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Abstract - A procedure for image watermarking in the presence 
of compressive sampling is proposed. The randomly chosen 
measurements from image blocks are used to carry the 
watermark. The image reconstruction based on a set of 
watermarked measurements is performed using the total 
variation minimization algorithm, allowing good quality of 
recovered image. The watermark can be efficiently detected 
within the recovered image, but only if we know the random 
measurement matrix used for image acquisition. This provides 
secure watermarking scenario. The watermark detection is tested 
in the examples using various images.   
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I.  INTRODUCTION 

 
 According to the Shannon-Nyquist sampling theorem, 
signal information is preserved only if the signal is sampled at 
the rate that is at least twice higher than the maximal signal 
frequency. In the case of signals characterized by high-
frequency content or in the case of high resolution images, this 
will result in large number of samples. Storing and 
transmission of these signals may be difficult and sometimes 
not feasible. Also, in some applications such as medical and 
radar imaging, increasing sampling rate can be very 
expensive. In the last few years, a method called Compressive 
Sensing/Sampling (CS) has been developed, as an alternative 
for signal acquisition [1]-[7]. Under the certain conditions, the 
signals can be reconstructed from a small number of random 
measurements, whereas the signal must fulfill certain 
conditions, such as sparsity. The information about sparse 
signal is contained in the significantly smaller number of 
coefficients, compared to the total length of the signal. The 
reconstruction of CS signals is based on different optimization 
algorithms. For instance, in image applications, total variation 
(TV) minimization algorithms are usually applied. When 
dealing with a small incomplete set of randomly chosen image 
samples, we can hardly apply standard image processing 
algorithm. However, we still have to provide some data 
protection algorithms, such as digital watermarking [8]-[12]. 
The watermark embedding and detection are usually done in 
DFT, DCT, DWT domain or in time-frequency domain using 
time-varying mask [13]. In this paper we deal with 
watermarking of compressive sampled images based on sparse 
DFT image representation. Further, we analyze the possibility 
to reconstruct image from such a small set of data, in order to 

provide successful watermark detection after image 
reconstruction.      

 The paper is organized as follows. After the Introduction, 
in Section II we present the basic theoretical concepts 
belonging to the compressive sensing approach. Section III is 
devoted to TV reconstruction methods. The combined 
compressive sensing and watermarking procedure is proposed 
in Section IV. The results of image reconstruction and 
watermark detection are presented experimentally in Section V. 
The concluding remarks are given in Section VI.      

II. COMPRESSIVE SENSING 

 
 Nowadays, the CS has been used in various applications 
involving one-dimensional and two-dimensional signals [1]-
[7], that appear in antenna arrays, indoor and SAR imaging, 
communications, remote sensing, multimedia applications, etc. 
CS deals with the signals which are sparse in a certain 
transform domain. It means that the signals have concise 
representations when expressed in the proper basis. The sparse 
signal to be recovered can be sparse in its own domain or in 
some of the transform domains that might be based on DFT, 
DCT, or using any other orthogonal basis expansion. Sparse 
approximation in orthogonal bases is the essence of many 
efficient compression and denoising algorithms. In general, a 
signal which is K sparse in a specific domain can be 
completely characterized by M measurements (M>K) with 
M<<N, where N is the number of samples imposed by the 
Shannon-Nyquist theorem.  
 Let us consider a discrete–time signal x of length N. Any 
signal can be represented in terms of basis vectors as follows:  
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where is  represents the transform domain coefficient, iψ  is a 

basis vector, ψ denotes NxN transform matrix whose columns 

are basis vectors. If only K transform coefficients from s have 
non-zero values, we can say that x is K-sparse in transform 
domain defined by ψ .   

Signal measurements are acquired from the domain where 
signal have “dense” representation, where M<<N holds. 
Despite the dimensionality reduction, the information needed 
to recover the signal is well preserved, if the procedure 



satisfies certain conditions. Firstly, the measurement matrix φ  

must be incoherent with the basis matrix ψ . The coherence 

between two matrices measures the largest correlation 
between any two elements of matrices [5]: 
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where N is the signal length, kφ  and jψ are row vector and 

column vector of the φ  and ψ  matrices, respectively. The 

coherence has values in the range: 
 

 1 ( , ) ,Nµ φ ψ≤ ≤  (3) 

and it increases as the elements of two matrices are more 
correlated. Lower coherence between φ  and ψ  leads to a 

smaller number of measurements required to recover the entire 
signal. This number can be estimated as follows:  
 
 log( / ),M cK N K≥  (4) 

 
where c is a constant. The case of interest is when the number 
of the required measurements is much smaller than the length 
of the signal. If the measurement vector is denoted as y, then 
the signal measuring procedure can be defined using the 
measurement matrix φ as follows: 
 
 x1 x x1,M M N Ny xφ=  (5) 

 
where φ  is measurement matrix. From (1) and (5) follows: 

 
 .y x s sφ φψ θ= = =  (6) 

 
The system of equations defined by (6) consists of M 
equations with N unknowns. Therefore, the system is 
undetermined (M<<N) and has infinite number of solutions. In 
order to obtain optimal solution, various minimization 
algorithms have been used. Each of them is based on finding 
the sparsest solution. It is shown that optimal results are 
provided by using optimization techniques based on the 

1l − minimization: 
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where sɵ  is a solution of the minimization problem, whereas 
the  1l − norm of vector s is defined by: 
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The problems in CS can be recast as linear programs or they 
can be recast as second-order cone programs. Generally, the 
linear programming problems are usually solved using the 
basis pursuit primal-dual methods, while the second-order 

cone programs are solved using a generic log-barrier 
algorithm.   
 

III.  TV MINIMIZATION ALGORITHM  

 

If the underlying signal is a 2D image, an alternative 
recovery model is that the gradient is sparse. One of the 
approaches used in various image processing applications is 
based on the total-variation of an image [7]. An example of 
using the TV method is in denoising and restoring of noisy 
images. If 0nx x e= +  is a “noisy” observation of x0, we can 
restore x0 by solving the following minimization problem [7]:  
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where 
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 should hold and TV denotes the total-

variation. The total-variation of x represents the sum of the 
gradient magnitudes at each point and can be approximated as: 
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where the gradient is defined as: 
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The equality constrained TV minimization problem for a 
measurements vector y and a sparse vector of transform 
domain coefficients s can be defined as follows: 
 
 min ( ) . .

s
TV s s t y sθ= . (12) 

 
The TV based denoising methods tend to remove the noise 
while retaining the details and edges in an image. Thus, in the 
presence of noise we may write: 
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It can be recast as the second-order cone problem: 
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which can be solved using the second-order cone 
programming based on the log-barrier method.  
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Figure 1.  A scheme of CS watermarking procedure 

IV.  CS WATERMARKING PROCEDURE 

 
 In the applications that require compressive sampled 
images either due to the storage or transmission facility, the 
watermarking cannot be performed in the standard manner and 
the scenario should be adapted to the compressive sensing 
principles. In these circumstances, the watermark embedding 
can be done only within the set of measurements, since these 
are the available samples. The block scheme of the 
watermarking system is given in Fig. 1. 

The image is firstly divided into blocks and the 
measurements are selected from each block individually. The 
samples are taken from the spatial domain where the signal is 
dense. The DFT coefficients are considered for sparse 
representation and reconstruction using TV minimization 
algorithm. Thus, we have: 
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where Ik represents the k-th image block of size NxN, yk is a 
vector of measurements for the k-th block, whereas Fk is the 
vector of k-th block Fourier coefficients. The watermark 
embedding is done as follows: 
    
 ,kw k ky y wα= +  (16) 
where the parameter α controls the watermark strength. 
Watermark is created as a pseudo-random sequence, and the 
watermark length is determined by the number of 
measurements M. At the decoder side, the watermarked 
measurements are used for image reconstruction based on the 
TV minimization algorithm: 
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where Rk is the reconstructed image. 

A.   Watermark Detection 

A blind watermark detection is done using the standard 
correlation detector, applied to the watermarked coefficients:  

 ( ) iw i
i

Det w y w=∑ . (18) 

Hence, during the watermark detection procedure we need 
the random measurement matrix φk, in order to select the 
watermarked measurements. Otherwise, the watermark cannot 
be detected, and φk actually provide a high level of security.   

For any wrong trial (wrong key), Det(w)>Det(wrong) 
should hold. The detectability index, from signal detection 
theory, has been used to evaluate detection performance. Thus, 
the detection is performed for all right keys and wrong trials. 
Then the mean values of detector responses are calculated: 

( )D w  for watermarks (right keys) and ( )D wrong for wrong 

trials. The standard deviations of detector responses ( 2
wσ  for 

watermark (right key) and 2
wrongσ  for wrong trials) are 

calculated, as well. Considering these parameters, the measure 
of detection quality is obtained as [14], [15]: 
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The measure R is further used to calculate the probability of 
detection error as follows: 

 1 1 1
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V. EXPERIMENTAL RESULTS  

 
The advantages of the proposed watermarking procedure 

are shown in the sequel. The procedure is applied to the image 
blocks of size 16x16. The measurements vector in each block 
consists of 40% of randomly chosen image samples. For the 
sake of simplicity, but without loss of generality, we have 
assumed that kφ φ= , i.e. that the random positions for image 



sensing are the same in each image block. The obtained PSNR 
after compressive sensing reconstruction of watermarked 
measurements is approximately 35dB, indicating good image 
quality, especially when we have in mind that the pixel 
acquisition process actually provided only 40% of random 
pixels. The original images and reconstructed CS watermarked 
images are shown in Fig 2. 
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Figure 2.  a) Original image Lena, b) CS reconstructed and watermarked 
Lena, c) Original image Baboon, d) CS reconstructed and watermarked 

Baboon, e) Original image Boat, f) CS reconstructed and watermarked Boat 

  
Figure 3.  Results of watermark detection for 30 right keys and 3000 wrong 

trials 

The results of watermark detection are given in Fig. 3, for 
30 right keys (watermarks), whereas for each watermark we 
created additional 100 wrong trials to illustrate the efficiency of 
detection. The achieved measure of detection quality is 6.8, 
resulting in very low probability of error 10-6.   

VI.  CONCLUSION 

An image watermarking procedure for compressed sampled 
images is proposed. It has been shown that the reduced set of 
measurements can carry the watermark, while the watermark 
does not influence image reconstruction afterwards. The high 
quality reconstruction is achieved using the TV minimization 
algorithm. The watermark detection assumes selection of 
watermarked coefficients from the reconstructed image 
according to the random measurement matrix. The detection is 
demonstrated for a number of watermarks and random trials.      
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