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ABSTRACT 

An algorithm for decomposition of highly multicomponent signals, with variable components 

energy, has been proposed. The algorithm combines the singular value decomposition with 

the suitable time-frequency analysis approach. The auto-correlation matrix is obtained by 

applying the inverse form of the cross-terms free time-frequency distribution. The 

decomposition of the time-frequency based auto-correlation matrix produces vectors that 

correspond to the individual signal components. The efficiency of the proposed algorithm has 

been tested on different signals. 
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1. INTRODUCTION 

The stationary spectrum is commonly analyzed by using the Fourier transform. 

However, in the case of non-stationary signals with variable spectral content, the Fourier 

transform does not provide information about the time instants when spectral components 

occur. It is the reason for employing the joint time-frequency analysis [1], [2]. Different time-

frequency distributions have been used in real applications with non-stationary signals [3]-[7], 

such as radar, sonar, biomedical, communication signals, etc. The simplest time-frequency 

representation is obtained by using the short-time Fourier transform (STFT) and its energetic 

form spectrogram (SPEC). The STFT calculation is based on the Fourier transform of 

windowed signal. The resolution of time-frequency representation, obtained by using the 

STFT or spectrogram, depends on the window length and it is not possible to achieve good 

time and good frequency resolution simultaneously. In order to improve the resolution of 
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spectrogram, quadratic time-frequency distributions have been introduced [3], [5]-[7], and 

later, more complex, higher order distributions [8], [9]. The commonly used quadratic 

distributions include the Wigner distribution, distributions from the Cohen class and the S-

method. When dealing with multicomponent signals, the S-method can provide efficient 

cross-terms free representation with good auto-terms concentration in the time-frequency 

domain [6], [10], [11]. Further, its realization can be simply performed by using the STFT. 

Also, the S-method has been successfully implemented in hardware, and thus, it has been used 

in many real-time applications.  

One of the important time-frequency analysis applications assumes characterization of 

signal components and calculation of the total number of components for highly 

multicomponent signal. For that purpose, the time-frequency distribution can be combined 

with the principal component analysis (PCA) [12]-[14]. PCA has been introduced as a 

procedure based on the orthogonal transform, which produces a set of values of uncorrelated 

variables called principal components. PCA can be done by using the singular value 

decomposition. For example, the right and left singular vectors have been used with time-

frequency analysis and neural networks for characterization and classification of EEG signals 

[14]. Another algorithm that is based on singular (eigen) decomposition is known as MUSIC 

[15]-[17]. MUSIC is frequency estimation method based on eigendecomposition of the 

covariance matrix [15]. It has been introduced in sensor array signal processing applications 

(radars), for direction of arrival (DOA) estimation [16], [17]. MUSIC splits M-dimensional 

space into the signal and the noise subspace. Frequencies are estimated from the 

pseudospectrum, formed by using eigenvectors. On the other side, we explore the idea that the 

eigenvectors of properly formed auto-correlation matrix correspond directly to the signal 

components [7]. For that purpose we need to use certain cross-terms free time-frequency 

representation to produce the corresponding cross-terms free autocorrelation matrix.  

In this paper, the time-frequency analysis has been combined with singular value 

decomposition for the purpose of musical signal decomposition. The procedure starts from the 

cross-terms free time-frequency representation, which is used to obtain the suitable auto-

correlation function as a result of inverse transform. The decomposition of the auto-

correlation function produces separated signal components. The proposed approach treats the 

decomposition of highly multicomponent musical signals. However, note that we only aim to 

demonstrate the decomposition ability of the proposed algorithm, rather than to provide a 
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complete music processing application. Moreover, we believe that this procedure may be the 

basis to build sophisticated music analysis/synthesis algorithms. 

The paper is organized as follows. The theoretical background on the time-frequency 

signal analysis and quadratic distributions is given in Section II. The time-frequency based 

signal decomposition method is given in Section III. The algorithm for multicomponent signal 

decomposition is proposed in Section IV, while the experimental results are given in Section 

V. The concluding remarks are given in Section VI. 

 

2. THEORETICAL BACKGROUND 

One of the oldest and commonly used time-frequency distribution is the Wigner 

distribution which has been defined as:   
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For monocomponent signals, the Wigner distribution provides good concentration in the 

time-frequency plane, especially when the instantaneous frequency (IF) changes linearly. The 

resolution of the Wigner distribution is not so window dependent as it is the case with 

spectrogram. The discrete form of the Wigner distribution can be written as: 
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For multicomponent signals, Wigner distribution produces unwanted components called 

cross-terms. They appear between two signal terms (auto-terms) at the position of their 

arithmetic mean. In order to avoid the presence of cross-terms, the S-method has been 

introduced [6]. It provides the concentration of auto-terms as in the Wigner distribution, while 

reduces or eliminates the presence of cross-terms. The S-method is defined as follows [6]: 

 *1
( , ) ( ) ( , ) ( , )SM t P STFT t STFT t dω θ ω θ ω θ θ

π

∞

−∞
= + −∫ . (3) 

The convolution along the frequency axis improves the auto-terms concentration, but it 

should be performed only within the same auto-term, avoiding different signal components 

being convolved. It is realized using a frequency domain window, denoted by ( )P θ  

( ( ) 0P for Lθ θ= > ). Observe that for ( ) ( )P θ πδ θ=  and ( ) 1P θ =  the spectrogram and the 

Wigner distribution are obtained, respectively. 
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The discrete form of the S-method, which is suitable for practical realizations, is defined 

as follows: 
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where n and k denotes discrete time and frequency, respectively, while the rectangular 

frequency domain window P(l) is assumed. The cross-terms reduction will depend on the 

choice of parameter L. Namely, L should be chosen such that 2L+1 is greater or equal to the 

auto-term width and less than the distance between the auto-terms.  

Note that the cross-terms free S-method can be written as: 
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where M is the number of auto-terms, while ( , )cWD n k  is the Wigner distribution of the c-th 

auto-term.  

 

3. TIME-FREQUENCY ANALYSIS AND THE SINGULAR VALUE 

DECOMPOSITION 

3.1. Principal Components Analysis based on the Singular Value Decomposition 

 

Singular value decomposition represents a method that transforms the original 

correlated variables into the uncorrelated set of variables. It allows us to identify the direction 

along which the data samples perform dominant variations. For a certain matrix S, the 

singular value decomposition (SVD) is defined as follows: 

 TS = UΣV , (6) 

where ΣΣΣΣ is a diagonal singular values matrix of the same size as S, and the values are sorted in 

decreasing order along the main diagonal. The U and V are orthonormal matrices whose 

columns represent left and right singular vectors, respectively. If S is MxN matrix (M>N), then 

U is of size MxM, ΣΣΣΣ is MxN matrix, while V is NxN matrix. This case is known as a full SVD. 

In order to provide more efficient method in terms of memory requirements, the economy-

sized SVD can be computed as follows: 
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- only N columns of U is computed 

- only N rows of ΣΣΣΣ is computed. 

 

The singular value decomposition has been used in numerous practical applications for 

characterization of signals and their components. The SVD has been applied on the time-

frequency distributions to extract some specific features used for the signals characterization. 

Most of the procedures are based on the use of singular values [12], [13]. However, 

significant information about the patterns embedded in the matrix can be obtained using the 

left and right singular vectors, especially those corresponding to the largest singular values 

[14]. Namely, the left and right singular vectors contain the information about time and 

frequency domain information of the signal, respectively.  

Here, the singular value decomposition is used to extract each individual signal 

component from the auto-correlation function. The auto-correlation function is obtained by 

applying the inversion of a suitable time-frequency distribution. As shown in the sequel, to 

ensure the absence of cross-terms when extracting the signal auto-components, the cross-

terms free S-method has been used. 

 

3.2. Component extraction by using the SVD and the S-method 

 

The inverse Wigner distribution for a separated c-th signal component can be obtained 

from (2) having that x(n)=xc(n): 
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By replacing n m p+ =  and n m q− = , we get [7]: 
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The left hand side corresponds to the auto-correlation matrix:
 

 
*( , ) ( ) ( )c c cR p q x p x q= , (9) 

where x(p) is column vector, whose elements are signal terms, and x*(q) is row vector, with 

complex conjugate elements. For a sum of M signal components (8) becomes: 
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The singular value decomposition is applied to the auto-correlation matrix as follows:  
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Furthermore, in order to separate the exact signal components, let us observe the case when 

the time-frequency distribution is represented by a square matrix, i.e. the time and frequency 

dimensions are the same. The auto-correlation function R(p,q) is the symmetric square matrix 

with respect to the main diagonal, and thus we may consider U V=  as the eigenvectors and 

Σ = Λ  as the eigenvalue matrix. 

Hence, the decomposition problem is reduced to the calculation of eigenvectors, such 

that each eigenvector corresponds to one separated signal component. The auto-correlation 

matrix R(p,q) can be decomposed as follows: 

 *

1 1

( , ) ( , ) ( ) ( )
M M

c j j

c

j

j
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= =
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where jλ  are eigenvalues and ( )ju n  are eigenvectors of the autocorrelation matrix R. Note 

that the obtained eigenvectors corresponds to the selected K signal components, while the 

eigenvalues are related to the components energy. 

 

4. DECOMPOSITION OF MUSICAL SIGNALS 

Different examples of highly multicomponent signals can be found among musical 

tones produced by various acoustic instruments. The analysis of frequency and amplitude 

envelope of musical signal has been the topic in various papers [18]. The spectral 

characteristics of these signals depend on the tones, but also can vary depending on the sound 

level, playing dynamic level, etc. For instance, the louder tones have brighter timbre [19]. The 

spectral characteristics of different tones played on the same level can be quite different. Also, 

even the same tones played at different exemplars of the same instrument may have certain 

specificity in the spectrum. Extracting individual components allows accurate analysis, but 

also various modifications of musical tones [18], [19]. The Fast Harmonic Matching Pursuit 

algorithm has been employed in [20] to approximate audio signals as a combination of M 
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harmonic structures. The method provides efficient results in decomposition of musical 

recordings, but it is sensitive to its parameters values. In some cases, the separation of 

harmonic components can be done by filtering in the spectral domain. The frequencies of each 

harmonic have to be known, and thus it is necessary to estimate signal frequencies by 

applying, for example, tracking harmonics, peak-picking, etc [21], [22].  

In this Section we proposed another solution for decomposition of highly 

multicomponent musical signals. Unlike the previously described algorithms that explore the 

harmonic properties of signals, the proposed procedure does not use any a priori knowledge 

on the signal nature. Hence, it can be efficiently used for both harmonic and non-harmonic 

data. The algorithm is based on the previously presented eigendecomposition, but the 

straightforward use is not applicable, having in mind that the energy of components may vary 

significantly. Thus, we propose a modification which could be applied to different types of 

musical (or other similar) signals. The algorithm for the proposed decomposition is shown in 

Figure 1. The decomposition is done in several iterations. In each iteration, we treat the 

components within the regions with approximately the same energy.  

Let ( )x t  be the signal on which the decomposition should be applied, while its Fourier 

transform is denoted by ( )X ω . The parameter K is set according to the number of components 

that we aim to separate within the observed iteration.  

In the first iteration the S-method is calculated for the whole signal and decomposition 

is applied as:  
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Note that the number of separated components is actually K/2, since the components appear in 

pairs due to the spectrum symmetry. In the next step, the S-method is calculated by using the 

eigenvectors ju  for each separated j-th component: 
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where 1, 2,..., / 2j K= . Then the central frequency of the j-th component in the first iteration 

is determined as: 

 { ( ., )}j j
k

argmax S n kMω =  (14) 

After identifying the components positions, the corresponding frequency region is set to 

zero within the Fourier transform ( )X ω  of the signal: 
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where m and a are window lengths used to calculate the STFT within the SM  and jSM , 

respectively. The inverse Fourier transform is used to obtain the signal for the next iteration:  

 1( ) ( ( ))ix t ifft X ω+ = . (16) 

The algorithm is then repeated in the next iteration by using the signal 1( )ix t+ . 

Theoretically, the procedure ends once we remove the whole frequency content from ( )X ω , 

i.e., when ( ) 0X ω = . However, in practice, the noise is usually present within the real signals. 

Hence, instead of ( ) 0X ω = , the condition is defined as ( )X ω ξ< . The floor value ξ  is 

determined empirically and it is approximately equal to the peak noise energy within ( )X ω .  
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Figure 1: The proposed algorithm for time-frequency based decomposition 
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5. EXPERIMENTAL RESULTS 

5.1. Example: Flute and violin signals 

The proposed procedure is firstly applied on a flute signal. The signal segments with 

1000 samples are used in the analysis. The parameter L for the S-method calculation is set to 

the value 6, in order to provide good concentration of components and, at the same time, to 

avoid the cross-terms. The S-method of flute signal is shown in Figure 2. The signal consists 

of nine components. Note that the energy of components varies significantly, depending on 

the frequency at which component appears, as it can be seen from the Figure 2 (the S-method 

is shown in the log scale, because the components at higher frequencies (upper part) have 

several times lower energy than the low-frequency components).   

The highest energy components are separated in the first iteration. In our experiments, it 

has been shown that an optimal number of components that should be extracted in each 

iteration is K=4. Although for most of the tested signals even larger K can be used, we prefer 

to choose an optimal value of K that should be used for any signal type (even for some very 

specific cases). Hence, in all iterations K equal to 4 is considered. The components extracted 

through the five iterations are illustrated in Figure 3. 

 

 
Figure 2: The S-method of a sample flute signal 
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Figure 3: Flute signal components (on positive frequencies) separated in 5 iterations 

 

 

The proposed algorithm has been successfully applied even to a more complex signal 

structures. For instance, let us observe the violin signal that consists of a large number of 

closely spaced components as illustrated in Figure 4. Note that the distance between the 

individual components in the time-frequency plane is smaller than in the case of flute signal. 

The decomposition procedure is applied in the same way and with the same values of 

parameters as in the previous example. As shown below, all 19 components are successfully 

extracted within 10 iterations and separated components are illustrated in Figure 5. 

 

 

 

Figure 4: The S-method of a sample violin signal  
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Figure 5: Separated violin signal components (at positive frequencies) within 10 iterations 

 

Comparison: For the purpose of the comparison, in the sequel we consider the 

application of MUSIC algorithm for signal components separation. The flute signal from 

Figure 2 is observed. MUSIC pseudospectrum and discrete Fourier transform (DFT) of the 

considered signal are shown in Figure 6. We might note that the peaks in the MUSIC 

pseudospectrum do not correspond properly to the signal’s DFT components. In order to apply 

the MUSIC algorithm, we need to specify the number P of sinusoidal components within the 

signal.  
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Figure 6: a) MUSIC pseudospectrum, b) Discrete Fourier transform of the flute signal 

 

Even if we know the number of components (e.g., P=9 for the observed flute signal), 

which is usually not the case in the practice, we are not able to extract all components. 

Namely, only the first 6 eigenvectors, obtained using MUSIC, correspond to the signal 
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components (Figure 7a). The remaining eigenvectors are either parts of the same 6 

components or belong to the noise (Figure 7b). As signal consists of 9 components, 3 of them 

cannot be detected using MUSIC. The MUSIC performance does not improve even if we 

increase the value of P. Additional drawback of the MUSIC algorithm, when applied to 

components separation, is the resolution of components which is dependent on the time-

window width. 
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Figure 7: Separated components by using MUSIC algorithm 
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5.2. Example: Performance of the proposed algorithm in the presence of noise 

 

The performance of the proposed algorithm is tested in the presence of noise. Namely, 

several experiments with different realizations of signal to noise (SNR) ratio have been 

performed. It has been shown that the decomposition method provide satisfactory results as 

long as the noise is not dominant over the components energy. Namely, high frequency 

components, due to their low energy, could be lost within the strong noise. Our experiments 

have shown that the decomposition (even on the high frequencies) is successful as long as the 

SNR is above 15 dB. However, by increasing the noise strength, the weakest high-frequency 

components cannot be separated from the noise. The examples of noisy flute signal (for 

different SNRs) are shown in Figure 8, while the number of successfully separated 

components in terms of SNR is given in Table 1. 

 

 

Figure 8: a) Non-noisy signal, b) Noisy signal SNR=15dB, c) Noisy signal SNR=12 dB, d) 

Noisy signal SNR= 9 dB 
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Table 1. The number of extracted components depending on the noise level 

Noise level Number of extracted components (out of 9) 

SNR=9dB 7 

SNR=12dB 8 

SNR=14dB 8 

SNR=15dB 8 

SNR>15dB 9 

 

5.3. Example: Performance of the proposed algorithm for non-harmonic signal 

 

In the sequel, the results of decomposition procedure applied to the non-harmonic signal 

are shown. The signal consists of 12 components, with different durations, different energies 

and different frequency gaps (distance between different components). Time-frequency 

representation of the non-harmonic signal is shown in Figure 9. The parameter L within the S-

method calculation is set to the value 6, whereas 2 components are extracted in each iteration 

(K=4). It can be seen that the procedure provides the same performance as in the case of other 

considered signals, which proofs that the proposed approach does not require harmonic 

structure. Separated components are shown in Table 2. 

 

 

 

Figure 9: Time-frequency representation of the non-harmonic signal 
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Table 2. Separated components of the non-harmonic signal within sixth iterations 

First iteration Second iteration 

    
Third iteration Fourth iteration 

    
Fifth iteration Sixth iteration 

   
 

 

6. CONCLUSION 

 

This paper presents an efficient iterative procedure for decomposition of signals with 

closely spaced components characterized by different energy levels. The algorithm is based on 

the time-frequency analysis combined with the singular value decomposition method. As a 

suitable time-frequency distribution, the S-method has been used to provide a cross-terms free 

representation. Due to the signal complexity the decomposition procedure is modified and 

applied within several iteration steps. In this way, even the components with lowest energy, 

that are almost invisible within the time-frequency representation, are detected and extracted. 

The efficiency of the procedure is shown in the examples with highly multicomponent flute 

and violin signals, as well as signals having non-harmonic structures.   
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