
2
nd

 Mediterranean Conference on Embedded Computing         MECO - 2013                                            Budva, Montenegro  

FHSS Signal Characterization Based On The Cross-

terms Free Time-Frequency Distributions 

Andjela Draganić, Irena Orović, Srdjan Stanković 

University of Montenegro 

Faculty of Electrical Engineering 

Dzordza Vasingtona bb 

20000 Podgorica, Montenegro

 

 

 
Abstract—The application of the Cohen class time-frequency 

distributions has been considered for the analysis of signals in 

wireless communications. Several distributions are considered: 

spectrogram, Wigner-Ville, S-method, Born-Jordan, Choi-

Williams, rectangular and Gaussian kernel based distribution. 

The possibility of using time-frequency distributions in 

decomposition of multicomponent wireless signals is examined. 

The signal separation procedure is based on eigenvalues and 

eigenvectors decomposition. Time duration and frequency range 

are estimated after the separation for each signal component. 

The theory is supported by the experimental results.  
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I.  INTRODUCTION  

 

In the case of the signals with non-stationary spectrum, the 

Fourier domain analysis fails to provide satisfactory results. 

Namely, it cannot provide the information about the time 

instants when spectral components occur. In order to 

overcome this drawback in the case of the signals with time-

varying frequency content, joint time-frequency distributions 

(TFDs) have been used in practical applications [1]-[6]. A 

suitable TFD should provide good concentration in the time-

frequency domain and high resolution in both, time and 

frequency. There is no single TFD that can provide 

appropriate representation for all types of non-stationary 

signals. The Short-Time Fourier Transform (STFT) and the 

spectrogram (as its energetic version) are the oldest and the 

most commonly used tools in time-frequency analysis. 

However, using the STFT and the spectrogram, it is difficult 

to achieve good time-frequency resolution in the case of 

nonlinear signal phase function. In other cases, time-frequency 

resolution of the spectrogram highly depends of the window 

width and shape. In order to improve the resolution of the 

spectrogram, quadratic TFDs have been introduced [1], and 

later, more complex, higher order distributions [7]-[9]. The 

commonly used quadratic distributions include the Wigner 

distribution (WD), distributions from the Cohen class and the 

S-method. The WD improves time-frequency resolution and it 

is not window dependent as the STFT, but it has another 

drawback that limit its applicability. Namely, in the case of the 

multicomponent signals, WD introduces cross-terms, that 

appear due to the quadratic nature of the WD. In some 

situations, the signal terms (auto-terms) cannot be 

distinguished from the cross-terms, and time-frequency 

analysis cannot give accurate representation. In order to 

eliminate cross-terms, the WD is combined with different low-

pass kernel functions, resulting in the Cohen class of 

distributions. Another solution for the cross-terms suppression 

called the S-method, provides efficient cross-terms free 

representation with good auto-terms concentration as in the 

Wigner distribution. When dealing with multicomponent 

signals, whose components are very close to each other, the S-

method might produce certain cross-terms.  

In this paper we consider the Frequency Hopped Spread 

Spectrum (FHSS) communication signals with very close 

components, aiming to separate the components and to 

determine their time duration and frequency range. The 

components separation method is based on the combination of 

eigenvalue decomposition and time-frequency distributions. In 

order to avoid cross-terms, the distributions from the Cohen 

class are applied and compared to the spectrogram, the WD 

and the S-method. The analysis includes different types of 

kernels that should provide cross-terms suppression and at the 

same time good concentration of auto-terms. The optimal 

choice of kernel function should provide accurate 

instantaneous frequency (IF) estimation of signal components. 

The mean square error (MSE) is measured between the true 

and the estimated IF. The optimal kernel provides minimal 

MSE of the IF estimation, while preserving signal features 

(time duration and frequency range of signal components 

called hops) as well as the time-frequency concentration of 

each component.  
The paper is organized as follows: Section II is theoretical 

background on the commonly used TFDs. In Section III, the 
eigenvalue decomposition method, based on the Cohen class of 
distributions, is described. The experimental results are 
discussed in Section IV. MSEs and duration measures for 
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different distributions are provided in this section as well. 
Concluding remarks are given in Section V. 

II. THEORETICAL BACKGROUND 

The STFT is widely used in the time-frequency analysis. It 

is, in fact, the Fourier transform of the windowed signal, 

which can be defined as [1], [3]:  

 ( , ) ( ) ( ) ,j
STFT t x t w e d

ωτω τ τ τ
∞

−

−∞

= +∫  (1) 

where ( )x t  is signal and w(τ) is a window function. In the 

case of multicomponent signals, STFT is equal to the sum of 

the STFTs of each individual component. STFT resolution in 

the TF plane is window dependent, which is its main 

drawback. In order to improve signal resolution in the TF 

plane, the Wigner distribution is used [1]: 
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Although the WD improves concentration in the time- 

frequency plane, it is not suitable for multicomponent signals. 

Namely, for multicomponent signals, the cross-terms appear 

between the two auto-term components, and in some cases, 

can be misinterpreted as the auto-term. As a suitable solution 

for the cross-terms, the S-method was introduced. It reduces 

the presence of cross-terms while keeping good auto-terms 

concentration. The S-method is defined as [7]: 

*1
( , ) ( ) ( , ) ( , ) ,
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π

∞
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               (3) 

where ( )P θ  is the frequency window function. Reduction of 

the cross-terms will depend on the width of ( )P θ : the window 

should not be too wide and the signal components should not 

be very close to each other. 

All of the mentioned distributions are just special cases of 

the general Cohen class of distributions [1], [10]-[12], which 

is derived using the different low-pass kernel functions:  
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where ( , )c θ τ is 2D kernel function, and ( , )A θ τ represents the 

ambiguity function (AF):  
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In the ambiguity domain, the auto-terms are located around 

the origin, and the cross-terms are dislocated. The ambiguity 

function is filtered by using the kernel function. However, 

there is a trade-off between cross-terms reduction and auto-

terms concentration. 

III. EIGENVALUE DECOMPOSITION APPLIED TO THE COHEN 

CLASS OF DISTRIBUTIONS 

In order to separate components of the multicomponent 
signal, the eigenvalue decomposition method [13] is used. This 
method is combined with TFDs. In order to introduce 
eigenvalue decomposition method, let us first consider inverse 
form of the WD:  
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For the signal that consists of M components, the previous 

relation becomes: 
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If the STFTs of the signal components do not overlap in the 
time-frequency plane, then sum of the WDs on the right side of 
(7) could be replaced with the cross-terms free distribution 
from the Cohen class: 
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Left side of (8) is the autocorrelation matrix C to which we 

apply the decomposition method. Eigenvalue decomposition 

of the square matrix C could be written as: 
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In relation (9) iη  are eigenvalues and iv
 
are eigenvectors of 

matrix C. Eigenvectors correspond to the signal components, 

while eigenvalues correspond to the energy of components.  

 

IV. EXPERIMENTAL RESULTS 

The eigenvalue decomposition procedure is applied on 

closely-spaced FHSS signal. FHSS [14]-[17] is a modulation 

technique, used for the transmission of radio signals. This 

modulation technique is based on changing the carrier 

frequency from one value to another and finds application in 

the Bluetooth systems. Bluetooth is a communications 

protocol that uses the ISM (Industrial, Scientific and Medical) 

frequency band from 2.4 GHz to 2.4835 GHz. There are 

several standards that share this frequency band. Specific 

techniques are developing, in order to identify the types of 

signals in the ISM frequency band. Some of them use TF 

distributions to characterize the signal. In order to characterize 

the signal, its features have to be determined. The features are 

extracted after the separation of the signal components. 

Fig.1 shows different TF representations of the FHSS 

signal. The signal consists of four closely spaced components 

and is defined as: 
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where 1:1 /128 :1t = − , and N is signal length. The 

spectrogram (Fig. 1a) does not provide good TF resolution of 

the signal. In order to improve TF resolution, the S-method is 

considered. It can be seen that S-method  improves resolution, 

but introduces cross-terms between two neighboring 

components (Fig. 1b). It is still possible to differ between auto 

and cross-terms, but signal components could not be 

separated. The WD (Fig. 1c) introduces large number of cross-

terms, and make differentiation between auto and cross terms 

impossible. 
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Figure 1.  a) Spectrogram, b) S-method, c) Wigner distribution 
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Figure 2.  Ambiguity function of the observed FHSS signal 

The decomposition procedure could be applied only if the 

signal components do not overlap in the TF plane. The TF 

representation must be cross-terms free if we want to separate 

only the auto-terms. In order to reduce the cross-terms and to 

keep the best possible resolution of the signal, different 

distributions from the Cohen class are observed [12]. They are 

based on the AF filtering. The AF of the considered signal is 

presented in Fig. 2. TF distributions of the observed FHSS 

signal, obtained by using different kernels, are shown in Fig. 

3. It is shown that, by adapting the Gaussian kernel, it is 

possible to completely remove the cross-terms and to keep 

other signal features, like good resolution in the TF plane, 

frequency range and time duration of the each component. 

Components, separated from the distribution based on 

Gaussian kernel, are shown in Fig. 4. Table I shows time 

duration and the frequency range of the each separated 

component, estimated by using different kernels. The 

rectangular kernel gives the worst results. BJ, CW and 

Gaussian kernel give the similar results, except Gaussian 

kernel keeps the rectangular shape of the signal components in 

the TF plane, which is important feature for signal 

classification. 

Fig. 5 shows true IF of the signal (solid line), and IF 
estimated from the Cohen class (dotted line), for different types 
of kernel. Also, in Table II we provide MSEs of the IF 
estimation. The smallest MSE is obtained for the distribution 
from Fig. 3h, obtained with Gaussian kernel, which is the 
closest to the true IF of the considered signal.  
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Figure 3.  Born-Jordan, Choi-Williams, rectangular, Gaussian kernel (left 

column, a, c, e, g) and time-frequency representation obtained by using these 
kernels (right column, b, d, f, h) 
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Figure 4. Time-frequency representation obtained by using Gaussian kernel 

(first row), and separated components (second and third row)   
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Figure 5.  True IF of the signal (solid line) and IF estimated from the 
separated components (dotted line) for different kernels: Gaussian and Born-

Jordan (first row), Choi-Williams and rectangular (second row) 

TABLE I: TIME AND FREQUENCY DURATION OF THE EACH 
SIGNAL COMPONENT 

Kernel 

Duration 

Comp. 1 

 

Comp. 2 Comp. 3 Comp. 4 

t  ω  t  ω  t  ω  t  ω  

Born-Jordan 69 12 63 14 62 12 64 11 

Choi-

Williams 
68 11 62 16 62 12 63 11 

Rectangular 224 17 55 14 53 14 212 14 

Gaussian 56 14 62 16 58 12 69 14 

 

TABLE II: MSE BETWEEN IF ESTIMATED FROM THE COHEN CLASS 

DISTRIBUTION AND TRUE IF OF THE SIGNAL 

V. CONCLUSION 

 The procedure for decomposition of FHSS signals is 
described in the paper. The decomposition procedure includes 
the calculation of eigenvalues and eigenvectors from the 
properly formed autocorrelation matrix. FHSS signals could be 
very closely frequency spaced, or there could be other signals 
presented in the ISM frequency band. In the case of the 
multicomponent signals with closely-spaced components, the 
decomposition procedure may fail if the components are not 
properly spaced (if there are overlappings or cross-terms). In 
order to overcome this problem, decomposition is combined 
with distributions from the Cohen class. It has been shown that, 
by properly adapted kernel shape, the Cohen class TFDs based 
on Gaussian kernel can provide reduction of the cross-terms, 
providing at the same time the best concentrated components in 
the TF plane. The results are verified by measuring the MSE of 
IF estimation for signal components. 
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Kernel Mean Square Error 

Born Jordan 15.5756 

Choi Williams 16.1294 

Rectangular 31.2288 

Gaussian 10.4912 


