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A parametric method for non-stationary
interference suppression in direct
sequence spread-spectrum systems

Slobodan Djukanović, Vesna Popović, Miloš Dakovíc, LJubiša Stanković

Abstract– The problem of non-stationary
interference suppression in direct sequence
spread-spectrum (DS-SS) systems is consid-
ered. The phase of interference is approxi-
mated by a polynomial within the considered
interval. According to the local polynomial
Fourier transform (LPFT) principle, the re-
ceived signal is dechirped by using the obtained
phase approximation and the interference is,
in turn, suppressed by excising the corrupted
low-pass frequency band. For the estimation
of polynomial coefficients, we use the product
high-order ambiguity function (PHAF), known
for its capability to successfully resolve com-
ponents of a multicomponent polynomial-phase
signal (PPS). The proposed method can sup-
press interferences with both polynomial and
non-polynomial phase. In addition, it can
suppress both monocomponent and multicom-
ponent interferences. The simulations show
that the proposed method outperforms time-
frequency (TF) methods, that successfully deal
with multicomponent interferences, in terms of
the error probability and computational com-
plexity.

I. I������	�
��

Direct sequence spread-spectrum (DS-SS)
systems [1] are characterized by inherent inter-
ference rejection capability, which makes them
suitable for use in congested communication
channels. However, a strong interference (jam-
mer) superimposed on the transmitted SS sig-
nal can severely deteriorate the performance of
DS-SS receiver. To this end, numerous jammer
suppression techniques have been proposed in
order to enhance the DS-SS receiver’s perfor-
mance in severe jamming environments [2—7].
Time-frequency (TF) based methods [8] are ef-
fective in suppressing broadband interferences
characterized by narrow instantaneous band-
widths. Methods based on linear TF repre-
sentations can filter the corrupted SS signal
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in the transform domain; corresponding syn-
thesis procedures output the jammer-free sig-
nal. Proposed linear TF methods include the
short-time Fourier transform (STFT) [3], the
fractional Fourier transform [4], and the local
polynomial Fourier transform (LPFT) [5, 6].
In these papers, the jammer removal is ac-
complished via a binary mask, applied in the
transform domain, which excises the corrupted
frequency bins of the representation.

The Weierstrass’s theorem [9] states that an
arbitrary time-varying phase can be well ap-
proximated by a polynomial within the ob-
served finite interval. Many methods for
the estimation of phase coefficients of a
polynomial-phase signal (PPS) have been pro-
posed in the literature [10—15]. One of the
most popular is the high-order ambiguity
function (HAF), originally referred to as the
polynomial-phase transform (PPT) [12]. The
HAF, however, suffers from the identifiability
problem when components of a multicompo-
nent PPS have the same highest order phase
coefficients, a situation encountered in multi-
path channels and SAR systems [16]. In or-
der to overcome this problem, Barbarossa et

al. proposed the product high-order ambigu-
ity function (PHAF) [14].

We propose a method for the jammer sup-
pression that uses the LPFT principle and the
PHAF as the means of phase estimation. Af-
ter the phase is estimated by a polynomial, the
corrupted received signal is dechirped. In the
Fourier transform of the dechirped signal, the
jammer will be concentrated in the low-pass
band, and therefore it can be suppressed by
excising corrupted low-pass frequencies. The
phase estimation, jammer excision and recon-
struction of a jammer-free received signal are
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the steps of the proposed jammer suppres-
sion algorithm. The algorithm also deals with
jammers with non-polynomial phase, which is
achieved by narrowing the observed time in-
terval. Moreover, owing to the ability of the
PHAF to unambiguously estimate components
of multicomponent signals, the algorithm can
be easily extended to suppress multicompo-
nent jammers.

Paper is organized as follows. Section 2
covers the theoretical background regarding
the LPFT, PHAF and DS-SS systems. The
proposed method is introduced in Section 3,
where algorithms for both monocomponent
and multicomponent jammers suppression are
presented. Simulations are presented in Sec-
tion 4, and conclusions are drawn in Section
5.

II. T�
��
�
	�� ��	�������

A. Local polynomial Fourier transform

The Mth order discrete form of the LPFT
of a signal x(n) is defined by [6,17]

LPFT (n, k) =
∑

m
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× e
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where w (m) represents the analysis window
of length N , ωi is the ith transform parame-
ter and DFTk [·] represents the discrete Fourier
transform operator. If x(n) is a monocompo-
nent PPS, the LPFT can represent the ideal
TF representation of x(n) for an appropri-
ate choice of the order M and parameters ωi,
i = 1, 2, · · · ,M . In reality, however, para-
meter estimation is performed over a multidi-
mensional space, implying high computational
complexity [5]. The parameters of PPSs can
be estimated using different, computationally
less demanding approach, described in the fol-
lowing section.

B. Product high-order ambiguity function

The most common model used in paramet-
ric analysis of non-stationary signals is a PPS
model. The HAF was proposed to deal with
PPSs, both monocomponent and multicompo-
nent [12,13]; however, it suffers from the iden-
tifiability problem when components of a mul-
ticomponent PPS have the same highest order
phase coefficients. This problem can be re-
solved by using the PHAF [14].

First, we define the multilag high-order in-
stantaneous moment (ml-HIM) of a signal
x (n) , n = 0, · · · , N − 1, in the following man-
ner:

x1(n) = x(n)

x2(n; τ 1) = x1(n+ τ1)x
∗
1(n− τ1),

x3(n; τ 2) = x2(n+ τ2; τ 1)x
∗
2(n− τ2; τ 1),

...

xP (n;τP−1) = xP−1(n+ τP−1;τP−2)

× x∗P−1(n− τP−1; τP−2), (2)

where τ i = [τ1, τ2, · · · , τ i], i = 1, ..., P − 1,
are sets of used time lags. In xk (n; τ k−1), k =

1, 2, · · · , P , index n goes from
∑k−1
i=1 τ i to N−∑k−1

i=1 τ i − 1. The multilag HAF (ml-HAF) is
defined as the DFT of the ml-HIM,

XP (f ; τP−1) =

N−2
∑P−1

k=0 τk−1∑

n=0

xP (n; τP−1) e
−j2πfn.

(3)
When the considered signal x (n) is a mono-

component P th order PPS, i.e.

x (n) = Aej2π
∑P

m=0 αm(n∆)
m

, (4)

where αm are polynomial coefficients and ∆ is
the sampling interval, the P th order ml-HIM
of x (n) is a complex sinusoid with frequency
[14]

f = 2P−1∆PP !αP

P−1∏

k=1

τk. (5)

The coefficient αP can be therefore estimated
by searching for the position of maximum in
the ml-HAF. Finding the position of maxi-
mum of the ml-HAF is usually performed in
two stages, coarse search and fine search. The
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coarse search represents finding the maximum
bin of the ml-HAF. The fine search represents
refining the coarse estimate through some it-
erative maximization method [18—20].

If we dechirp x (n) by using the estimated
value α̂P , i.e.

x′ (n) = x (n) e−j2πα̂P (n∆)
P

, (6)

the resulting signal x′ (n) will be the (P −1)th
order PPS. Now the coefficient αP−1 can be
estimated by searching for the position of max-
imum in the (P −1)th order ml-HIM of x′ (n).
This procedure can be repeated to estimate all
lower-order phase coefficients [12, Section III].

When the considered signal x (n) is a multi-
component PPS, that is

x (n) =
K∑

k=1

Ake
j2π

∑P
m=0 αk,m(n∆)

m

, (7)

where αk,m are polynomial coefficients of the
kth component, the P th order ml-HIM will
contain K sinusoids that correspond to au-
toterms, each having the frequency propor-
tional to the highest order phase coefficient,
according to (5). In addition to the autoterms,
the ml-HIM will contain a large number of
cross-terms which are, in general, P th-order
PPSs [14]. Specially, when the highest-order
phase coefficients of some components coin-
cide, the corresponding cross-terms are com-
plex sinusoids, implying that some of the peaks
in the ml-HAF correspond to the cross-terms
[14]. Consequently, the maxima-based phase
coefficients estimation is ambiguous, since a
peak corresponding to a cross-term can lead
to inaccurate estimation of the PPS’s coeffi-
cients.

The effect of cross-terms can be significantly
reduced using the PHAF proposed in [14]. In
the PHAF, Q sets of time lags are used,

T
Q
P−1 =

[
τ
(1)
P−1, τ

(2)
P−1, · · · , τ

(Q)
P−1

]
, (8)

where τ
(l)
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τ
(l)
1 , τ

(l)
2 , · · · , τ

(l)
P−1

]
and l =

1, ..., Q. The PHAF is defined as

XQ
P (f,T

Q
P−1) =

Q∏

l=1

XP(β
(l)
f , τ

(l)
P−1), (9)

with the scaling coefficient

β(l) =

∏P−1
k=1 τ

(l)
k∏P−1

k=1 τ
(1)
k

. (10)

The PHAF uses the fact that the frequencies
of autoterms in the ml-HIM are proportional
to the product of used time lags. On the other
hand, the frequencies of cross-terms are not
proportional to this product. Therefore, the
autoterms are enhanced more significantly in
the PHAF than the cross-terms, since they are
at the same positions in the scaled frequency
for each ml-HAF, whereas the cross-terms are
not aligned in the ml-HAFs obtained after the
scaling over frequency.
How do we choose time lags? Authors in

[14] suggest that the optimal lags for the P th
order ml-HAF are all equal to each other and
to

τopt =
M

2P
, (11)

where M is the number of available samples.
We will follow this suggestion.

C. Direct sequence spread-spectrum basics

In DS-SS systems, an SS signal to be trans-
mitted, s (n), is obtained by modulating each
information bit by a pseudo-noise (PN) se-
quence p (n) whose length is L chips. In ad-
dition, p (n) is characterized by E [p (n)] = 0
and E [p (n) p∗ (m)] = δ (n−m), where E [·]
denotes the statistical expectation and δ (n)
is the Dirac delta function [1]. The SS signal
with 1 sample/chip will be assumed, when the
perfectly flat spectrum is obtained [7].

At the receiver side, information bits are
restored by correlating the baseband received
signal y (n) and a synchronized replica of the
PN code, thus producing the decision variable

d =
L−1∑

n=0

y (n) p (n) . (12)

The measure of performance of the DS-SS
receiver is the output signal-to-noise ratio
(SNRout) defined as [1,2]

SNRout =
E2 [d]

Var [d]
. (13)



814 TIME-FREQUENCY SIGNAL ANALYSIS

In particular, if y (n) is composed of the
SS signal and additive white Gaussian noise
(AWGN) with zero mean and variance σ2w, the
decision variable becomes

d = L+ dw, (14)

where dw is a Gaussian variable with zero
mean and variance Lσ2w. In this case,

SNRout =
L

σ2w
. (15)

III. J���
� �����
��
��

A. Statement of the problem

We will assume that the baseband received
signal y (n) contains three sequences as fol-
lows:

y (n) = s (n)+J (n)+w (n) , 0 ≤ n ≤ N−1,
(16)

where s(n) is a unit amplitude SS signal, J(n)
is a complex-valued jammer and w(n) is an
AWGN sequence with zero mean and vari-
ance σ2w. The SNR is defined as SNR =
10 log10

(
1/σ2w

)
. All the three signals are un-

correlated with each other. We will also as-
sume that y (n) may contain several informa-
tion bits, i.e., L < N .

The constant amplitude model for J (n),

J (n) = Aejφ(n), (17)

is used, where A and φ (n) respectively denote
the amplitude of the jammer and its phase.
Assuming that the original phase function φ (t)
is continuous within the observed time inter-
val, φ (n) can be approximated by a polyno-
mial according to the Weierstrass’s approxima-
tion theorem [9]. The signal-to-jammer ratio
(SJR) is defined as SJR = 10 log10

(
1/A2

)
.

For the received signal (16), the correlation
(12) yields

d = L+ dJ + dw, (18)

where dJ and dw respectively represent the
correlator outputs due to the jammer and
AWGN. The central limit theorem (CLT) im-
plies that, for large enough L, dJ can be well
approximated by a white Gaussian variable

with E [dJ ] = 0 and Var [dJ ] = LA2 [21]. The
influence of a low power jammer is well mit-
igated by the correlation process, but when
J (n) is a high power jammer, Var[dJ ] can dra-
matically reduce the SNRout. In that case,
y (n) has to be preprocessed before the cor-
relation is performed.

B. Monocomponent jammer suppression

We propose to divide the received signal into
non-overlapping segments so that, for each
segment separately, the jammer’s phase φ (n)
can be approximated by a third-order poly-
nomial, or equivalently, the IF of the jam-
mer can be approximated by a parabola. The
estimated polynomial coefficients are used to
dechirp the jammer, which is, in turn, sup-
pressed by excising the corrupted low-pass fre-
quency bins of the dechirped signal.

The jammer suppression can be performed
in an adaptive manner by using the following
recursive procedure.

Step 1. Estimate the coefficients α1, α2
and α3 of a polynomial that approximates the
jammer’s phase φ (n) by using the PHAF and
the coefficient estimation procedure (see sec-
tion II-B and (4)-(6)). We will denote the ob-
tained estimations as α̂1, α̂2 and α̂3.
Step 2. Form

θ (n) = α̂1 (n∆)+ α̂2 (n∆)
2 + α̂3 (n∆)

3 (19)

and dechirp y (n) according to yθ (n) =
y (n) e−j2πθ(n).
Step 3. Calculate Yθ (k) = DFTk [yθ (n)].

If the dechirped jammer occupies no more than
K low-pass frequency bins, suppress it by set-
ting corrupted bins to zero, which results in
the filtered spectrum Y f

θ (k) . The filtered sig-
nal yf (n) is therefore obtained as

yf (n) = IDFTn
[
Y f
θ (k)

]
ej2πθ(n), (20)

where IDFTn [·] represents the inverse discrete
Fourier transform operator. On the other
hand, if the dechirped jammer occupies more
than K low-pass frequency bins, split the con-
sidered segment into two halves and perform
the steps 1—3 for both halves separately. If,
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however, the length of one half is less than the
minimal considered length, do not split the
segment but set all the corrupted frequency
bins to zero and reconstruct the jammer-free
segment according to (20).

In the first step of the algorithm, we essen-
tially approximate the jammer’s IF within the
considered segment by a parabola determined
by α̂1, α̂2 and α̂3. If it is well approximated
within the whole signal of N samples, we sup-
press the jammer by excising the corrupted
frequency bins of yθ (n); otherwise, we split
the signal into two halves and separately per-
form the IF estimation on both halves, first
left then right. Reduced segment length im-
plies reduced IF variation we deal with. If
the IF estimation obtained for the left half
(first N/2 samples) is sufficiently well, we fil-
ter the left half; otherwise, we split the left
half into two halves and so on. Once we fil-
ter the current left half, we repeat the pro-
cedure for the corresponding right half. This
way, the whole signal is adaptively split into
non-overlapping segments and the length of
each segment equals N/2p, where p = 0, 1, 2....
Spectra of dechirped segments are illustrated
in Fig.1, where we consider a jammer with si-
nusoidal phase, Type 5 in Table I. We first op-
erate on N samples (Fig.1(a)), then on initial
N/2 samples (Fig.1(b)) and finally on initial
N/4 samples (Fig.1(c)). The first N/4 samples
will not be further split since the jammer is
well concentrated at the DC component, which
is not the case for N and N/2.

We decide whether the jammer’s IF is suf-
ficiently well approximated by a parabola or
not by comparing K low-pass frequency bins
of Yθ (k) to the predefined threshold Tr. In
ideal case, when the parabola perfectly fits the
jammer’s IF, the whole jammer will be concen-
trated at Yθ (0), implying K = 1 as a natural
choice. In reality, however, estimated coeffi-
cients do not coincide with the true ones. In
addition, the error-propagation effect makes
the estimation of lower-order coefficients less
accurate [12]. A non-polynomial phase inher-
ently cannot be perfectly fit by a third-order
polynomial. The dechirped jammer will be
therefore spread over Yθ (k) for k �= 0; low-
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Fig. 1. The spectrum |Yθ (f) | corrupted by a jammer
with sinusoidal phase; f is normalized frequency.
The parts correspond to first (a) N samples; (b)
N/2 samples; (c) N/4 samples.

frequency components of Yθ (k) will contain
more jammer than the high-frequency ones
(see Fig.1). Having this in mind, in this paper,
we will say that the jammer’s IF is sufficiently
well approximated by a parabola if at most
K = 3 low-pass frequency bins of Yθ (k) (DC
component and one bin from each side of the
DC component) are corrupted.

How to choose the threshold Tr? We will
use the Neymann-Pearson criterion and choose
Tr so that a fixed probability of false alarm
(PFA) is provided. To this end, let us de-
note variable Yθ (k) in the jammer-free case
as Y0. We can approximately model |Y0| as a
Rayleigh variable. Indeed, in DS-SS systems,
the AWGN can be much stronger than the SS
signal [1] (see (15)), so their sum can be ap-
proximated by a Gaussian white noise with
zero mean and variance that equals σ2sw =
σ2s + σ2w, where σ2s is the variance of the SS
signal. Both real and imaginary part of Y0 are
therefore zero-mean Gaussian variables with
common variance σ20 =

N1

2 σ2sw, whereN1 is the
DFT length, implying that |Y0| is a Rayleigh
variable with parameter b = σ0. The mean
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and variance of |Y0| satisfy [22]

µ|Y0| =

√
π

2
b (21)

σ2|Y0| =
(
2−

π

2

)
b2. (22)

We will herein take

Tr = µ|Y0| + 4σ|Y0|, (23)

which yields the PFA of P (|Y0| ≥ Tr) =
5.5121× 10−4.

One way to estimate b, and, in turn, µ|Y0|
and σ|Y0|, is to use TF representations of the
received signal. For this purpose we will take
the simplest TF representation, the STFT. In
the TF plane, J (n) occupies a narrow fre-
quency band compared to both the SS sig-
nal and the AWGN that are spread over all
frequencies. This allows for the estimation of
µ|Y0| and σ|Y0| from the STFT bins that belong
to the TF areas where the jammer’s contribu-
tion can be neglected.

What is the minimal segment length we con-

sider? In order to reduce the computational
complexity of the DFT calculation, we will
take that the length of the signal block to be
processed, N , satisfy N = 2m, where m is a
positive integer. After splitting, segments will
be of the length Ns = 2m−1, 2m−2... On each
segment, we perform the coefficient estimation
procedure based on the PHAF. Estimate α̂3 is
obtained from the third-order ml-HIM of y (n),
y3 (n; τ 2), whose length is Ns − 2(τ1 + τ2)
(see (2)). Taking (11) yields the length of
y3 (n; τ 2) of Ns/3, implying that small val-
ues of Ns cannot provide accurate estimate α̂3,
which will emphasize the error-propagation ef-
fect. In this paper, we will adopt the minimal
Ns = 28 = 256 samples, which gives the length
of y3 (n; τ 2) of 85 samples. We have experi-
mentally shown that minimal Ns = 128 does
not provide any gain over minimal Ns = 256,
whereas Ns < 128 gives very poor accuracy to
α̂3.

Finally, by observing the steps of the pro-
posed method, as well as the computational
complexity of the PHAF [14], we conclude
that the overall computational complexity is

O(N log2N)
1 , where O(·) represents the big

O notation. On the other hand, the TF-based
jammer suppression methods have the com-
plexity of O

(
N2 log2N

)
[3, 5].

C. Multicomponent jammer suppression

Taking into account the advantages of the
PHAF regarding the estimation of multicom-
ponent signals, the proposed algorithm can be
easily extended to the multicomponent jam-
mer case. Let us assume that the jammer con-
tains NJ components that conform to model
(17), i.e.

J (n) =

NJ∑

i=1

Aie
jφi(n), (24)

where Ai and φi (n) respectively denote the
amplitude and phase of the ith component.
Assuming that NJ is known [13, 14], we
can suppress the jammer starting from the
strongest component. The procedure is a mod-
ification of the estimation algorithm proposed
in [13, Section II] and is given below.

Step 1. Set p = 1.
Step 2. If p = NJ go to step 4. Otherwise,

estimate the phase coefficients α1, α2 and α3
of the strongest component and form θ (n) ac-
cording to (19) (see steps 1 and 2 of the al-
gorithm for the monocomponent jammer sup-
pression).
Step 3. Dechirp the received signal and

suppress the strongest jammer component by
setting at most K corrupted low-pass fre-
quency bins to zero. Reconstruct the signal

1Consider the estimation of α3 from an N samples
long y (n). It is estimated from the DFT of y3 (n; τ 2).
For τ1 = τ2 = N/6, y3 (n; τ 2) has N/3 samples, and
its calculation requires N complex multiplications (see
(2)), or 4N real multiplications and 2N real addi-
tions, giving the complexity of O(N), for both mul-
tiplications and additions. On the other hand, the
calculation complexity of an N/3 samples long DFT
is O(N log2N) multiplications and additions, which is
also the complexity of the fine search frequency estima-
tion [19]. The overall complexity of the α3 calculation
is therefore O(N log2N). The similar reasoning holds
for the α2 and α1 estimation. The dechirping opera-
tion in the algorithm requires N complex multiplica-
tions. The first two steps of the algorithm, therefore,
require O(N log2N) operations, and it can be easily
seen that the same holds for the third step.
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with the strongest component suppressed us-
ing (20). Set p = p+ 1 and go to step 2.
Step 4. Estimate θ (n) of the last compo-

nent and dechirp the received signal. If the
dechirped component occupies no more than
K low-pass frequency bins, suppress it by set-
ting corrupted bins to zero and reconstruct the
jammer-free segment (20). Otherwise, perform
the steps 1—3 for the left half and the right half
of the observed signal. If the length of one half
is less than the minimal considered length (256
samples), do not split the segment but set all
the corrupted frequency bins to zero and re-
construct the jammer-free segment (20).

IV. S
�����
���

The performance of the proposed method
is evaluated for the received signal corrupted
by several jammer types. The phase func-
tions of the considered jammers are given in
Table I. The first three types correspond
to a complex-sinusoid, linear FM (chirp) and
quadratic FM jammer, respectively, whereas
types 4 and 5 respectively conform to an
exponential and sinusoidal model. In addi-
tion, N = 1024, L = 64, ∆ = 1

N
, SJR =

−25dB and SNR = −8dB, i.e., σ2w = 6.31.
The analytical SNRout value for the jammer-
free received signal therefore equals 10.14 (see
(15)). The third-order PHAF is calculated
using five sets of time lags, given as follows:

τ
(1)
2 = (N6 ,

N
6 ), τ

(2)
2 = (11N75 , 14N75 ), τ

(3)
2 =

( 17N120 ,
23N
120 ), τ

(4)
2 = (19N150 ,

31N
150 ), τ

(5)
2 = ( 7N60 ,

13N
60 ),

whereas the second-order PHAF is calculated
using sets τ

(1)
1 = N

4 , τ
(2)
1 = N

5 , τ
(3)
1 =

3N
10 , τ

(4)
1 = 9N

40 , τ
(5)
1 = 11N

40 . All time lags have
to be rounded to the closest integer before use
in the ml-HIM calculation. In time lags selec-
tion, we were guided by recommendation (11).

The proposed PHAF-based filtering is com-
pared to the STFT-based filtering [3] and
LPFT-based filtering [5,6]. Both in the STFT
and LPFT calculation, the Hanning window
with 128 samples is used. The obtained
SNRout and error probability (Pe) values for
all the three methods are given in Table II.
The first five rows of Table II correspond to
the results obtained for monocomponent jam-

mers defined in Table I. The sixth row rep-
resents results obtained in case of a multi-
component jammer that comprises the Type
2 and Type 3 components characterized by
SJR = −22dB and −25dB, respectively. We
also considered the case when the Type 3 jam-
mer is passed through a multipath channel, re-
sulting in a two-component jammer. The di-
rect and delayed components are characterized
by SJR = −25dB and −22dB, respectively.
The delay is N/7. The obtained results are
given in the last row of Table II; in Type 3d ,
d stands for delay. For the monocomponent
jammers, the proposed method slightly out-
performs the other two methods. The differ-
ence in performance is more emphasized with
multicomponent jammers, which is due to the
fact that the proposed method is not affected
by intersections of IF trajectories of jammer
components. On the contrary, in the intersec-
tion area, the LPFT method cannot minimize
the instantaneous bandwidth of jammer’s com-
ponents [5].

Figure 2. presents results obtained when
variable SNR and SJR are considered. In spe-
cific, Fig. 2(a) and 2(b) present Pe and SNRout
curves versus SNR that varies from -15dB to
-6dB, whereas Fig. 2(c) and 2(d) present Pe
and SNRout curves versus SJR that varies from
-110dB to 0dB in increments of 5dB. In both
cases, the Type 3 jammer is considered, and
in the variable SNR case, it is characterized
by fixed SJR = −25dB. In the variable SJR
case, the AWGN with fixed SNR = −8dB
is considered. The variable SNR case indi-
cates that the proposed method slightly out-
performs the other two methods for all the con-
sidered SNRs. On the other hand, in the vari-
able SJR case, the difference in performance
is much more emphasized for smaller SJRs.
The LPFT and STFT curves depart from the
PHAF one at around -40dB [5]. The proposed
method performs approximately the same even
for SJRs around -110dB. For SJR values close
to 0, however, the parameter estimation in the
proposed method does not produce accurate
results, which results in performance degrada-
tion [18—20].

In this section, the numerical Pe and SNRout
values were calculated over 50000 runs, except
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TABLE I

P���
 ���	�
��� �� 	���
�
�
� ����
��

Phase function φ (n)

Type 1 2πN5 (n∆)

Type 2 2π
(
−N
3 (n∆) +

N
3 (n∆)

2
)

Type 3 2π
(
N
7 (n∆)−

37N
41 (n∆)

2 + 41N
63 (n∆)

3
)

Type 4 2π

(
2

ln(N2 )

(
N
2

) 2
3 e

ln(N/2)
3 (n∆) − N

4 (n∆)

)

Type 5 2π N
3π cos

(
7π
9 (n∆

)
+ π

5 )

TABLE II

Pe ��� SNRout ����
� ��� ��
 PHAF-, STFT- ��� LPFT-���
� �
��
�
��

SNRout Pe
PHAF STFT LPFT PHAF STFT LPFT

Type 1 10.10 9.88 9.90 7.11e-4 8.37e-4 8.04e-4
Type 2 10.11 9.35 9.74 6.96e-4 1.11e-3 9.06e-4
Type 3 10.06 9.57 9.69 7.53e-4 1.04e-3 8.88e-4
Type 4 9.75 9.46 9.54 8.73e-4 9.69e-4 9.97e-4
Type 5 10.04 9.62 9.58 8.19e-4 1.05e-3 1.02e-3

Type 2 + Type 3 10.07 8.64 9.16 7.97e-4 1.76e-3 1.22e-3
Type 3 + Type 3d 10.13 8.46 9.68 7.60e-4 2.01e-3 9.82e-4

for the curves in the variable SNR case which
were simulated over 150000 runs.

V. C��	���
��

In this paper, a simple and computation-
ally efficient method for jammer suppression in
DS-SS systems is proposed. The phase of the
jammer is locally approximated by a polyno-
mial, and its coefficients, estimated using the
PHAF, are used to dechirp the received sig-
nal, thus dislocating the jammer to the low-
pass frequency band. The jammer is succes-
sively suppressed by excising the corrupted fre-
quency band of the received signal. In order to
suppress jammers with non-polynomial phase,
we developed an algorithm that adaptively di-
vides the observed time interval so that, within
each segment, the phase of the jammer can be
satisfactorily approximated by a polynomial.
The algorithm is extended so that it can sup-
press multicomponent jammers. Simulations
show that the proposed method outperforms
standard TF based methods used for jammer
suppression, both in the error probability and

calculation complexity.

R
�
�
�	
�

[1] R. L. Pickholtz, D. L. Schilling, and L. B. Mil-
stein, ”Theory of spread-spectrum communica-
tions - a tutorial,” IEEE Transactions on Com-
munications, vol. 30, pp. 855-884, May 1982.

[2] M. G. Amin, ”Interference mitigation in spread
spectrum communication systems using time-
frequency distributions,” IEEE Transactions on
Signal Processing, vol. 45, pp. 90-101, January
1997.

[3] X. Ouyang and M. G. Amin, ”Short-time Fourier
transform receiver for nonstationary interfer-
ence excision in direct sequence spread spectrum
communications,” IEEE Transactions on Signal
Processing, vol. 49, pp. 851-863, April 2001.

[4] O. Akay and G. F. Boudreaux-Bartels, ”Broad-
band interference excision in spread spectrum
communication systems via fractional Fourier
transform,” in Conference Record of the Thirty-
Second Asilomar Conference on Signals, Systems
& Computers, pp. 832-837, 1998.

[5] L. Stankovíc and S. Djukanovíc, ”Order adap-
tive local polynomial FT based interference rejec-
tion in spread spectrum communication systems,”
IEEE Transactions on Instrumentation and Mea-
surement, vol. 54, pp. 2156-2162, December 2005.

[6] S. Djukanovíc, M. Dakovíc, and L. Stankovíc,
”Local polynomial Fourier transform receiver
for nonstationary interference excision in DSSS



A PARAMETRIC METHOD FOR NON-STATIONARY INTERFERENCE... 819

-15 -14 -13 -12 -11 -10 -9 -8 -7 -6

10
-4

10
-3

10
-2

10
-1

SNR [dB]

E
rr

o
r 

p
ro

b
a

b
ili

ty

 

 a

PHAF

STFT

LPFT

-15 -14 -13 -12 -11 -10 -9 -8 -7 -6
0

5

10

15

SNR [dB]

S
N

R
o
u
t

 

 b

PHAF

STFT

LPFT

-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0

10
-3

10
-2

SJR [dB]

E
rr

o
r 

p
ro

b
a

b
ili

ty

 

 c

PHAF

STFT

LPFT

-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0

4

6

8

10

SJR [dB]

S
N

R
o
u
t

 

 d

PHAF

STFT

LPFT

Fig. 2. (a) Pe versus SNR; SJR = −25dB. (b) SNRout versus SNR; SJR = −25dB. (c) Pe versus SJR;
SNR = −8dB. (d) SNRout versus SJR; SNR = −8dB. In all the cases, the Type 3 jammer is considered.

communications,” IEEE Transactions on Signal
Processing, vol. 56, pp. 1627-1636, April 2008.

[7] J. A. Young and J. S. Lehnert, ”Analysis
of DFT-based frequency excision algorithms
for direct-sequence spread-spectrum communica-
tions,” IEEE Transactions on Communications,
vol. 46, pp. 1076-1087, August 1998.

[8] B. Boashash, Time-frequency signal analysis and
processing. Elsevier Science, 2003.

[9] A. Papoulis, Probability, random variables, and
stochastic processes. McGraw-Hill Companies;
3rd edition, 1991.

[10] S. Peleg and B. Porat, ”Estimation and classifica-
tion of polynomial phase signals,” IEEE Transac-
tions on Information Theory, vol. 37, pp. 422-430,
March 1991.

[11] B. Boashash, ”Estimating and interpreting the in-
stantaneous frequency of a signal - part 2: Al-
gorithms and applications,” Proceedings of the
IEEE, vol. 80, pp. 540-568, April 1992.

[12] S. Peleg and B. Friedlander, ”The discrete
polynomial-phase transform,” IEEE Transactions
on Signal Processing, vol. 43, pp. 1901-1914, Au-
gust 1995.

[13] S. Peleg and B. Friedlander, ”Multicomponent
signal analysis using the polynomial-phase trans-
form,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 32, pp. 378-387, January
1996.

[14] S. Barbarossa, A. Scaglione, and G. B. Giannakis,
”Product high-order ambiguity function for mul-
ticomponent polynomial phase signal modeling,”
IEEE Transactions on Signal Processing, vol. 46,
pp. 691-708, March 1998.

[15] D. Pham and A. M. Zoubir, ”Analysis of mul-
ticomponent polynomial phase signals,” IEEE
Transactions on Signal Processing, vol. 55, pp.
56-65, January 2007.

[16] V. Popovíc, I. Djurovíc, L. Stankovíc, T. Thaya-
paran, and M. Dakovíc, ”Autofocusing of SAR
images based on parameters estimated from the
PHAF,” Signal Processing, vol. 90, pp. 1335-1754,
May 2010.

[17] V. Katkovnik, ”A new form of the Fourier trans-
form for time-varying frequency estimation,” Sig-
nal Processing, vol. 47, pp. 187-200, November
1995.

[18] Y. V. Zakharov and T. C. Tozer, ”Frequency es-
timator with dichotomous search of periodogram
peak,” Electronics Letters, vol. 35, pp. 1608-1609,
September 1999.

[19] Y. V. Zakharov, V. M. Baronkin, and T. C. Tozer,
”DFT-based frequency estimators with narrow
acquisition range,” IEE Proceedings Communica-
tions, vol. 148, pp. 1-7, February 2001.

[20] E. Aboutanios and B. Mulgrew, ”Iterative fre-
quency estimation by interpolation on Fourier co-
efficients,” IEEE Transactions on Signal Process-



820 TIME-FREQUENCY SIGNAL ANALYSIS

ing, vol. 53, pp. 1237-1242, April 2005.
[21] S. Djukanovíc, M. Dakovíc, and L. Stankovíc,

”Bit error probability approximation for short-
time Fourier transform based nonstationary in-
terference excision in DS-SS systems,” Signal
Processing, vol. 89, pp. 2178-2184, November
2009.

[22] A. Papoulis and U. S. Pillai, Probability, random
variables, and stochastic processes. McGraw Hill
Higher Education; 4th edition, 2002.


