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Abstract— A method that provides an ideal sparse time-
frequency representation, for signals with an incomplete set of 
samples, is proposed. It is based on the complex-time auto-
correlation function and signal reconstruction algorithm 
performed using the orthogonal matching pursuit. The proposed 
method is tested on signal with fast-varying instantaneous 
frequency, showing remarkable performance even for a small set 
of input samples. 
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I.  INTRODUCTION  

 
The time-frequency analysis generally reveals the 

capability to describe the exact structure of the signal in the 
case of time-varying frequency content. Different time-
frequency representation and distributions have been proposed 
for that purpose [1]-[3]. Time-frequency distributions (TFDs) 
provide mapping of a one-dimensional signal into a two-
dimensional function of time and frequency, describing the 
changes of the spectral content over time. Although, the time-
frequency analysis was introduces more than two decades ago, 
the greatest developments and contributions in practical 
applications have been recently accomplished [3]-[7]. Namely, 
nowadays the time-frequency analyses are preferable in various 
applications, starting with the radars, sonars, communications, 
acoustics, data protection, etc. However, there is no an ideal 
time-frequency distribution that can be used for any kind of 
data. For instance, the spectrogram is the simplest one, but has 
a poor time-frequency resolution. The quadratic distributions 
provides high quality time-frequency representation for linear 
frequency modulated signals, but produce serious inner-
interferences (concentration spread factor) in the case of fast 
varying signal phase. In order to overcome the mentioned 
drawbacks, polynomial and complex-time distributions of 
different orders have been defined [8]-[15]. Particularly, the 
complex-time distributions can be viewed as a Fourier 
transform of the complex-lag auto-correlation function. The 
complex-time means that the lag coordinate is scaled by the 
complex parameter instead of the real polynomial one as in the 
case of polynomial distributions. It is interesting that depending  

 

 

on the chosen distribution order, the concentration spread 
factor can be arbitrary decreased, yielding to the good 
concentration even for signals whose instantaneous frequency 
varies very fast.         

The standard calculation of time-frequency distributions 
assumes that the whole signal is known and sampled according 
to the Shanon-Nyquist theorem. In accordance with the latest 
results in signal reconstruction theory, an important issue that 
arises is related to the possibility to calculate the distribution 
with a small reduced set of signal samples. Namely, a very 
popular concept used in sparse signal reconstruction is known 
as compressive sensing [16],[17]. If a signal is sparse in certain 
transform domain, then it can be compressively sampled in 
another (dense) domain. Then, it can be completely 
reconstructed using some of the signal reconstruction 
algorithms usually based on l1 norm optimization methods, 
such as Basis Pursuit. Though the basis-pursuit algorithms 
represent a classical tool used to recover the incomplete 
signals, there are other much faster and simpler algorithms. For 
instance, the Orthogonal Matching Pursuit (OMP) belongs to 
the group of greedy algorithms that has been used for sparse 
approximation, and they are generally more suitable for 
implementation [18],[19]. 

In this paper we consider the OMP based approach in the 
calculation of the complex-lag distribution. This approach 
allows us to sample the signals at lower rates than those 
required by the sampling theorem and still to provide a highly 
concentrated time-frequency representation. Here, it is 
important to emphasize that the missing samples could occur 
also due to the disturbances or failures in signal processing 
hardware. When combined with the OMP reconstruction, the 
resulting complex-lag distribution is free of any interference 
and can be used for accurate instantaneous frequency (IF) 
estimation even for signal with higher order phase 
nonlinearities.     

The paper is organized as follows. The theoretical 
background on the complex-time distributions is given in 
Section II. The OMP based complex-time distribution is 
proposed in Section III. The experimental evaluation is 
provided in Section IV, while the concluding remarks are given 
in Section V. 
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II.  THEORETICAL BACKGROUND - COMPLEX-TIME 

DISTRIBUTIONS 

 
In the case of signals with highly non-stationary phase 

function, the concentration in the time-frequency domain 
depends on the rate of IF variations, as well as on the 
distribution order and form. Hence, the complex-lag 
distributions have been introduced [10]-[11] to deal with 
signals whose instantaneous frequency varies fast, even within 
a few samples. The general form of the complex-lag 
distribution (GCD) has been defined as: 
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where 2 /
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while N is the order of the distribution. It is interesting to note 
that for the distribution order N=2, 4, 6, …, the roots on the 
unit circle appears in pairs: 
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By increasing distribution order N, the influence of inner 
interference terms will be significantly reduced compared to 
the Wigner distribution. This is very important when dealing 
with fast varying signal’s phase. However, the complexity of 
the correction term calculation arises with the larger N. The 
most commonly used fourth order complex-lag distribution is 
given in the form:   
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Therefore, the distribution (2) provides significant 
concentration improvement with respect to the quadratic 
distributions, but also improvements compared to the 
polynomial distribution (of the same order N=4).  
The discrete form of the complex-lag distribution (2) which is 
used in practical applications is given by: 
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where R(n,m) represents the complex-lag autocorrelation 
function, defined as: 
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while n, k and m are discrete time, frequency and lag 
coordinate, respectively, while Ns is the number of samples 
within the window w. 
  

III.  OMP BASED GCD4 

 
 Assume that at each time point n we have a small set of 
random samples within the auto-correlation function R(n,m) 
defined by the random positions q: 
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The complex-time distribution calculated using the reduced set 
of samples (missing samples are replaced by zeros) would 
produce significant noise in the time-frequency plane. Thus, 
we need to recover the missing samples, and for this purpose 
we consider the OMP based reconstruction algorithms. 
Namely, if the autocorrelation function R corresponds to 
signal form, then R behaves as a locally sparse signal with one 
frequency component. In this case, we show that just a few 
samples are needed for reconstruction of complete function R. 
Moreover, by applying the OMP algorithm, an ideal time-
frequency representation can be obtained for signals whose 
phase nonlinearity is of lower order compared to the 
distribution order N (in our case N=4 is observed).   
The problem of GCD calculation is recast as a problem of 
applying the OMP reconstruction to the measurements vector 
which in our case contains small number of auto-correlation 
samples R. The OMP assumes the iterative procedure where in 
each iteration, we select one of the columns in measurement 
matrix Φ that has the highest correlation with the residual part 
of measurements vector [18]. Then we subtract its contribution 
to the measurements vector and iterate on the residual that 
remains. For a given number of components, i.e., the number 
of iterations, the OMP algorithm identifies the whole set of 
columns that are used to obtain the sparsest approximation of 
R. The OMP based GCD calculation can be defined through 
the following steps: 

 
 1) Set notations: ri(n,m) is a residual vector (n is fixed), 
Λi(n,m) is an index vector, �( , )R n m  is a measurements vector 
of length M, while Φ is a measurement matrix. 
 
2) Set the initial residual vector as r0(n,m)= � ( , )R n m  and 
Λ0(n,m)=∅. The matrix Φ0(n,m) is an empty matrix. The 
iteration counter is set to i=1. 
 
3) Determine λi(n,m) as a solution of the following 
minimization problem: 
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6) Solve the least square problem to obtain the new signal 
estimate: 
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7) Update the value of residual: 
 

�( , ) ( , ) ( , ) ( , )i i ir n m R n m n m x n m= − Φ  

 
8) Increment i, and return to Step 3 if i < K 

 

9) The estimate ɵx  has non-zero indices at the components 

selected in ΛK. The values of the estimate ɵx  in component λj 
equals the j-th component of xi.  
 
10) Repeat the procedure for each time instant n. 
 
The least square solution to the minimization problem given in 
Step 6 can be solved using the pseudo-inversion formula: 
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where the matrix iΦ  is of size M × i. The size iΦ  increases 
through the iterations, while it reaches the final size MxK. 

 

IV.  NUMERICAL EXAMPLES 

 
In order to illustrate the efficiency of the proposed approach, 
let us consider the signal in the form: 
 

 10sin(2 ) 2cos( )( ) j t j tx t e π π+= . 

 
The 30% of signal samples are randomly chosen and used to 
calculate the complex-time distribution. The standard Fourier 
transform based GCD4 is shown in Fig 1.a. Note that, due to 
70% missing samples, the significant amount of spectral noise 
appear in the time-frequency domain. The same 30% of 
available samples are used to calculate the OMP based GCD4 
shown in Fig 1.b, achieving high distribution concentration 
and practically an ideal time-frequency representation. 
Furthermore, the results shown in Fig. 2, are illustrated for a 
single time instant in the time-frequency domain. Note that the 
OMP based approach even with a quite reduced set of 
available samples provides the representation that corresponds 
to the original full data set representation.  
    

 

 
a) 

 
b) 

Fig 1. a) Standard GCD4 calculated using 30% of samples,  b) Ideal OMP 
based GCD4  
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Fig 2. Single time instant: a) standard CTD4 calculated using all signal 
samples, b) standard CTD4 calculated using 30% of signal samples, c) 
OMP based ideal CTD4 calculated using 30% of signal samples 
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V. CONCLUSION 

 
A method for ideal time-frequency distribution calculation is 
proposed. The proposed method can work with a reduced set 
of available measurements, producing highly concentrated 
result as in the case of full data set. Instead of calculating the 
Fourier transform of incomplete auto-correlation function, the 
distribution is calculated using the OMP approach. Therefore, 
instead of noisy signal representation that results from the 
Fourier transform of reduced data set, we obtain an ideal 
representation without any disturbance.   
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