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Abstract— A method that provides an ideal sparse time-
frequency representation, for signals with an incomlete set of
samples, is proposed. It is based on the complexdgé auto-
correlation function and signal reconstruction algeithm
performed using the orthogonal matching pursuit. The proposed
method is tested on signal with fast-varying instammneous
frequency, showing remarkable performance even foa small set
of input samples.

Keywords- Complex-lag distributions; compressive sensing;
orthogonal matching pursuit

I INTRODUCTION

The time-frequency analysis generally reveals
capability to describe the exact structure of tigmal in the
case of time-varying frequency content. Differentne:-
frequency representation and distributions haven lpgeposed
for that purpose [1]-[3]. Time-frequency distritmris (TFDs)
provide mapping of a one-dimensional signal intctwep-
dimensional function of time and frequency, desogbthe
changes of the spectral content over time. Althotlgh time-
frequency analysis was introduces more than twadkex ago,
the greatest developments and contributions in tipedc
applications have been recently accomplished [B]Nlamely,
nowadays the time-frequency analyses are prefenabkerious
applications, starting with the radars, sonars, mamnications,
acoustics, data protection, etc. However, thereoisan ideal
time-frequency distribution that can be used foy &md of
data. For instance, the spectrogram is the simphestbut has
a poor time-frequency resolution. The quadratidrithigtions
provides high quality time-frequency representafionlinear
frequency modulated signals, but produce seriouserin
interferences (concentration spread factor) indhase of fast
varying signal phase. In order to overcome the feat
drawbacks, polynomial and complex-time distribusionf
different orders have been defined [8]-[15]. Paitdy, the
complex-time distributions can be viewed as a Fmouri
transform of the complex-lag auto-correlation fimt The
complex-time means that the lag coordinate is dchle the
complex parameter instead of the real polynomial asin the
case of polynomial distributions. It is interestihgt depending

on the chosen distribution order, the concentrasipread
factor can be arbitrary decreased, vyielding to tod
concentration even for signals whose instantané@agiency
varies very fast.

The standard calculation of time-frequency distidms
assumes that the whole signal is known and sangaearding
to the Shanon-Nyquist theorem. In accordance vii¢hlatest
results in signal reconstruction theory, an impariasue that
arises is related to the possibility to calculdte distribution
with a small reduced set of signal samples. Namelyery
popular concept used in sparse signal reconstruii&nown
as compressive sensing [16],[17]. If a signal &rse in certain
transform domain, then it can be compressively $adnjn
another (dense) domain. Then, it can be completely
reconstructed using some of the signal reconstmicti

thalgorithms usually based oda norm optimization methods,

such as Basis Pursuit. Though the basis-pursuiritigns
represent a classical tool used to recover the niptete
signals, there are other much faster and simpdgrighms. For
instance, the Orthogonal Matching Pursuit (OMPbgé to
the group of greedy algorithms that has been usedgdarse
approximation, and they are generally more suitatue
implementation [18],[19].

In this paper we consider the OMP based approathein
calculation of the complex-lag distribution. Thigpaoach
allows us to sample the signals at lower rates tthese
required by the sampling theorem and still to mleva highly
concentrated time-frequency representation. Heite, isi
important to emphasize that the missing samplesdcoccur
also due to the disturbances or failures in sigmatessing
hardware. When combined with the OMP reconstructiba
resulting complex-lag distribution is free of amyerference
and can be used for accurate instantaneous fregughRlk
estimation even for signal with higher order phase
nonlinearities.

The paper is organized as follows. The theoretical
background on the complex-time distributions isegivin
Section Il. The OMP based complex-time distributien
proposed in Section Ill. The experimental evaluatis
provided in Section IV, while the concluding rermgmeke given
in Section V.
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Il.  THEORETICAL BACKGROUND - COMPLEX-TIME

DISTRIBUTIONS

In the case of signals with highly non-stationatyage
function, the concentration in the time-frequencygmein
depends on the rate of IF variations, as well astlon
distribution order and form. Hence,
distributions have been introduced [10]-[11] to |dedth
signals whose instantaneous frequency variesdast) within

a few samples. The general form of the complex-la%

distribution (GCD) has been defined as:

_ © Nt W?\l,k WNK .\ —jer
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-0 k=0

where wy ,=el?™ N defines the roots on the unit circle,

while N is the order of the distribution. It is interegtito note
that for the distribution ordeN=2, 4, 6, ..., the roots on the
unit circle appears in pairs:

WN k+N/2="WN k -

By increasing distribution ordeN, the influence of inner
interference terms will be significantly reducedrgared to
the Wigner distribution. This is very important whdealing
with fast varying signal’'s phase. However, the ctaxipy of
the correction term calculation arises with thegdaN. The
most commonly used fourth order complex-lag distitn is
given in the form:

[
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Therefore, the distribution (2) provides significan
concentration improvement with respect to the caalr
distributions, but also improvements compared te th
polynomial distribution (of the same ordéx4).
The discrete form of the complex-lag distributi@) (hich is
used in practical applications is given by:

Ng/2 -1k
GCDy(nk)== Y Rmme M | ®)
m=-Ng/2

the complex-lag
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lll.  OMPBASEDGCD,

Assume that at each time poimtwe have a small set of
random samples within the auto-correlation functiR{n,m)
defined by the random positiogs

F(n, m) O R(n,m) ' @)

card(R(n,m))<<card(R(n,m))
The complex-time distribution calculated using thduced set
f samples (missing samples are replaced by zevosid
produce significant noise in the time-frequencynplaThus,
we need to recover the missing samples, and ferpghipose
we consider the OMP based reconstruction algorithms
Namely, if the autocorrelation functioR corresponds to
signal form, therR behaves as a locally sparse signal with one
frequency component. In this case, we show thdtgufew
samples are needed for reconstruction of compietetibnR.
Moreover, by applying the OMP algorithm, an ideiamhe-
frequency representation can be obtained for sigmdlose
phase nonlinearity is of lower order compared te th
distribution ordeN (in our caséN=4 is observed).
The problem of GCD calculation is recast as a gmbbf
applying the OMP reconstruction to the measuremestsor
which in our case contains small nhumber of auteetation
samplesR. The OMP assumes the iterative procedure where in
each iteration, we select one of the columns insueament
matrix ® that has the highest correlation with the resighaat
of measurements vector [18]. Then we subtractoitgribution
to the measurements vector and iterate on the uasithat
remains. For a given number of components, i.e. ntimber
of iterations, the OMP algorithm identifies the wheet of
columns that are used to obtain the sparsest ajppatirn of
R. The OMP based GCD calculation can be definedutyfio
the following steps:

1) Set notationsri(n,m) is a residual vectorn(is fixed),
Ai(nm) is an index vectorR(n,m) is a measurements vector
of lengthM, while ® is a measurement matrix.

2) Set the initial residual vector ag(n,m)=R(n,m) and

No(n,m)=00. The matrix ®y(n,m) is an empty matrix. The
iteration counter is set ig1.

where R(n,m) represents the complex-lag autocorrelation

function, defined as:

R(n, m)=w(m)x(n+m)x 2 (n-m)x) (n- jm)x~ ! (n+ jm),

while n, k and m are discrete time, frequency and lag

coordinate, respectively, whilds is the number of samples
within the windoww.

3) Determine Aj(n,m) as a solution of the following
minimization problem:

4) SetA; (n,m) = A;_;(n,m) 0{A(n m)}
5) Set®; (n,m) =[®;_y(n,m) g (n,m)]
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6) Solve the least square problem to obtain the sgmal
estimate:

xi(n,m):argma>ﬂ<bi omxao m)—ii 0 m[}
X
7) Update the value of residual:

f; (n,m) = R(n,m) = ®; (n,m)x (n,m)

8) Increment, and return to Step 3iik K

9) The estimatex has non-zero indices at the components

selected iM\k. The values of the estimate in componeni;
equals thg-th component ok;.

10) Repeat the procedure for each time ingtant

The least square solution to the minimization peobgiven in
Step 6 can be solved using the pseudo-inversionifiar.

X (n,m) = (@ (n,m)d; (n,m))™ @ (n,mR(n,m),
where the matrix®; is of sizeM x i. The size®; increases
through the iterations, while it reaches the fgiabMxK.

IV. NUMERICAL EXAMPLES

In order to illustrate the efficiency of the propdsapproach,
let us consider the signal in the form:

x(t) = elesin(Z‘zt ¥ j 2cosft j_

The 30% of signal samples are randomly chosen aed to
calculate the complex-time distribution. The stadd&ourier

transform based GCs shown in Fig 1.a. Note that, due to

70% missing samples, the significant amount of spenoise

appear in the time-frequency domain. The same 30% o

available samples are used to calculate the OMBdb&< D
shown in Fig 1.b, achieving high distribution contration
and practically an ideal time-frequency represémat
Furthermore, the results shown in Fig. 2, are tilated for a
single time instant in the time-frequency domainté\that the

OMP based approach even with a quite reduced set of 100

available samples provides the representationctragsponds
to the original full data set representation.
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Fig 1. a) Standard GCD calculated using 30% of samples, b) Ideal OMP
based GCD
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Fig 2. Single time instant: a) standard CTD calculated using all signal

samples, b) standard CTR calculated using 30% of signal samples, c)
OMP based ideal CTD calculated using 30% of signal samples
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V. CONCLUSION

A method for ideal time-frequency distribution aaktion is
proposed. The proposed method can work with a extiset
of available measurements, producing highly correced
result as in the case of full data set. Insteadatdulating the
Fourier transform of incomplete auto-correlationdtion, the
distribution is calculated using the OMP approaierefore,
instead of noisy signal representation that resitisn the
Fourier transform of reduced data set, we obtainideal
representation without any disturbance.
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