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1Abstract- A modification of standard compressive sensing 
algorithms for sparse signal reconstruction in the presence of 
impulse noise is proposed. The robust solution is based on the L-
estimate statistics which is used to provide appropriate initial 
conditions that lead to improved performance and efficient 
convergence of the reconstruction algorithms. 
 
Keywords –reconstruction algorithms, Basis Pursuit, Orthogonal 
Matching Pursuit, robust statistics, L-statistics 
 

1. INTRODUCTION 

 
High variance impulse noise causes large errors 

when using standard sparse signal reconstruction 
algorithms [1]-[5]. The effect of impulsive noise can be 
mitigated by applying robust approaches. For instance, 
the myriad projections and nonlinear constraints based on 
the Lorentzian norm have been employed within the 
Basis Pursuit (BP) algorithm, producing improved results 
over the standard BP and Orthogonal Matching Pursuit 
(OMP) [8]. However, an efficient optimization of the 
Lorentzian norm requires complex parameter adjustments 
and exhaustive search procedures. Also, as stated in [8], 
the myriad projections used for signal measurements are 
computationally demanding compared to linear 
projections, since an optimization problem is solved for 
each projection. In [9], the 0ℓ  regularized least absolute 
deviation regression model is combined with weighted 
median regression to obtain an approximate solution. 
This method also requires many computations, with the 
parameter selection (e.g., number of iterations and 
decaying speed) based on trial and error. In this paper, 
we propose a simple and effective CS-approach that 
combines the basic forms of reconstruction algorithms 
such as BP and OMP with the L-statistics. The latter is 
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incorporated in the initialization phase of the BP and 
OMP. Different from [8], no assumption of sparsity in 
the time domain is invoked. However, the signal is sparse 
in the transform domain, as it is often case in practice. In 
this paper, we also assume that the amplitudes of the 
impulse noise samples are not sufficiently large to be 
filtered out by myriad projections.  

2. THEORETICAL BACKGROUND  

 
We observe a one-dimensional signal f of length N, 

which can be represented as a linear combination of the 
orthonormal basis vectors as [1]: 

 

 1
0( ) ( ) :N

k kkf n x n or f xψ−
== =Ψ∑ , (1) 

 
where Ψ represents an orthonormal basis matrix, while x 
represents a vector of transform domain coefficients. If 
the number of non-zero coefficients in x is S, then we 
may say that f is S-sparse in the domain defined by Ψ. A 
set of M random measurements are made through linear 
projections y f= Φ  where Φ (MxN) is the measurement 
matrix. Accordingly, we may write: 
 

 y x Ax=ΦΨ = , (2) 

where A is the thinned sensing matrix. The reconstructed 
signal is obtained as a solution of M linear equations with 
N unknowns. This system is under-determined and can 
have infinitely many solutions. Thus, optimization 
algorithms based on 0ℓ - norm minimization are used to 
search for the sparsest solution. In practice, the near-
optimal solutions based on the 1ℓ - norm minimization are 
commonly used: 

 ɶ ɶ

1
min x subject to y Ax=

ℓ
. (3) 

The above problem can be solved, for example, by the 
commonly used simplex and interior point methods (e.g., 
primal-dual interior point method) [5], or by using greedy 
algorithms such as OMP that will provide an 
approximate solution.   
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3. MOTIVATION  

 
Assume that the desired noise-free signal is sparse in a 

certain transform domain. The impulse noise, if 
transformed through a linear combination of the time-
domain samples, will no longer be impulsive in nature 
and will infringe over all samples. This causes the sparse 
signal domain to be populated, rather than sparse, when 
considering the impulse noise. For example, consider a 
sinusoidal signal at the frequency k0. The discrete Fourier 
transform of f(n) corresponds to the delta pulse at the 
frequency k=k0: 

 
02 /

0( ) ( ) ( )
FTj k n Nf n Ce F k CN k kπ δ→= = −← , (4) 

where C denotes the signal amplitude, while N is the 
number of samples. For the signal f(n) we can state that it 
is sparse in the strict sense. On the other hand, for the 
noise represented by an impulse at the instant n=n0, the 
Fourier transform is given in the form: 
  

 

02 /
0( ) ( ) ( )

FT j kn Nn I n n V k Ie πν δ →= − =← ,   (5) 
 
where I denotes the impulse amplitude. Hence, it is 
obvious that each impulse in the time domain is 
transformed into a sinusoid in the frequency domain, and 
as such, when added to f(n), compromises  the signal 
sparseness property. Hence, generally, the data

( ) ( ) ( )f n f n nν ν= +  is non-sparse in both time and 
frequency domains. A special case is when I assumes a 
small value. In this case, ( )f nν is nearly sparse, since 

( )V k will be negligible compared to ( )F k . Signal 
sparseness is likely to be lost when dealing with noise of 
multiple impulses. Hence, there is a need to subdue the 
noise contributions at the onset. That is, the initial 
condition of the iterative method adopted in the solutions 
of equation (3) should be impulse-free to ensure 
algorithm convergence to reasonable solutions.   
  

4. L-ESTIMATE FORMS OF SIGNAL 

RECONSTRUCTION METHODS 

 
In the case of impulse noise, the L-estimate form [10]-

[12] of the initial Fourier transform domain vector x0 is 
used in the optimization to provide efficient 
reconstruction. Hence, in the sequel, we propose the L-
estimate primal-dual interior point method as well as the 
L-estimate version of OMP.  

4.1 L-estimate primal-dual interior point method 

 
In the case when x, A and y are real, the optimization 

problem given by (3) can be recast as the linear program:  

1
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 (6) 
with initial condition, 
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where 1
0

1
M

ii
a

−
= =∑ , frequency range is k=0,…,N-1, while 

L is the L-estimation operator. The coefficients ai should 
be defined to provide impulse-free representation. Note 
that the sequence of elements Ys is sorted into non-
decreasing order. In order to provide noise free x0, we 
should omit 2 ( 2)Mα − of the highest amplitudes, while 
the mean is calculated over the rest of the values. Hence, 
the coefficients ai are defined as follows: 

 

1
, for [0, (1 2 ) 4 ]

(1 2 ) 4

0, elsewhere,
i

i M
Ma

α α
α α

 ∈ − + − +=

  (8) 

 
where M is even. The variable  α takes values within the 
range [0, 1/2]. The proper value of α should be chosen 
according to the expected amount of noisy samples. 
Now, the modified procedure can be summarized as: 
 

1. Determine x0=L{ y} for the known measurement 
vector y and set x=x0 for the first iteration 

2. Set u=u0, λ1 and λ2 (which can be set using x0, 
e.g.: { }0 00.95 x  + 0.10max ,x  λ1=-1/(x0-u0), 

λ2= -1/(-x0-u0)) 
3. Minimization problem can be observed using 

Lagrangian: 
  ( )1 1 1 1 2 2

( , , , , ) ( )x u v f u v Ax y f fλ λ λ λΛ = + − + + ,  (9)  

where 
1 2

( )v A λ λ=− −  

4. Solve a system of equations obtained by finding 
the first derivatives of Λ in terms of x, u, v, λ1 
and λ2, to compute Newton steps, ∆x, ∆u and ∆v. 

5. Update the values of variables for the next 
iteration. The step length is calculated using 
backtracking line search. 
 

5.1 L-estimate OMP 

 
OMP is a greedy signal reconstruction algorithm that 

in each iteration searches for the maximum correlation 
between the measurements and the transform matrix. 
Thus, through the iterations it selects a certain number of 
transform matrix columns, where this number is defined 
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by the given number of iterations. The least square 
optimization is performed afterwards in the subspace 
spanned by all previously picked columns. In the case of 
impulse noise, the L-estimate form of measurements 
vector can be obtained by calculating firstly the L-
estimate of the initial transform domain vector x=x0, as in 
the previously described case. Hence, the L-estimate 
OMP algorithms can be described as follows: 
Step 1: Determine x0(k)=L{ y}, (k=0,…, N-1), for the 
known measurement vector y, 
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(10) 
Step 2: Set yL =Θx0 and Θ=Ψ (ϑ), Ψ is the Fourier 
transform matrix.   
Step 3: Set the initial residual r0=yL and Ω =∅0 . 
Step 4: Find the maximum correlation column: 

 
1arg max ,i i j

j
rω −= Θ

. (11) 
Step 5: Update the set:  1i i iω−Ω =Ω ∪ . 
Step 6: Solve the least square optimization problem: 

 2
1 1 2arg mini i i ix

x r x− −= −Ω . (12) 

Step 7: Update the residual: 1 1i i i ir r x− −= −Ω . 
Step 8: Update i=i+1 and go to Step 3 if i<K.  
  

5. SIMULATION RESULTS 

 
Example 1:  
 
Consider a signal which is the sum of five sinusoids 
corrupted by additive impulse noise: 

5
1( ) sin(2 ( ) / ) ( )if n k i n N nπ ξ== +∑ , 

where [25, 45, 80, 100, 176]k = ,t=[0,1,…,N-1], N=1000. 
The number of observations used for the signal 
reconstructions is M=300, i.e., 30% of the total number 
of samples. In this example, the parameter α=0.07 is 
used, which means that 16% of time samples are 
assumed to be corrupted by noisy pulses. The original 
non-noisy signal and its Fourier transform (FT) are 
shown in Fig 1.a and Fig 2.a, respectively, while the 
noisy signal and its FT are shown in Fig 1.b and Fig 2.b. 
The desired signal reconstructed by the standard BP 
primal-dual algorithm is shown in Fig 1.c, whereas its FT 
is shown in Fig 2.c. We can observe that the noise is 
spread across the frequency spectrum. Finally, the 
respective results obtained using the proposed algorithm 
are shown in Fig 1.d and Fig 2.d. 

 
 

 

 
Fig. 1. Time domain representations: a) Original clean signal, b) 
Original noisy signal, c) Reconstruction using standard primal-dual 
algorithm, d) Reconstruction using L-estimate primal-dual algorithm 

 

 
Fig. 2 Fourier domain representation: a) Clean signal, b) Noisy signal, 
c) Reconstructed FT using standard primal-dual algorithm, d) 
Reconstructed FT using L-estimate primal-dual algorithm 
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Example 2:  
 
In this example, we will briefly illustrate the performance 
of the L-estimate OMP. Similarly as in the previous 
example, let us now consider a set of 10 sinusoids, 
defined by the set of frequencies

[32,   80,  176,  267,  300,  350,  400,  560,  600,  680]k =
and unit amplitudes. The observations used for the signal 
reconstructions include only 28% of the total number of 
signal samples. Again, parameter α=0.07 is used (16% of 
measurements are assumed to be corrupted by strong 
noisy pulses). The original noise free and noisy signals 
are shown in Fig. 3a and b, respectively. Time domain 
representation of reconstructed signal using the L-
estimate OMP algorithm is shown in Fig. 3c.  
 

The original signal Fourier transform is shown in Fig 
4.a, the Fourier transform obtained by applying standard 
OMP to the noisy signal is given in Fig 4.b, while the 
Fourier transform obtained by applying the proposed L-
estimate OMP is shown in Fig 4.c. It is obvious that the 
standard OMP algorithm (Fig 4.b) fails due to the strong 
impulse noise, producing false components at the 
frequencies where the components do not appear in 
original signal. On the other hand, the proposed approach 
succeeds to recover all signal components, producing 
sometimes just negligible difference in amplitudes.  

    

 
 

Fig. 3 Time domain representations: a) Original clean signal, b) 
Original noisy signal, c) Reconstruction using L-estimate OMP 
algorithm 

 

 
 

Fig. 4. Fourier transform of: a) Original clean signal b) standard OMP 
reconstructed signal, c) Recovered signal using L-estimate OMP 

 
Finally, we may conclude that the proposed 

algorithm is shown not to be sensitive to the choice of M. 
Namely, it is only important that the number of available 
samples after the L-estimation  
( (1 2 ) 4M α α− + ) is sufficient for CS algorithm 
convergence. Generally, the procedure is efficient as long 
as (1 2 ) 4M α α− +  is above 20% of the total original 
signal length. Excessive number of missing samples, for 
example more than 85% of values, tends to significantly 
compromise performance. This topic has been intensively 
studied in [13], including the influence of the number of 
missing samples to the ability of CS reconstruction. 
 

6. CONCLUSION 

 
Sparse signal reconstruction methods based on the 
standard optimization algorithms (BP and OMP) 
combined with L-statistics are proposed. These methods 
retain all of the advantages of standard methods, while 
converging toward the correct signal recovery when 
dealing with additive impulse noise. This is achieved 
without introducing computationally complex constraints 
and minimization norms. 
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