IWSSIP 2012, 11-13 April 2012, Vienna, Austria

ISBN 978-3-200-02588-2

SIGNAL CONTENT ESTIMATION BASED ON THE SHORT-TERM TIME-FREQUENCY
RENYI ENTROPY OF THE S-METHOD TIME-FREQUENCY DISTRIBUTION

N. Saulig*, V. Sucic', S. Stankovié®, I. Orovié?, and B. Boashash®*

'Faculty of Engineering, University of Rijeka, Croatia
2Faculty of Electrical Engineering, University of Montenegro, Montenegro
3College of Engineering, Qatar University, Doha, Qatar
4Centre for Clinical Research, University of Queensland, Brisbane, Australia

ABSTRACT

A key characteristic of a nonstationary signal, when analyzed
in the time-frequency domain, is the signal complexity, quan-
tified as the number of components in the signal. This paper
describes a method for the estimation of this number of com-
ponents of a signal using the short-term Rényi entropy of its
time-frequency distribution (TFD). We focus on the charac-
teristics of TFDs that make them suitable for such a task. The
performance of the proposed algorithm is studied with respect
to the parameters of the S-method TFD, which combines the
virtues of both the spectrogram and the Wigner-Ville distri-
bution. Once the optimal parameters of the TFD have been
determined, the applicability of the method in the analysis of
signals in low SNRs and real life signals is assessed.

Index Terms— Component, nonstationary signals, time-
frequency distributions, Rényi entropy, complexity.

1. INTRODUCTION

Nonstationary signals are characterized by their components
instantaneous amplitude, the instantaneous frequency and
bandwidth. Time-frequency distributions (TFDs) are an effi-
cient and complete way to present all important information
about nonstationary signals [1]. They are two-variable func-
tions of the signal s(t), Cs(t, f), describing the changes of
the frequency content of the signal in the joint time-frequency
plane, and distributing the signal energy, Ej, in the (¢, f)
plane as:

/Z /O:O Cy(t, f) dtdf = E,. (1)

For unit energy signals, the TFD C;(t, f), due to its non-
positivity, can be interpreted as a pseudo-probability density
function [2]. This allows to apply information measures to
TFDs, as they have been used in information theory.

In [3], the generalized Rényi entropy (RE) of order «v
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has been shown to be a valuable indicator of the signal com-
plexity, where C;(t, f) must be normalized with respect to
the signal energy [4].

The information on the number of components present in the
signal can be obtained from the entropy of the signal TFD,
since signals of high complexity are composed of many ele-
mentary components. Consider, for example, an ideal TFD,
Cs, (t, f), of a unit energy signal s;(t). The addition of a
second component to the signal, s2(t), by shifting the first
component in time and/or frequency (under the condition of
nonoverlapping components in the (¢, f) plane and by main-
taining the TFD energy unitary), brings an increase of one
bit in the RE of the TFD of the two component signal, when
compared to the RE of a single component signal [4]:

Ho(Cs, (1) 1500, ) = Ha(Coy (1) (L, f)) + 1. 3)
Thus, the number of components can be determined as [5]

n = 2Ha(Coy () 4550 (61)) = Ha(Coy (1) (8, 1)) %)

Eq. (4) holds because the RE is invariant to time and fre-
quency shifts of the signal [4]. By computing the third or-
der RE (all the results presented in this paper correspond to
the third order RE) of an n component signal > .-, s;(¢), for
which all components have same time and frequency supports
and the same FM, and by calculating the RE of an arbitrarily
chosen component of the signal, say s,,(t), the number of
components in this multicomponent signal is:

. o{f‘; o{f‘; C3 (¢, f)dtdf | “
S T G (8 Pdtdf

As shown in [6], Eq. (4) does not hold when the compo-
nents exhibit different time and frequency supports in the
(t, f) plane, and if one of the components is not known in
advance. This means that, in general, the global RE can not
be used as an estimator of the number of components in a
signal. Section 2 presents a method, based on the short-term
RE, that overcomes those constrains. The conditions under



which a TFD assures an accurate performance of the algo-
rithm are discussed, including the selection of the optimal set
of TFD parameters. Examples, including monocomponent,
multicomponent, noisy, and real-life signals are presented in
Section 3. The conclusion is given in Section 4.

2. THE SHORT-TERM TIME-FREQUENCY RENYI
ENTROPY: A METHOD FOR THE LOCAL
COMPONENT DETECTION

The algorithm used in this paper first requires annulling the
TFD, Cs(t, f), of the analyzed signal (see Fig. 1(a)), outside
the time interval At, to obtain a TFD of the form

Cs (t7 f)

—to <t < p+to,
CSp(t7f):{ 0 P 0 b 0

otherwise,

(6)

where At = 2ty. The aim of the TFD annulation outside the
short time interval At (in this paper At = 45 time samples)
is necessary in order to meet the condition in Eq. (4). In
fact, independently from their time duration and frequency
modulations, different components locally have same time
durations and similar bandwidths, as shown in Fig. 1(c). The
subtrahend in the exponent of Eq. (4) is obtained as a time
slice of length At of a synthetic reference signal TFD (Fig.
1(b), (d)). The selected synthetic reference signal is a cosine
signal of arbitrary amplitude and arbitrary constant frequency.
By using Eq. (6) for different time instants p, different time
slices of the TFD are isolated, with their respective RE values.
By comparing the obtained values of the short-term RE of the
multicomponent signal and the reference signal, a function
of the instantaneous number of components of the analyzed
signal, n(p), is obtained. Complete steps of the algorithm are
given in the flowchart in Fig. 2.

Since many engineering applications require the instanta-
neous number of components to be an integer [7, 8], a thresh-
olding of n(p) has been introduced. Our simulations have
shown that 0.1 is an adequately sensitive threshold for de-
tection of the first component, while round(n(p)) value for
each next component is sufficiently robust to reduce the in-
fluence of cross-terms between the components. Indeed, the
quantized instantaneous number of components also allows
to estimate the total number of components by adding the
number of rising edges to the initial number of components.
The selection of an appropriate TFD is a key step for the
algorithm accurate performance. The global RE is cross-
terms invariant, since, due to their oscillatory nature, the
cross-terms are annulated under the integration over the en-
tire (¢, f) plane for odd values of the parameter « [4]. On the
other hand, when the integration is performed over a short
time slice, as per Eq. (4), the presence of cross-terms will
significantly affect the value of n(p). Therefore, the algo-
rithm requires a TFD with reduced cross-terms, having good
energy concentration of components, and maintaining the
local entropy invariance to the signal IF.
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Fig. 1. (a) The S-method TFD of a three component signal
L =1, (b) the S-method TFD of the reference signal, L = 1,
(c) time slice around p = 775 s of the three component signal,
(d) time slice around p = 775 s of the reference signal, (e) the
number of components in time for: L = 1 (solid), L = 2
(dashed), and L = 3 (dotted), and for . = 4 (dotted-dashed).

A natural choice of TFD for this purpose would be the spec-
trogram which doesn’t contain cross-terms when signal com-
ponents do not overlap in the (¢, f) plane. But it is also
characterized by poor energy concentration, and it suffers
from significant dependency of the local component band-
width on the component IF (signals with fast changes of the
IF present locally larger bandwidths in the (¢, f) plane), lead-
ing to wrong estimations (see Fig. 3). The dependency of
the local component bandwidth on the IF can be reduced by
improving the auto-terms concentration in the (¢, f) plane: a



computationally simple method, referred to as the S-method,
produces the same auto-terms as in the Wigner distribution,
but without cross-terms. Using a frequency window P(l) of
finite duration, the S-method is obtained as [9]:

SM(n, k) 1 P()STFT(n,k+1)STFT*(n,k — 1)

where STFT is the short time Fourier transform of the signal.
The S-method can be seen as a distribution that combines
good properties of the spectrogram and the Wigner distribu-
tion. The convolution along the frequency axis improves the
auto-terms concentration, but it should be performed only
over the same auto-term, avoiding different signal compo-
nents being convolved. For an efficient performance of the
algorithm, the window P(l) should have short time duration
in order to capture the fast variations of the IF (the recom-
mended duration is N/10 where N is the duration of the
signal). Fig. 1(e) shows the performance of the algorithm on
a three component signal for the values of L = 1,2, 3, 4. For
L = 1,2, and 3, the curves that represent the local number
of components overlap over the entire measurement time. By
increasing the value of L, the cross-terms start to affect the
algorithm result (Fig. 1(e)). Since for the proposed algorithm
the suppression of the cross-terms is essential, small values
of L (L < 3) must be used. Fig. 3 shows that the S-method
with L = 1 reduces the influence of the component IF on the
instantaneous bandwidth, and it gives a correct component
content estimate. So, the value of 1 can be recommended
as the optimal value of the parameter L in the S-method for
most applications as in examples of Section 3.

3. RESULTS: NOISE AND REAL DATA

To validate the performance of the algorithm, a three compo-
nent signal with different (linear and parabolic) FMs, embed-
ded in additive white noise (Fig. 4(a)), is considered. Fig.
4(b) shows the obtained results for different SNRs (15 dB
solid, 10 dB dotted, and 5 dB dashed line), proving the robust-
ness of the method to additive white noise. Similar estimates
have been obtained for different noise environments.

A real test signal, a bat emitted sound representing a natural
sonar is shown in Fig. 5(a). As it can be seen in Fig. 5 (b),
the proposed algorithm applied to the S-method presents high
sensitivity to low energy components, even when they overlap
with higher energy components for very short time intervals.

4. CONCLUSION

The algorithm presented in this paper efficiently estimates the
local number of components from a signal’s TFD, exploiting
the fact that the short-term RE is invariant to different struc-
tures of the signal components in the (¢, f) plane. Tests on
noisy and real-life signals show that the S-method TFD with
small values of the parameter L, namely L = 1, is a good
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Fig. 2. Flowchart of the proposed algorithm.
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Fig. 3. (a) The S-method TFD of a monocomponent signal
for L = 1, (b) the number of components in time for the
spectrogram L. = 0 (solid), and for the S-method, L = 1
(dotted-dashed).

choice of TFD as it presents reduced interferences and the lo-
cal bandwidth invariance to the component IF. The algorithm
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Fig. 4. (a) The S-method TFD of a multicomponent signal
embedded in additive white noise with SN R = 5 dB. (b) the
local number of components: 15 dB (solid), 10 dB (dotted),
and 5 dB (dashed).

can be used in various engineering applications where reli-
able information on the number of components present in the
signal is required, e.g. in [7, 8].
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Fig. 5. (a) The S-method TFD of a bat echo location signal.
(b) the local number of components.
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