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L incorporated in the initialization phase of the BRd
Abstract A modification of standard compressive sensingoNMP. Different from [8], no assumption of sparsity
algorithms for sparse signal reconstruction in theresence of .' oo ' . .
impulse noise is proposed. The robust solution &sséd on the L- _the time domain is '”V‘?ked- quever’ the sgnaﬂparse
estimate statistics which is used to provide appiaie initial m'the transform domain, as it is often case ircfaea. In
conditions that lead to improved performance andfigént this paper, we also assume that the amplitudesef t
convergence of the reconstruction algorithms. impulse noise samples are not sufficiently largebéo

_ _ , _ filtered out by myriad projections.
Keywords —reconstruction algorithms, Basis Pursui@rthogonal
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2. THEORETICAL BACKGROUND

1. INTRODUCTION We observe a one-dimensional sigfabf length N,
which can be represented as a linear combinatidheof

High variance impulse noise causes large erropfthonormal basis vectors as [1]:
when using standard sparse signal reconstruction N
algorithms [1]-[5]. The effect of impulsive noisarcbe f(N)=> 0%k ) or: f=Wx, Q)
mitigated by applying robust approaches. For irsan
mg Tﬁ:‘g‘gtggeﬁtg;s agsenObnélg:a;:q%r;s;:aaénﬁ?m n thv‘géhereqJ represents an orthonormal basis matrix, wkile
Basis Pursuit (BP) algorithm, producing improvestles represents a vector of transform domain coeffisiefft

over the standard BP and Orthogonal Matching PUI‘SltJri]e number of non-zero coefficients mms S then we

(OMP) [8]. However, an efficient optimization of eth may say that is S-sparse in the domain defined'ByA

Lorentzian norm requires complex parameter adjut?,txsneSet_Oﬂ\_/I random measurements are made through linear
and exhaustive search procedures. Also, as statfg],i Projectionsy=of where® (MxN) is the measurement
the myriad projections used for signal measuremergs matrix. Accordingly, we may write:

computationally demanding compared to linear

projections, since an optimization problem is sdivVer y=0Wx=Ax, (2)

each projection. In [9], thé regularized least absolutewhereA is the thinned sensing matrix. The reconstructed
deviation regression model is combined with weightesignal is obtained as a solutionMflinear equations with
median regression to obtain an approximate solutioN unknowns. This system is under-determined and can
This method also requires many computations, with thave infinitely many solutions. Thus, optimization
parameter selection (e.g., number of iterations a@tgorithms based oriy- norm minimization are used to
decaying speed) based on trial and error. In thjep search for the sparsest solution. In practice, rtbar-

we propose a simple and effective CS-approach thgtimal solutions based on thig- norm minimization are
combines the basic forms of reconstruction algorith commonly used:

such as BP and OMP with the L-statistics. The fatte o~ ) -
mm”x”é1 subject to y=Ax. 3
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3. MOTIVATION min) u subjectto  f;=x-u<0,
u

. : _ L fo =—x-u<0,
Assume that the desired noise-free signal is sparae
certain transform domain. The impulse noise, if AX=Y,
transformed through a linear combination of theetim A f1=0, A,f,=0, ©)
domain samples, will no longer be impulsive in matu

and will infringe over all samples. This causessharse  With initial condition,

signal domain to be populated, rather than spavken

considering the impulse noise. For example, conside X(K) =% (K) = Ly :Zi'\iglaiYs(i),
sinusoidal signal at the frequenky The discrete Fourier _j2mkiM

transform off(n) corresponds to the delta pulse at the Ys =sort{y(me , m=0,..M -1} )

frequencyk=ko:
f(n)=CeZe™ O ff- F(k)=CNo(k—ko) (4 wherez:\f_o_laizl, frequency range is=0,...N-1, while

where C denotes the signal amplitude, whileis the | s the L-estimation operator. The coefficieatshould
number of samples. For the sigf@) we can state that it pe defined to provide impulse-free representatidote
is sparse in the strict sense. On the other hatdthe that the sequence of elements is sorted into non-
noise represented by an impulse at the instang, the decreasing order. In order to provide noise fxgewe
Fourier transform is given in the form: should omit 2a (M -2)of the highest amplitudes, while

. the mean is calculated over the rest of the valdeace,
v(n)=1d(n-ny) O %_) V (k) = 1e/2*o/N . (5) the coefficientsy; are defined as follows:

1 , for iC[O,M (1- 20 )+ 4r |

where | denotes the impulse amplitude. Hence, it is & =yM(1-20)+4
obvious that each impulse in the time domain is 0, elsewhere, 8
transformed into a sinusoid in the frequency domaimd (®)

as such, when added ffn), compromises the signal

sparseness property. Hence, generally, the d¥fRereM is even. The variablex takes values within the
f,(n)=f(n)+v(n) is non-sparse in both time and'@N9e [0, 1/2]. The proper value afshould be chosen

. . . according to the expected amount of noisy samples.
frequency domains. A special case is wheassumes a e ; .
. . ) Now, the modified procedure can be summarized as:
small value. In this casef,(n)is nearly sparse, since

V (k) will be negligible compared toF(k). Signal 1. Determinex;=L{y} for the known measurement
sparseness is likely to be lost when dealing witisen of vectory and sek=x, for the first iteration

multiple impulses. Hence, there is a need to sulidee 2. Setu=ug, A; andA, (which can be set using,x
noise contributions at the onset. That is, theiainit e.g.: 0.95x| +0.10ma{<|X0[} A=-1/(Xo-Ug),

condition of the iterative method adopted in thieitions ~

of equation (3) should be impulse-free to ensure )‘2_‘_'1((')‘0_"‘0)) )

algorithm convergence to reasonable solutions. 3. Minimization problem can be observed using
Lagrangian:

AXUVA A )= V(A=) +A F+AF L (9)
wherev:—A(/}l—/lz)

4. Solve a system of equations obtained by finding

) ) ] the first derivatives of\ in terms ofx, u, v, Ay

In the case of impulse noise, the L-estimate fat6j-[ and\,, to compute Newton stepsx, Au andAv.
[12] of the initial Fourier transform domain vectey is Update the values of variables for the next

used in the optimization to provide efficient iteration. The step length is calculated using
reconstruction. Hence, in the sequel, we proposelth backtracking line search.
estimate primal-dual interior point method as veallthe

L-estimate version of OMP.

4. L-ESTIMATE FORMS OF SIGNAL
RECONSTRUCTION METHODS

. . S . 5.1 L-estimate OMP
4.1 L-estimate primal-dual interior point method

L OMP is a greedy signal reconstruction algorithnt tha
In the case wher, A andy are real, the optimization j, each iteration searches for the maximum coielat

problem given by (3) can be recast as the line@gm@am:  peotween the measurements and the transform matrix.
Thus, through the iterations it selects a certaimioer of
transform matrix columns, where this number is ri



by the given number of iterations. The least square
optimization is performed afterwards in the subspac
spanned by all previously picked columns. In thgecaf

impulse noise, the L-estimate form of measurements blh H uw ' I\

vector can be obtained by calculating firstly the L =k - 00 o 500 7000
estimate of the initial transform domain vecteK,, as in Time (samples)
the previously described case. Hence, the L-estimat

OMP algorithms can be described as follows:

Amplitude
o w

Sep 1: Determine(K)=L{y}, (k=0,...,N-1), for the 3 h I
known measurement vectgr £ poyefaifopdey o
£
M1 0 200 490 600 800 1000
Xo(k) - L{)} - Zi:o a|Y4 b’ Time (samples)
_ b)
Y =sort{y(m e MM m=0,...M -1 L
\Nhlle ﬂzarg{wrt(y(mp—jzmﬂ(/l\ﬂ , m= 01M _ )} % 0 J“Jvllv,J/«"_'A .quA Lmlnywl ';\‘ A ‘ '.\‘l " J]»L o) VA[L Ak,
IS
(10) “ 20
. . 0 200 400 600 800 1000
Sep 2: Sety, =Ox, and O=W (F), W is the Fourier Time (samples)
transform matrix. Q)
Step 3: Set the initial residuab=y, and Qg =0 . 0
Sep 4: Find the maximum correlation column: E 0 | MW |
@ =arg m.a>+<ri—1 O >‘ & :
J . (11) o 200 400 600 800 1000
Step 5: Update the setQ; =Q; 10 . Time (samples)

d)
Fig. 1. Time domain representations: a) Original clegnai, b)
¥ =arg mirﬂri—l_Qi Xi—1||2- (12)  Original noisy signal, ¢) Reconstruction using sl primal-dual
X 2 algorithm, d) Reconstruction using L-estimate ptiohaal algorithm

Sep 6: Solve the least square optimization problem:

Sep 7: Update the residuak; =r 1 —Q; X1 .

1000
Sep 8: Updatd=i+1 and go to Step 3ii€K. =
= 500
£
<C
5. SIMULATION RESULTS % 200 400 600 800 1000
Frequency (samples)
)
Example 1: | ’
500 1 i
(]
Consider a signal which is the sum of five sinusoid 3 :
corrupted by additive impulse noise: 2
5 g < % 200 400 600 800 1000
f (n) - z:i=lsm(2nkq h IN )+€(n)’ Frequency (samples)

wherek =[25, 45, 80, 100, 17¢t=[0,1,...N-1], N=1000.
The number of observations used for the signal 300
reconstructions i$1=300, i.e., 30% of the total number ‘ 1
of samples. In this example, the parameted.07 is PRREY| SRS S ol L
used, which means that 16% of time samples are 0 Y WWWWNWWMWMW
assumed to be corrupted by noisy pulses. The aligin 0 200 Fre;‘ggncy(sanfgfés) 800 1000
non-noisy signal and its Fourier transform (FT) are

shown in Fig 1.a and Fig 2.a, respectively, whhe t

b)

Amplitude
8

Q)

1000
noisy signal and its FT are shown in Fig 1.b arglZb. g
The desired signal reconstructed by the standard BP 2 500
primal-dual algorithm is shown in Fig 1.c, wheréasT f&j o ’ ]
is shown in Fig 2.c. We can observe that the nise 0 200 400 600 800 1000
spread across the frequency spectrum. Finally, the Frequency (samples)
respective results obtained using the proposeditigo d)
are shown in Fig 1.d and Fig 2.d. Fig. 2 Fourier domain representation: a) Clean signaNdiyy signal,

c) Reconstructed FT using standard primal-dualrétya, d)
Reconstructed FT using L-estimate primal-dual atgor



Example 2:

Amplitude
o
wv

In this example, we will briefly illustrate the pemmance

of the L-estimate OMP. Similarly as in the previous 0 1 202requzggy(sa§;es) 200 600 700
example, let us now consider a set of 10 sinusoids, a)
defined by the set of frequencies o 2F
k=[32, 80, 176, 267, 300, 350, 40860, 600, 68( 3
and unit amplitudes. The observations used fositpeal g 1
reconstructions include only 28% of the total humbke = 00 100 200 300 400 500 600 700
signal samples. Again, parameter0.07 is used (16% of Frequency {samples)
measurements are assumed to be corrupted by strong b)
noisy pulses). The original noise free and noignais o 1
are shown in Fig. 3a and b, respectively. Time doma 3 05
representation of reconstructed signal using the L- 2
estimate OMP algorithm is shown in Fig. 3c. < 0
0 100 200 300 400 500 600 700
The original signal Fourier transform is shown ig F FrequencygampleS)

4.a, the Fourier transform obtained by applyingndéad
OMP to the noisy signal is given in Fig 4.b, whilee Fig. 4. Fourier t(ansform of: a) Origingl clean.signalslandard OMP
Fourier transform obtained by applying the propoked reconstructed signal, ¢) Recovered signal usingtlrrate OMP
estimate OMP is shown in Fig 4.c. It is obvioust tthee
standard OMP algorithm (Fig 4.b) fails due to ttrersy
impulse noise, producing false components at t
frequencies where the components do not appear o
original signal. On the other hand, the proposem@ach samples after the. L-estlm_at_lon .
succeeds to recover all signal components, progucig\/I (-2oy+4z) is sufficient for C?S _al_gonthm
sometimes just negligible difference in amplitudes. convergence. Generally, the procedure is efficsribng
as M(1-2a)+4a is above 20% of the total original
10 T ; j signal length. Excessive number of missing samptes,
‘ ‘ ‘ 3 example more than 85% of values, tends to sigmifiga
compromise performance. This topic has been intehsi
studied in [13], including the influence of the noen of

0 100 200 300 400 500 600 700 missing samples to the ability of CS reconstruction
Time (samples)
a)

Finally, we may conclude that the proposed
orithm is shown not to be sensitive to the chatM.
ﬁlmely, it is only important that the number of itatale

0

Amplitude

-10

g 20 ' 6. CONCLUSION
R MO e e R M
£ 20 Sparse signal reconstruction methods based on the
0 100 200 300 400 500 600 700 standard optimization algorithms (BP and OMP)
Time (samples) combined with L-statistics are proposed. These austh

retain all of the advantages of standard methodilew
converging toward the correct signal recovery when
dealing with additive impulse noise. This is acleidv
without introducing computationally complex congtta
and minimization norms.

Amplitude

0 100 200 300 400 500 600 700
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