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Abstract —A time-frequency approach for improved 

instantaneous frequency estimation of noisy signals has 
been proposed. This approach is based on the averaged 
multiple time-frequency distribution obtained by using L-
spectrograms with different values of the scaling 
parameter L. The L- spectrogram with low value of L is 
characterized by large bias and low variance, while higher 
L decreases the bias and increases the variance of the 
instantaneous frequency estimator. The averaged L-
spectrogram is considered to provide a good bias-variance 
compromise, leading to low MSE of the instantaneous 
frequency estimation in the presence of noise. The 
proposed approach has been tested in the experiments with 
different values of signal to noise ratio, showing its 
superior performance when compared to individual L-
spectrograms.    

Keywords — time-frequency signal analysis, L-
spectrogram, averaged multiple distribution 
 

1. INTRODUCTION 
 

Time-frequency analysis has been used in various 
applications in which different types of non-stationary 
signals are encountered. For instance, time-frequency 
tools has been widely applied in radar and sonar 
systems, communications, multimedia systems, 
biomedical signal analysis [1]-[6], etc. Having in mind 
that different applications bring different requirements, 
various time-frequency distributions have been proposed 
[1], [2]. They are usually classified into linear [1], 
quadratic [3]-[5] and higher order distributions [6], [7]. 
In order to provide an accurate instantaneous frequency 
(IF) estimation, time-frequency distributions should 
produce good concentration in the time-frequency plane. 
Namely, the time-frequency distributions should reduce 
the spread factor caused by higher phase derivatives 
especially in the case of fast varying IF. Consequently, 
commonly used quadratic distributions, such as the 
spectrogram and the Wigner distribution, are not suitable 
for analysis of signals with fast varying IF. In such a 
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case, higher order and complex-time distributions [6], 
[7] have been used instead. However, by increasing the 
distribution order, the complexity of its realization 
increases. Additionally,  

the signals are usually corrupted by noise, which 
increases the variance of the time-frequency estimator 
and may significantly affect the precision of IF 
estimation. This is in particular evident in the case of 
higher order distributions, which are more sensitive to 
noise than the quadratic distributions.  

Finally, we may also observe that an efficient time-
frequency distribution should provide a good trade-off 
between bias and variance, while keeping the realization 
as simple as possible [8]-[10]. Therefore, in this paper 
we propose the averaged multiple L-spectrogram, for the 
analysis of signals corrupted by Gaussian noise. The L-
forms of time-frequency distributions have been 
proposed in order to improve the concentration of signal 
components [11]. By increasing the value of parameter 
L, the bias of the L-spectrogram decreases and the 
accuracy of IF estimation is improved. On the other 
hand, larger values of L significantly increase the 
variance, hence producing a large mean square error 
(MSE) of IF estimation in the presence of noise. Thus, to 
reduce the variance, lower values of L should be used. 
Consequently, better bias-variance trade-off can be 
achieved by averaging time-varying spectra obtained by 
using the L-spectrograms with different values of the 
parameter L.  

The proposed approach is, in general, based on similar 
concepts as the multiple windows spectrograms [12]-
[14], which are usually realized by using different 
functions such as Slepian functions, Hermite functions, 
etc. The Slepian functions (Thomson method) have been 
used for stationary spectrum estimation, while for non-
smooth spectra the performance is degraded due to 
cross-correlation between spectra [12]. Thus, in the case 
of time-varying signals, the Hermite functions are used 
to improve the results. The number of functions and the 
optimal weights are usually determined by using 
optimization methods such as the iterative quasi-Newton 
algorithm [12],[13]. Furthermore, it is often necessary to 
calculate the weights for each windowed part of the 
signal [14]. Therefore, in order to simplify the 
calculations and to avoid the optimization algorithms, 
we consider the averaged multiple L-spectrogram, since 
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the bias-variance trade-off can be achieved by simple 
averaging of the L-spectrograms, without using special 
window functions and weighting coefficients.             

The paper is organized as follows. The time-frequency 
analysis based on the L-spectrogram has been reviewed 
in Section II. The averaged multiple L-spectrogram is 
proposed in Section III. The experimental results are 
presented in Section IV, while the concluding remarks 
are given in Section V.  

 

2. TIME-FREQUENCY ANALYSIS BASED ON THE L-
SPECTROGRAM  

 
Time-frequency representations have been used to 

analyze time-varying spectral properties of non-
stationary signals. The commonly used approaches are 
obtained by introducing the time dependence into the 
Fourier analysis using the time windowing technique. 
So, the short-time Fourier transform (STFT) is defined 
as: 

 
( , ) ( ) ( ) ,jSTFT t x t w e d   


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 (1) 
where x(t) is a signal, and w(t) is a window function. The 
spectrogram is the energetic version of STFT and it is 

defined as: 
2

( , ) ( , )SPEC t STFT t  . The main 

drawback of the spectrogram is low time-frequency 
resolution for signals with non-constant IF. 

The L-forms of time-frequency distributions have 
been introduced as a solution for improved concentration 
in the time-frequency domain. They are based on the 
concept of frequency linearization around a considered 
time instant t, provided that the value of IF at the same t 
remains constant. The L-spectrogram has been defined 
as a squared module of the L-STFT [11]: 
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 (2) 
Note that, comparing to the standard spectrogram, the 
lag-coordinate is scaled by L, while the signal is raised to 
the L-th power in order to provide the appropriate IF 
representation. Thus, for L=1 the standard spectrogram is 
obtained, while for L>1, (2) represents a higher order 
distribution. Some properties of the L-spectrogram are 
analyzed in the sequel. 

 
Resolution of the L-spectrogram: Let us assume that 

the signal x(t) is of short duration and concentrated at 
t=0 into an interval 0t  . If the window w(t) is time 

limited to /2t T , then STFTL is time limited to 

/2t T L , hence its time duration is d=T/L. Furthermore, 

if: ( ) xj tx t e  , then: 

( , ) ( ) xjL t
L xSTFT t W e      

holds, where W is the Fourier transform of the window 
function. The width of W() in the case of rectangular 
window is 4 /D T , and consequently, 4 /dD L . 
Thus, by increasing the value of L in the L-STFT, the 
product of durations d and D can become arbitrary small, 
i.e., the resolution can be arbitrary high in both 
directions, simultaneously.  
 

Spreading factor of the L-spectrogram: For a signal 
( )( ) j tx t Ae  , the time-frequency representation 

providing the energy distribution along the IF can be 
generally written as follows: 

 

 
2 ' ( , )( , ) 2 ( ( )) { } ( ),jQ tTFR t A t FT e W

           (3) 
 
where the Fourier transform is denoted by FT, while 

( )W   is the Fourier transform of the window w(t). The 

function ( , )Q t  is called a spread factor defining the 
distribution spread around the IF. It contains different 
higher order derivatives of the phase function ( )t  and it 

depends on the time-frequency distribution. The optimal 
distribution for a certain signal should be concentrated 
along its IF with the smallest possible spread factor. The 
spread factor for the L-spectrogram is given by: 
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We might observe that for larger values of L, the 
influence of higher phase derivatives significantly 
decreases, hence reducing the bias. However, at the same 
time, the variance of IF estimation increases, since the 
signal and noise are raised to power of L. 

 
Signal to noise ratio: In the presence of noise, the 

signal on the L-th power can be approximated as: 

   1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )LL L L L
Lx t s t t s t Ls t t s t t         .

 (5) 
The above approximation holds under the assumption 
that the noise is small with respect to the signal, i.e., 

/ A  is less than 1, where A is the amplitude of signal 

s(t), while 2
  is the variance of the noise ( )t . The 

noise to signal ratio in this case is L2 times higher than 
the original noise to signal ratio: 
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(6) 



3. AVERAGED MULTIPLE L-SPECTROGRAM 

 
In order to provide good compromise between low bias 

and low variance requirements, when the signal is 
corrupted by additive noise, the averaged multiple L-
spectrogram can be defined as follows:   

 

 1

1( , ) ( , ),
K

L
MSpecL t SpecL t

K
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where K is the number of employed L-spectrograms. It 
has been shown experimentally that K=6 provides 
satisfactory IF estimation (in terms of the low estimation 
error) for a fast-varying phase function. Note that by 
using higher K fast IF variations could be followed more 
precisely. However, under the noise influence, the SpecL 
for L>6 might introduce spurious noisy peaks, which 
would significantly degrade the IF estimation precision. 
Hence, K=6 has been chosen as an optimal case for all 
tested signal. The IF is estimated as:  

 
ˆ ( ) arg max( ( , )) ,

Q
t MSpecL t


 
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   (8) 
where  : 0 /(2 ) ,Q T      represents the basic 

interval along the frequency axis. 
 The L-spectrograms in the cases L=1 and L=2 are 
characterized by large bias, while L=4 and L=5, have 
low bias, but quite high variance. The variance of 
MspecL (for K=6) has been measured experimentally 
through simulations, as it has been also analyzed in [8], 
and the results are provided in Section 4. It has been 
shown that the variance of MSpecL tends toward lower 
variances (i.e. toward var{SpecL} for L<3}), while the 
bias of MSpecL tends toward lower biases (i.e., toward 
bias{SpecL}, L=4}). The expressions for bias and 
variance of the MSpecL can be approximated as: 
 

 

2 2

1

1
{ } ,

K
s

i
i

bias E MSpecL MSpecL N L
K


   

   (9) 

 1 12

2 2

1 12

2 2 2 2 4
1 12

1
var ,

1
2

1
2 ,

K K
Li LkL Li k

s sK K
L LL L i ki k

s sK K
L i k i kL L L ki k i

cov Spec Spec
K

STFT STFT
K

STFT STFT L L N L L N
K

  

 

 

 

 

 



 

 

 

 (10) 

 
where s in the superscript of MSpecLs denotes non-noisy 
signal. This approximate variance form is derived in the 
Appendix. When analyzing the terms that reflect the 
noise influence in (10), we have found that the second 

term is approximately less than 
22 22 LN STFT L  for 

L=3.5 and K=6, while the third term is approximately 
less than 2 4 4N L  for L=3.8. Since L should be an 
integer, the above observations are said to be true for 
L=3. We will emphasize again that the worst case 
(rough) approximations have been used, and thus, we 
may say that the analysis corresponds to the 
experimental results.  

3.1. Realization for multicomponent signals 

The cross-terms free version of L-spectrograms (for 
L>1) is calculated by firstly separating signal 
components, as follows: 
- For each time instant we find the position of the 

STFT maximum: 

1( ) arg max ( , , )t STFT t
L

    
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The corresponding signal component is obtained as:  
1

1
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- Set 1 1( , , ) 0, [ , ]STFT t for
L

       , and repeat 

the procedure P times, where P is the expected 
number of components.  

Hence, at each time point, xi(t) will contain only one of 
the signal components, and thus the L-spectrogram can 
be calculated for xi(t) without producing the cross-terms. 
It is important to observe that the cross-terms will be 
completely avoided if the distance between components 
is at least 2  . Note that the width 2   can be 
adjusted to each signal component according to the 
realization given in [15].  In the case when the number of 
components is not known a priori, after removing the 
region around the STFT maximum, we should determine 
next max{ ( , , / )}STFT t L   for remaining part of 

frequency points . If it is higher than an assumed level 
for a signal component, we continue the procedure 
described above; otherwise the procedure is finished.   

4. EXPERIMENTAL RESULTS 

4.1. Example 1 

 
Consider the signal in the form: 

(3/4cos(4 ) 2/3cos( ))
1( ) ( )j t tx t Ae t    . The averaged 

multiple L-spectrogram is calculated for K=6 (L=1,…,6). 
The individual L-spectrograms are shown in Fig. 1.a-f, 
respectively, while the averaged multiple L-spectrogram 
is shown in Fig. 1.g. 

 



 
 

Fig. 1. a) SpecL, L=1, b) SpecL, L=2, c) SpecL, L=3, d) 
SpecL, L=4, e) SpecL, L=5, f) SpecL, L=6, g) MSpecL 
(SNR=15dB) 
 
The variances for MSpecL and SpecL (for L=1,2 and 3) 
are shown in Fig. 2, while the variances of MSpecL and 
SpecL (L=4,5 and 6) are compared in Fig. 3. The 
variance of MSpecL is lower than the variance of SpecL 
for L=3, and thus we may say that it tends toward lower 
variances. On the other hand, the bias of MspecL 
corresponds to the bias of SpecL for L=4 (it tends toward 
lower biases). The MSEs of IF estimation for individual 
L-spectrograms and the MSpecL are given in Table 1. 
Note that the MSpecL provides significantly lower MSE 
than any of the individual L-spectrograms. 

 
TABLE 1: MSE OF IF ESTIMATION FOR L-SPECTROGRAMS FOR 

DIFFERENT VALUES OF L AND FOR THE PROPOSED MSPECL 
 

 SpecL, 
L=1 

SpecL, 
L=2 

SpecL, 
L=3 

SpecL, 
L=4 

SpecL, 
L=5 

SpecL,
L=6 

MSpecL

MSE 47 26 8.9 6.1 3.8 4.4 0.83 
 
 
 

 
Fig. 2. Comparison of variances, measured at each 

frequency point (L=1, L=2 and L=3) 
 

 
Fig. 3. Comparison of variances, measured at each 

frequency point (L=4, L=5 and L=6) 
 

 
Furthermore, the efficiency of the proposed averaged 

multiple L-spectrogram has been tested for different 
values of SNR. From Table 2, it can be observed that the 
MSpecL provides low MSE, which is again quite lower 
than the MSE achieved by the SpecL for different L.

 
TABLE 2: MSE OF IF ESTIMATION FOR L-SPECTROGRAMS (L=1,2,3,4,5, AND 6) AND FOR THE PROPOSED 

MSPECL (FOR THE SIGNAL x1(t)) 
 

SNR 20dB 16dB 13dB 10dB 
SpecL, L=1 47.5 48 48 47 
SpecL, L=2 24.4 30.5 30 38 
SpecL, L=3 9 11.5 20.6 22 
SpecL, L=4 3 6.1 44 69 
SpecL, L=5 2.6 5.3 57 276 
SpecL, L=6 2.5 3 150 538 
MSpecL 0.6 0.7 1.6 9 

 
 

4.2. Example 2 

 
In order to demonstrate that the proposed method can 

be useful even for signals with fast IF variations within a 
few signal samples, we consider a signal: 

 
 

(cos(1.5 ) 1/2cos(3 ) 1/2.5cos(5 ))
2 ( ) ( )j t t tx t Ae t      . 

From Figs. 4 and 5, it can be seen that the multiple L-
spectrogram results in poorer resolution (higher bias) 
when compared to the L-spectrograms for L= 4, L=5 and 
L=6. However, the variance is lower than the variance 
for L=4,5,6, this being due to the benefit gained from 
averaging (Fig. 5). The resulting representation MSpecL 



 

is smoother (lower variance). The MSEs of IF estimation 
are summarized in Table 3.    
 

 
Fig. 4. a) SpecL, L=1, b) SpecL, L=2, c) SpecL, L=3, d) 
SpecL, L=4, e) SpecL, L=5, f) SpecL, L=6, g) MSpecL 
(SNR=15dB), for the signal x2(t) 

 
 

TABLE 3: MSE OF IF ESTIMATION FOR THE SIGNAL x2(t) 
 

 SpecL, 
L=1 

SpecL, 
L=2 

SpecL, 
L=3 

SpecL, 
L=4 

SpecL, 
L=5 

SpecL,
L=6 

MSpecL

MSE 28.2 17.4 7.9 5.6 12 9.8 2.5 

 
 

 
Fig. 5. The estimated variances for MspecL and SpecL for 

L=1,2,3,4,5,6 
 
 

Similar results are obtained for the multicomponent 
signals whose components do not intersect. The 
components are firstly separated to avoid the presence of 
cross-terms, as described in Section 3.1. Each 
component is further processed separately, in the same 
way as in the previous examples. The results are shown 
in Fig. 6. 

 
Fig. 6. a) SpecL, L=1, b) SpecL, L=2, c) SpecL, L=3, d) 
SpecL, L=4, e) SpecL, L=5, f) SpecL, L=6, g) MSpecL 
(SNR=15dB), for the signal x2(t) 
 

4.3 Example 3 

 
Additionally, the performance of MSpecL is tested for 

radar signal, describing the Micro-Doppler signature of 
human leg movements during walking. For the 
realization of L-spectrograms the signal is oversampled, 
i.e., interpolated by 60 samples (the least common 
multiple of L=1,…, 6). Different L-spectrograms and the 
proposed MSpecL are shown in Fig. 7. The signal is 
corrupted by the Gaussian noise with SNR=10dB. We 
may observe that by increasing L, the concentration 
increases, but at the cost of higher noise level. The 
MSpecL produces concentrated representation with 
significantly lower noise influence due to averaging.   

  

 
 

Fig. 7. a) SpecL, L=1, b) SpecL, L=2, c) SpecL, L=3, d) 
SpecL, L=4, e) SpecL, L=5, f) SpecL, L=6, g) MSpecL 

 

5. CONCLUSION 

 
An efficient time-frequency distribution based on the 

averaged L-spectrogram is proposed to improve the 
accuracy of fast varying IF estimation of noisy signals. 
The presented approach yields low bias and low variance 
of the estimator in the presence of additive Gaussian 
noise. Thus, it results into more accurate IF estimates 



 

than each of the individual L-spectrograms. The low 
MSEs of IF estimation are achieved even for noisy 
signals with fast phase variations. 

 

APPENDIX 

 
The variance of the MspecL can be calculated as: 
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After some mathematical manipulations and having in 
mind that for complex white Gaussian noise we have: 
E{ν(i1)ν(i2)}=0, E{ν*(i1)ν*(i2)}=0, the above expression 
becomes: 
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where: 
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Here it is assumed that 1( ) ( ) ( ) ( )L L Lx t s t Ls t t  and 
w(m1,m2)=w(m1)w(m2).  
Furthermore, by considering the rectangular window w 
and the signal with unit amplitude, a rough 
approximation of the variance is obtained as: 
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