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ABSTRACT 

 

A unified approach for the estimation of the first three 

phase derivatives of non-stationary signals is proposed in 

this paper. The possibility to accurately estimate phase 

derivatives is important in many applications dealing 

with objects velocity, acceleration and acceleration rate, 

such as the radar applications and mechanics. The 

estimation approach is based on definition of the 

complex-lag distribution. The proposed distribution is 

inspired by the concepts of complex analysis theory. The 

general form of distribution for the estimation of the first, 

second and third derivative of the phase is derived from 

the specific individual cases. The theoretical 

considerations are illustrated in the example with fast 

varying signal phase function. 

 

1. INTRODUCTION 

During the last two decades, time-frequency 

representations have been used for the analysis of highly 

non-stationary signals such as biomedical signals, radar 

and sonar signals, signals in communication, etc. Since 

there is no ideal time-frequency distribution that can be 

used for all signals, various linear (spectrogram), 

quadratic (Wigner distribution, distributions from the 

Cohen’s class, the S-method) and the higher order 

distributions (e.g., polynomial and complex-lag 

distributions) time-frequency distributions have been 

introduced [1]-[12]. A desirable distribution property is 

good concentration in the time-frequency domain. 

Time-frequency distributions with a complex-lag 

argument are used for an efficient analysis of signals with 

fast varying phase functions and instantaneous 

frequencies [9]. However, due to the fast phase variations 

most of the mentioned distributions do not provide 

satisfactory concentration, causing errors when 

estimating instantaneous frequency or higher phase 

derivatives. Similar constraints hold when estimating the 

second ([8]) or higher order phase derivatives. Hence, in 

the sequel we consider an approach that can provide a 

unified analysis and accurate estimation for the first three 

phase derivatives.  

Unlike the standard higher order complex-lag 

distributions, the proposed approach is based on the 

complex-lag signal moment composed of only two signal 

terms. The proposed distribution is based on the 

principles from the complex analysis theory [5]. Namely, 

the analogy with the complex analysis theory has been 

used to define general and specific distribution forms for 

the estimation of the first few phase derivatives. This 

method is applied to monocomponent signals. In the case 

of multicomponent signals, cross-terms appear due to 

nonlinearity of the considered time-frequency 

distributions. Hence, the components should be separated 

prior to applying this approach to multicomponent 

signals.  

The paper is organized as follows. The theoretical 

background on the complex analysis and Cauchy integral 

formula are given in Section 2. The specific forms of 

distribution for the estimation of the first, second and 

third order derivative of the phase are derived in Section 

3, while the general distribution form, as well as its L-

form are given in Section 4. The experimental evaluation 

is done in Section V. The concluding remarks are given 

in Section VI.    

 

2. THEORETICAL BACKGROUND 

 

According to the complex analysis theory, a holomorphic 

function ( )f z , defined on the closed disc 

{ 0:| | }D z z z r= − ≤ , can be completely determined by 

using the values on the boundary circle C of the disc D: 
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An arbitrary derivative of function f(z) can be obtained as 

follows: 
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 In order to make a certain analogy between the 

complex functions and signals that we use in real 

applications, instead of function f(z), we observe the 

phase of the signal ( )( ) j t
x t re

ϕ= . If it is assumed that the 

boundary circle C is centered at instant t and if 

jz t e θτ= + holds (τ is the radius and [ ]0,2θ πε ), then an 

arbitrary K-th phase derivative can be defined as [11]: 

 

( ) ( )
2

( )

0

!
.

2

K j jk

K

K
t t e e d

π
θ θϕ ϕ τ θ

πτ

−= +∫  (3) 

 

 In the sequel, we will observe some specific phase 

derivatives to provide appropriate discrete expressions, 

which will further lead to the definition of the 

corresponding distributions. 

 

  

3. ESTIMATION OF PHASE DERIVATIVES 

 

3.1 The first derivative of the phase – instantaneous 

frequency 
 

 

According to (3), K=1 is used when observing the first 

derivative of the phase: 
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 The discretization of the previous relation based on N 

discrete points will result in: 
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 The right hand side represents the phase of the 

complex-lag signal moment ( ),M t τ  that can be defined 

as follows: 
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 By applying the Fourier transform to the moment 

( ),M t τ , the N-th order complex-lag distribution for the 

instantaneous frequency estimation is obtained. In the 

following analysis we focus on the simplest case based on 

the two-term moment function. Hence, only two 

discretization points on the unit circle are considered: 

( )a jb+ and ( )a jb− + . The complex-lag moment 

function can be now written as: 
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The corresponding complex-lag distribution for the 

instantaneous frequency estimation is obtained as the 

Fourier transform of the moment function: 
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Applying the Taylor series expansion to the phase of the 

moment function ( ),M t τ , we get: 
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 The higher phase derivatives represent the spreading 

factor that causes the distribution spread along the 

instantaneous frequency. An appropriate choice of 
discretization points can significantly reduce the 

spreading factor. In that sense, let us observe two specific 

points: j and j− . In this case the distribution (8) can 

be rewritten in the form: 
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The moment phase function given by (9) becomes: 
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 Note that the terms of order 4 1 ( 1,2, )n n− = … contain 

imaginary unit j. Thus, their influence can be eliminated 

by introducing the modification:
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The corresponding distribution is defined as the Fourier 

transform of ( ),a
M t τ : 
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3.2 The second derivative of the phase 
 

 

The second derivative of the phase has been known in the 

applications as the instantaneous frequency rate. By using 

K=2 in (3), and performing the discretization in N points, 

the following expression is derived: 
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 In order to provide the second derivative of the phase 

estimation, the moment function is defined as:  
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The above relation is a counterpart of (6) for the second 

order derivative. Again, the corresponding distribution is 

obtained as the Fourier transform of the moment 

function: 
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 The simplest case is based on the two-terms moment 

function (i.e. two discretization points ±(a+jb)):  
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The general form of the moment phase function is 

obtained by using the Taylor series expansion as follows: 
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Note that, as in the case of the instantaneous frequency 

estimation, the spreading factor contains the phase 

derivatives different from the one we want to estimate. 

The spreading factor depends on the choice of parameters 

a and b. Following the analogy with the first phase 

derivative, the points j±  are observed. The distribution 

(16) for these specific points becomes: 
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The moment phase function contains the following terms:  
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 The spread factor is reduced by eliminating imaginary 

terms, which will improve the concentration along the 

second derivative of the phase and consequently, the 

estimation precision. Hence, instead of the moment 

function 
( , )

( , ) Mj t
M t e

ϕ ττ = , the modified moment 

definition ( ) ( )( ),
,

jangle M ta
M t e

τ
τ =  is used.  In this way, 

we eliminate the influence of phase derivatives whose 

order is 4  ( 1, 2, )n n = … . 

 

 

3.3 The third derivative of the phase 
 
 

The same concepts, employed in the case of the first and 

the second derivative of the phase, can be used for the 

estimation of the third derivative of the phase. The 

general two-term signal moment adapted to the third 

derivative of the phase estimation is defined by:  
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while the corresponding distribution is defined as: 
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The general form of the moment phase function for two 

arbitrary discretization points (a+jb) and (-a-jb) on the 

unit circle is given by: 
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Here, by an appropriate selection of parameters a and b, 

we aim to eliminate the neighboring derivatives ( )(1)
tϕ  

and ( )(5)
tϕ , which make the highest influence in terms 



of concentration spread. Hence, we observe the set of 

equations in the form: 
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where A and B are constants. It can be easily shown that 

a jb j+ =  and its symmetrical point on the unit circle, 

satisfy both constraints. The phase of the moment 

function is thus given by: 
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As previously described, the imaginary terms of order 

4 1,  0,1, 2,n n+ = … are eliminated by using the moment 

modification: ( ) ( )( , )
,

jangle M taM t e
τ

τ = . 

 

 

4. THE GENERAL FORM OF THE 

DISTRIBUTION  

 
 

According to the previous analysis, the general form of 
the second order distribution can be defined. Namely, by 

observing the equations, (10), (18) and (21), which 

represents the individual distributions for the first, the 

second and the third order phase derivatives estimation,  

the unified two-terms moment function can be defined as 
follows:   
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where K represent one of the considered phase 

derivatives. In order to decrease the spreading factor and 

to eliminate the influence of terms containing the 

imaginary unit j, the moment is firstly modified by using 

the exponential and angle functions as previously 

explained. Consequently, the general form of the 

complex-lag distribution is defined as: 
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Hence, the same discretization points are used for all 

considered phase derivatives, while the scale factor and 

the exponent change according to the derivative order.  

 

5. EXPERIMENTAL RESULTS 

 

 

In this example, we consider a signal with fast-varying 

phase function given in the form:  

( ) ( )
1 2

4cos 2πt cos 3 cos(6 ))
3 3 .

j t t
x e

π π+ +
=  

The proposed complex-lag distribution ( )2 ,n
NCTD t ω=  

for n=1, 2 and 3 has been used to estimate and illustrate 

the first, second and third derivative of the phase.  

 

 
  a)   b) 

 

c) 

Figure 1: The complex-lag distribution ( ),nCTD t ω : a) n=1, 

b) n=2, c) n=3 

 

According to the proposed approach, the modification of 

the moment based on the angle function is applied in all 

considered cases. The results obtained by the proposed 

distributions are shown in Figure 1.  

  

 
        a)              b) 

 
c) 

Figure 2: The true (blue line) and estimated (red line): a) the 

first derivative of the phase, b) the second derivative of the 

phase c) the third derivative of the phase 



It may be observed that the considered signal is 

characterized by fast variations of signal phase function 

which is further reflected on the phase derivatives.  

However, even when the variations are fast, the proposed 

distribution provides an efficient representation of the 

considered phase derivatives, keeping the spreading 

factor still tolerable. Note that we have observed the non-

noisy signal. Namely, the estimation of higher phase 

derivatives is sensitive to noise, and thus the noisy signals 

should be filtered before the estimation procedure. 

The true and estimated phase derivatives (n=1,2 and 3) 

are shown in Figure 2. Mean Squared Error of the phase 

derivatives estimation are given in Table I. Note that the 

deviation of the estimated from the true values is low, 

especially when we have in mind that the variations of 

the estimated functions are very fast.  

 

Table I: Mean Squared Errors of the phase derivatives 

estimations 

 

Phase 

Derivative 
MSE 

1
st
 4.4641 

2
nd

 1.1709 

3
rd

 28.5441 

 

 

 

6. CONCLUSION 

 

 

A general and unified form of the distribution for the 

estimation of the first few phase derivatives (the first, the 

second and the third derivative) has been proposed. It is 

based on the second order signal moment (i.e., only two 

signal terms are employed). This general form has been 

derived from the specific distribution forms, obtained for 

each of the considered phase derivative estimation. The 

same pair of the discretization points on the unit circle is 

used for all three derivatives. The suitable points 

selection allows the use of the moment function 

modification that significantly reduces the spreading 

factor and increases the concentration along the estimated 

phase derivative. The proposed approach has been 

applied in the experiments with signals whose phase, as 

well as its derivatives, varies significantly even within a 

few samples. Although the phase variations were fast, the 

proposed distribution still provided good concentration 

for each of the considered phase derivatives.   
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