the proposed approximations is assessed in
Section 4 by means of simulations carried out
on the received signal corrupted by various FM
jammer types, both monocomponent and mul-
ticomponent. Conclusions are drawn in Sec-
tion 5.

II. STFT ����� ������ ��	
�
�� 
�

DS-SS �������

The basics of DS-SS systems can be found
in [5] and [10]. The N -samples long baseband
received signal x(n) is composed of three se-
quences as follows [3], [6], [10]:

x (n) = s (n) + j (n) + ξ (n) , n = 1, 2, ..., N
(1)

where s(n) is an SS sequence of unit ampli-
tude, j(n) is a jammer sequence and ξ(n) is
an additive white Gaussian noise (AWGN) se-
quence with zero mean and variance σ2ξ. All
the three sequences are uncorrelated with each
other. The jammer can be analytically ex-
pressed as [6]

j (n) = aj cos (ϕ (n)) (2)

where ϕ (n) and aj respectively represent its
phase and amplitude. For the unit-amplitude
SS signal, signal-to-noise ratio (SNR) and
jammer-to-signal ratio (JSR) are defined as

SNR = −10 log10
(
σ2ξ
)

(3)

JSR = 10 log10
(
a2j/2

)
. (4)

In addition, the SS signal with one sam-
ple per chip is herein assumed, when the per-
fectly flat spectrum is obtained [8]. Therefore,
s (n) equals p (n) or −p (n) , depending on a
transmitted bit value, and p (n) is a pseudo-
noise (PN) sequence, known to both transmit-
ter and receiver. The PN sequence is char-
acterized by the length L and E [p (n)] = 0
andE [p (n) p (m)] = δ (n−m), where E [·] de-
notes the statistical expectation and δ (n) is
the Dirac delta function. Without loss of gen-
erality, we will herein adopt an odd value for
L.

The STFT of the signal x (n), X (n, k), is
given by [3], [6]

X (n, k) =

N−1
2∑

m=−N−1
2

x (n+m)w (m) e−j
2π
N mk,

(5)
where w(m) is a real symmetric analysis win-
dow and N is the number of frequency bins. It
is also assumed that N = L [3], [6], [8]. Given
w(0) = 1, a simple manipulation of (5) gives
the STFT synthesis equation [6]

x (n) =
1

N

N−1∑

k=0

X (n, k) . (6)

Note that this synthesis requires one summa-
tion less than the overlap-add (OLA) method
used in [3].
The jammer excision is performed in the t-f

plane by removing its t-f signature via binary
mask B (n, k), which is the function defined as

B (n, k) =

{
0, X (n, k) contains a jammer
1, X (n, k) otherwise.

(7)
Decision whether X (n, k) contains a jammer
or not is made by comparing |X (n, k)| to pre-
set threshold value [3]. The synthesis is then
performed on the masked STFT to recover the
jammer-free received signal x′ (n) as follows:

x′ (n) =
1

N

N−1∑

k=0

X (n, k)B (n, k) . (8)

One realization of |X (n, k)| for the received
signal x (n) corrupted by a linear FM modu-
lated (chirp) jammer is depicted in Fig. 1(a),
and the binary mask that excises this jammer
is shown in Fig. 1(b).
In the STFT calculation, the problem of

jammer concentration in the t-f plane also has
to be addressed. Namely, the higher the jam-
mer concentration the lesser the excised area,
and, taking this into consideration, the win-
dow length will be calculated according to the
following concentration measure [3], [7]:

v =

N∑

n=1

N−1∑

k=0

|X (n, k)|4

(
N∑

n=1

N−1∑

k=0

|X (n, k)|2
)2 (9)
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Fig. 1. (a) The STFT of the received signal corrupted
by a linear FM jammer. The clearest gray tones
of the color-map correspond to the strongest fre-
quency components. (b) Binary mask that excises
corrupted frequency components (zero values are
shown in black).

so that the jammer is optimally concentrated
in the t-f plane. The ratio v favors “peaky”
distributions and its highest value corresponds
to the best t-f concentration [3].

III. B
� ����� ������
�
��

������
���
���

The decision variable d, output by the re-
ceiver correlator and used for the information
symbol detection, is given by [3]

d =
∑N

n=1
x′ (n) p (n) . (10)

Since we are interested only in the real part of
d, hereafter we will use

d = Re

[∑N

n=1
x′ (n) p (n)

]
. (11)

The output signal-to-noise ratio, SNRout, is
defined by [1]

SNRout =
E2 [d]

Var [d]
(12)

where Var[·] represents the variance operator.
If the STFT is not modified by the binary

mask (i.e., no jammer excision is performed),
then x′ (n) = x (n) and, according to the CLT,
d can be modelled by a Gaussian variable with
the mean µ = N and variance σ2 = N(a2j/2+

σ2ξ), assuming that bit “+1” is transmitted.
Therefore, in this case, the exact value of the
BEP, denoted as Pe, equals [13]

Pe =
1√
2π

∫
∞

µ
σ

e−t
2/2dt = Q

(µ
σ

)
(13)

where

Q (x) =
1√
2π

∫
∞

x

e−t
2/2dt.

Nevertheless, if the STFT is modified by the
jammer excision binary mask, the synthesized
PN sequence will no longer coincide with the
original one, implying that (13) cannot be fur-
ther used for the exact BEP calculation.

Generally, the BEP equals

Pe =

∫ 0

−∞

fd (x) dx (14)

where fd (x) denotes the p.d.f. of d. Due to ex-
cessive complexity of analytical determination
of fd (x), we must resort to its approximations.

The first adopted BEP approximation is a
Gaussian approximation, whose p.d.f. is de-
noted as fGA (x). The GA outputs results ac-
cording to (13), and its parameters, the mean
µ and the variance σ2, depend on the applied
binary mask and will be derived afterwards.

The accuracy of the GA can be additionally
improved by using the central moments µn =
E[(d− µ)n] of d and the Hermite polynomials,
defined by [9], [12]

Hk (x) = (−1)k ex
2/2 dk

dxk
e−x

2/2. (15)

Since these polynomials form a complete or-
thogonal set on the real line, an approxima-
tion error ε (x) introduced by the GA can be
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expressed as a series

ε (x) = fd (x)− fGA (x)

= fd (x)−
1

σ
√
2π

e−
(x−µ)2

2σ2

=
1

σ
√
2π

e−
(x−µ)2

2σ2

∞∑

k=3

CkHk

(
x− µ

σ

)
. (16)

The series starts with k = 3 because the cen-
tral moments of ε (x) of order less than 3 are
0 [12]. The coefficients Ck can be expressed
in terms of µn. In particular, the following
relations hold [12, p. 217]:

3!σ3C3 = µ3 (17)

4!σ4C4 = µ4 − 3σ4. (18)

Due to the complexity of the calculation
of Ck (see (28)), only the first-order correc-
tion of fGA (x) will be determined herein.
This approximation will be referred to as
a Hermite-Gaussian approximation, with the
p.d.f. fHGA (x). Since H3 (x) = x3 − 3x, one
obtains [12]

fHGA (x) =
1

σ
√
2π

e−
(x−µ)2

2σ2

×
[

1 +
µ3
6σ3

(
(x− µ)3

σ3
− 3 (x− µ)

σ

)]

. (19)

Alternatively, fHGA (x) can be obtained by
including only the first correction term to the
normal distribution in the Gram-Charlier se-
ries [13].

The determination of fGA (x) and fHGA (x)
entails finding the mean, variance and third
central moment of the decision variable d. As-
suming that bit “+1” is transmitted and by
substituting (5) and (8) into (11), d becomes

d =
1

N

N∑

n=1

N−1∑

k=0

N−1
2∑

m=−N−1
2

[p (m+ n) + ξ (m+ n)]

× p (n)w (m)B (n, k) cos(
2π

N
mk). (20)

We have made the assumption that the resid-
ual jammer can be neglected in the analy-

sis1 [3], [6], and therefore only the PN and
AWGN components are considered in the pre-
vious equation. The mean of d is simply ob-
tained from (20) as

µ = E [d] =
1

N

N∑

n=1

N−1∑

k=0

B (n, k) . (21)

The variance of d is, by definition, σ2 =
E[d2] − µ2, and we proceed with the calcu-
lation of E[d2]. By using (20), we get

E
[
d2
]
=

1

N2

∑

n1,n2

∑

k1,k2

∑

m1,m2

w (m1)w (m2)

×B (n1, k1)B (n2, k2)

× cos(2π
N

m1k1) cos(
2π

N
m2k2)

×E [p (m1+n1) p (n1) p (m2+n2) p (n2)]

+
σ2ξ
N2

∑

n1,n2

∑

k1,k2

∑

m1,m2

w (m1)w (m2)

×B (n1, k1)B (n2, k2)

× cos(2π
N

m1k1) cos(
2π

N
m2k2)

× δ (n1−n2) δ (m1−m2)
(22)

where n1 and n2 run from 1 to N , k1 and k2
run from 0 to N − 1, whereas m1 and m2 run
from −(N − 1)/2 to (N − 1)/2. As (22) in-
dicates, E[d2] comprises two components, and
for the calculation of the first one we will use
the following identity [3], [6]:

E [p (i) p (j) p (k) p (l)] = δ (i− j) δ (k − l)

+ δ (i− l) δ (j − k) + δ (i− k) δ (j − l)

− 2δ (i− j) δ (k − l) δ (i− k) . (23)

1As a matter of fact, the jammer component cannot
be completely removed from the t-f plane without com-
pletely removing other components. This is a conse-
quence of the spectral leakage effect caused by a finite
length of the analysis window. However, for a given
time instant, one can neglect a portion of the jam-
mer power concentrated in sidelobes of its spectrum,
especially when windows characterized by highly sup-
pressed sidelobes are used (e.g., Kaiser or Blackman
window). These windows attain the high sidelobes
suppression at the expense of the width of the main
lobe. Therefore, in this paper, only such windows will
be considered, and to completely remove the jammer
means to excise only its main lobe.
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Let us briefly explain the previous identity.
Since p (n) takes on values +1 and −1 with
equal probability [11], E [p (i) p (j) p (k) p (l)]
will be non-zero (i.e., will equal 1) only when
the indices i, j, k and l are equal in pairs (first
3 components in (23)). The fourth component
is introduced so as to compensate the contri-
bution of the first 3 components when all the
indices coincide.
The straightforward calculation yields the fi-

nal form for σ2

σ2=
∑

m

w2(m)
∑

n

bn(m)

×
[
bn+m(m) + (1+σ2ξ)bn(m)

]

− 2
∑

n

b2n (0) (24)

where

bn (m) =
1

N

N−1∑

k=0

B (n, k) cos(
2π

N
mk) (25)

withm and n running within the above defined
limits. Alternatively, σ2 can be expressed as
follows:

σ2 = 〈x1,w1〉 − 2 ‖x2‖2 (26)

where 〈x,y〉 represents the inner product of
vectors x and y (or matrices x and y, when
it represents the Frobenius inner product),
‖x‖ represents the Euclidean norm of vector
x (that is, ‖x‖ =

√
〈x,x〉), x1 is the 1 × N

vector with

x1 (m) =
∑

n

bn(m)
[
bn+m(m) + (1+σ2ξ)bn(m)

]

and w1 and x2 are the 1×N vectors defined
by

w1 = [w
2(−N−1

2
), w2(−N−3

2
), · · · , w2(N−1

2
)]

x2 = [b1(0), b2(0), · · · , bN(0)].

Knowing the mean (21) and the variance
(24) of the decision variable, the exact SNRout
value (12) can be calculated for any applied
binary mask B.
The third central moment of d is, by defini-

tion, µ3 = E[(d− µ)3] = E[d3]−3µE[d2]+2µ3.

Since the last two components have already
been calculated, attention will be focused on
E[d3]. By using (20), we get

E
[
d3
]
=

1

N3

×
∑

n1,2,3

∑

k1,2,3

∑

m1,2,3

w(m1)w(m2)w(m3)

×B(n1, k1)B(n2, k2)B(n3, k3)

× cos(2π
N

m1k1) cos(
2π

N
m2k2) cos(

2π

N
m3k3)

×E[p(m1 + n1)p(n1)p(m2 + n2)

× p(n2)p(m3 + n3)p(n3)]

+
3σ2ξ
N3

∑

n1,2,3

∑

k1,2,3

∑

m1,2,3

w(m1)w(m2)w(m3)

×B(n1, k1)B(n2, k2)B(n3, k3)

× cos(2π
N

m1k1) cos(
2π

N
m2k2) cos(

2π

N
m3k3)

× δ(m2 + n2 −m3 − n3)

×E[p(n1)p(n2)p(n3)p(m1 + n1)]
(27)

where
∑
n1,2,3

stands for the triple summation

over n1, n2 and n3, with the above defined lim-
its. The same holds for

∑
k1,2,3

and
∑
m1,2,3

.

For the sake of brevity, we will henceforth
introduce a shorthand notation for the Dirac
delta, i.e., Dirac delta δ (i1+i2+· · ·+ip−j1
−j2−· · ·−jq) will be abbreviated as δ

i1,i2,··· ,ip
j1,j2,··· ,jq

,
where the arguments with the plus sign are
listed in the superscript, whereas the argu-
ments with the minus sign (if any) are listed
in the subscript. Using this notation and the
same reasoning as in (23), the first component
of E[d3] can be calculated according to

E[p(i1 + j1)p(i1)p(i2 + j2)p(i2)p(i3 + j3)p(i3)]

= δj1δj2δj3 + δj1δj2j3δ
i2
i3
+ δj1δi2,j2i3

δi3,j3i2

+ δi1,j1i2,j2
δi1i2δ

j3 + δi1,j1i2,j2
δi3,j3i1

δi2i3 + δi1,j1i2,j2
δi3,j3i2

δi1i3

+ δi1,j1i2
δi2,j2i1

δj3 + δi1,j1i2
δi3,j3i1

δi2,j2i3

+ δi1,j1i2
δi2,j2i3,j3

δi1i3 + δi1,j1i3,j3
δi2,j2i1

δi2i3 + δi1,j1i3,j3
δi2,j2i3

δi1i2

+ δi1,j1i3,j3
δi1i3δ

j2 + δi1,j1i3
δi2,j2i1

δi3,j3i2
+ δi1,j1i3

δi3,j3i2,j2
δi1i2

+ δi1,j1i3
δi3,j3i1

δj2
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− 2(δj1δj2δj3δi1i2 + δj1δi2i3δ
i3,j3
i1

δi2,j2i1

+ δj1δj2,j3δi1i3δ
i2,j2
i3

+ δj1δj2,j3δi1i2δ
i3,j3
i2

+ δj1δj2j3δ
i1
i2
δi1i3 + δj1δj2δj3δi1i3 + δj2δj1j3δ

i1
i3
δi3,j3i2

+ δj2δj1,j3δi2i3δ
i3,j3
i1

+ δj3δj1j2δ
i1
i2
δi2,j2i3

+ δj3δj1,j2δi2i3δ
i2,j2
i1

+ δj2δj1,j3δi1i2δ
i1,j1
i3

+ δj2δj1j3δ
i1
i2
δi1i3 + δj3δj1,j2δi1i3δ

i1,j1
i2

+ δj3δj1j2δ
i1
i2
δi1i3

+ δj1δj2δj3δi2i3) + 16δ
j1δj2δj3δi1i2δ

i1
i3
.

(28)

Substitution of (23) and (28) into (27), and, in
turn, (27) back into the definition of µ3, yields
the final expression for µ3. After straightfor-
ward yet tedious calculations, we obtain

µ3 = 〈W2,A〉+16 〈x2,x3〉−6 〈w1,x4〉 (29)

whereW2 andA are theN×N matrices given
by

W2 (m1,m2) = w(m1)w(m2)w(m1 +m2)

A(m1,m2) = 2
∑

n

[3(1 + σ2ξ)

× bn+m2
(m1)bn(m1 +m2)bn(m2)

+ bn(m1)bn+m1(m2)bn+m1+m2(−m1 −m2)]

and x3 and x4 are the 1 × N vectors defined
as

x3 = [b
2
1(0), b

2
2(0), · · · , b2N(0)]

x4 (m) =
∑

n

bn(m) {bn+m(0)

× [2bn+m(−m) + bn (m)]

+ (1 + σ2ξ)bn(0)bn(m)}.

The validity of (29) is numerically verified in
the following section.

Although derived for the jammer excision
purpose, the analytical expressions for µ, σ2

and µ3 hold not only for binary masks, but for
any modification mask B, assuming that the
influence of all components, except for the SS
and the AWGN, to the decision variable can be
neglected in the analysis. In addition, µ and
σ2 have already been derived in matrix form
in [6] seeing that the STFT is the special case
of the LPFT.

IV. S
�����
���

A. Jammer is not present

We first consider the case when the re-
ceived signal does not contain a jammer. The
STFT of the received signal, characterized by
SNR = −8dB, is modified by two types of bi-
nary masks, one that excises horizontal bands
in the t-f plane and the other that excises diag-
onal bands. The width of both bands increases
from 1 to 14 in increments of 1. Horizontal
bands start with the central frequency of the
STFT spectrum and then one adjacent upper
frequency is added, then one lower, one upper
etc. Diagonal bands start with the line that
spans one half of the spectrum (that is, starts
at f (1) = fmax

4 and ends at f (N) = 3fmax

4 ,
where f (n) represents the instantaneous fre-
quency (IF) function and fmax is the maximal
frequency of the spectrum) and then one ad-
jacent upper diagonal is added, one lower, one
upper etc. The BEP curves for both excision
cases are depicted in Fig. 2(a) and (b). In ad-
dition, the BEP versus SNR curves for three
fixed band widths, 2, 6 and 10, are depicted
in Fig. 2(c) and (d). Clearly, when the ex-
cised t-f area is small, the GA still performs
satisfactorily, whereas for bigger excised areas
it is outperformed by the HGA. The similar-
ity of the results obtained for the two excision
cases is due to the fact that both the SS signal
and the AWGN are uniformly distributed in
the t-f plane. The analysis window used in the
STFT calculation is the Kaiser window with
the length of 63 samples and β = 10.

B. Jammer is present

We continue with the case when the received
signal is corrupted by various jammer types.
Five phase functions ϕ (n), defined in Table
I, are considered. Types 1, 2 and 3 respec-
tively correspond to a tone, linear FM (LFM)
and quadratic FM jammer, whereas types 4
and 5 respectively conform to the exponential
and sinusoidal FM (SFM) model. In addition,
a strong impulse jammer, type 6, is also taken
into account. It corrupts a segment of five suc-
cessive chips in the middle of interval. Multi-
component jammers, obtained by combining
the introduced jammer types, are also con-
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Fig. 2. Up : Bit error probability versus the band width for (a) horizontal bands excision and (b) diagonal
bands excision. Down : Bit error probability versus the SNR for (c) three fixed horizontal band widths and
(d) three fixed diagonal band widths.

sidered. In particular, three two-component
combinations are herein considered, i.e., com-
bination of types 1 and 3, 2 and 4, as well
as 1 and 5. The adopted value for the PN
sequence length is L = 63, JSR = 20dB and
SNR = −7dB. The analysis window used in
the STFT calculation is the Kaiser window,
whose length is determined according to (9)
and additionally zero-padded to 63 samples.
The selected value of β for this window is 102 .

It should be acknowledged that, for each
considered jammer, the excision matrix B is

2The selection of β is dictated by two conflicting
requirements, high sidelobes suppression and narrow
main lobe. A small value of β implies narrower main
lobe but higher sidelobes, and vice versa. Since the
jammer suppression is of primary concern in this pa-
per, we will adopt a bigger value for β at the expense
of wider excised area in the t-f plane.

not determined for each run separately, but
only for one realization of the STFT of the
corrupted received signal [6].

All the obtained analytical and simulated
Pe, σ2 and µ3 values are presented in Table
II, where the first six rows correspond to the
monocomponent jammer types 1-6, whereas
the last three rows correspond to the multi-
component jammers. The Pe part of Table
II clearly indicates that the HGA outperforms
the GA for all the considered jammers, with
the exception of the impulse jammer when
they produce the same results. For the im-
pulse jammer case, the concentration measure
yielded a very short analysis window which,
in turn, resulted in a binary mask that ex-
cises all the frequency bins that correspond
to the corrupted and several adjacent chips.
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The spectral content of other chips remained
intact. Therefore, the decision variable still
behaves in accordance with the Gaussian law,
which is also supported by the zero analytical
value for µ3. The mean and variance of such
a variable are, however, decreased proportion-
ately to the number of excised chips, and (13)
still holds.

The σ2 part of Table II supports the as-
sumption that the residual jammer can be ne-
glected in the analysis since, in all the cases,
the difference between the analytically ob-
tained variance and numerical one (which in-
corporates the influence of the residual jam-
mer) is very small. The last two columns of
Table II confirm the validity of (29), while the
constantly positive values of µ3 (except for the
impulse jammer), for the adopted SNR value,
indicate that the p.d.f. fd (x) is characterized
by longer right tail, implying that the mass of
the distribution is concentrated in the region
x > µ [12].

Finally, we consider two jammer types, LFM
and SFM jammer, with variable parameters.
We changed the modulation index (chirp rate)
of the LFM jammer from 0 (a pure sinusoid
in the middle of the spectrum) to the value at
which its IF sweeps around 65% of the spec-
trum. Similarly, we changed the amplitude of
the IF variation of the SFM jammer from 0 (a
pure sinusoid in the middle of the spectrum)
to the value at which its IF also sweeps around
65% of the spectrum. The other SFM jammer
parameter, the frequency of the IF variation,
is the same as for the fifth jammer type from
Table I. In addition, L = 63, JSR = 20dB
and SNR = −7dḂ. The obtained BEP curves,
shown in Fig. 3, indicate that for smaller non-
stationarity index the GA performs satisfac-
torily. However, the excised area increases as
the nonstationarity index increases, and the
HGA offers better BEP approximation. Note
also that the BEP curves of the SFM jammer
would rise faster if the frequency of its IF vari-
ation was higher and vice versa.

In this section, all the simulated values are
obtained over 1 million realizations of the de-
cision variable d.
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Fig. 3. Bit error probability versus (a) chirp rate of the
LFM jammer and (b) amplitude of the IF variation
of the SFM jammer.

V. C��	���
���

This paper treats the problem of bit error
probability approximation in DS-SS systems
that implement the STFT as a means of non-
stationary jammer excision. The jammer is
optimally concentrated in the t-f plane by us-
ing the appropriate concentration measure and
successively suppressed by removing its t-f sig-
nature via a binary mask. Two analytical ap-
proximations to the p.d.f. of the decision vari-
able d are proposed, namely the Gaussian ap-
proximation (GA) and the Hermite-Gaussian
approximation (HGA). The approximation er-
ror introduced by the GA is reduced by the
HGA, which utilizes the Hermite polynomi-
als and the third central moment of d. An-
alytical expressions for the mean µ, the vari-
ance σ2 and the third central moment µ3 of
d are derived and numerically confirmed. The
HGA outperforms the GA for various types
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TABLE I

C���
����� ������ �����

Jammer’s phase

Type 1 ϕ (n) = 2π n3
Type 2 ϕ (n) = 2π(3n8 − n2

8N )

Type 3 ϕ (n) = 2π(n5 − 5n2

16N +
n3

4N2 )

Type 4 ϕ (n) = 2π 3
ln(3N/8)(

3N
8 )

2
3 e

ln(3N/8)
3N n

Type 5 ϕ (n) = 2π
[
N
10π cos(

5π
4N n+ π

4 ) +
n
4

]

Type 6 Impulse jammer

TABLE II

A�����
	 ��� �
������� ������ �� Pe, σ
2 ��� µ3

Bit Error Probability Pe Variance σ2 Moment µ3
GA HGA Simul. Analytic Simul. Analytic Simul.

Type 1 5.611e-4 4.369e-4 4.640e-4 264.646 265.825 168.822 160.006
Type 2 2.802e-3 1.710e-3 1.992e-3 198.211 199.651 318.550 305.635
Type 3 4.826e-3 3.066e-3 3.513e-3 178.113 180.748 314.546 303.893
Type 4 2.663e-3 1.660e-3 1.936e-3 203.591 206.721 314.515 318.115
Type 5 3.428e-3 2.127e-3 2.529e-3 193.748 197.047 323.369 328.385
Type 6 4.149e-4 4.149e-4 3.980e-4 280.665 280.462 0 -10.211

Type 1+Type 3 1.359e-2 8.291e-3 9.640e-3 108.275 111.591 265.606 262.637
Type 2+Type 4 1.161e-2 7.324e-3 8.471e-3 125.352 128.581 286.408 298.498
Type 1+Type 5 7.668e-3 4.642e-3 5.729e-3 145.604 148.668 309.713 321.588

of monocomponent and multicomponent jam-
mers, which was verified by simulations. How-
ever, the GA performs satisfactorily when the
excised t-f area is small.
The analytical expressions for µ, σ2 and µ3

are valid for any modification mask B (i.e.,
not only binary) given that the contribution
of all components, apart from the SS and the
AWGN, to the decision variable can be ne-
glected.
The similar treatment can be carried out

when the synthesis is performed via the OLA
method which incorporates one summation
more compared to the synthesis method used
herein.
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